The present invention relates to a polynucleotide associated with type II diabetes mellitus, a microarray and a diagnostic kit including the same, and a method of analyzing polynucleotides associated with type II diabetes mellitus.
2. Background Art
The genomes of all organisms undergo spontaneous mutation in the course of their continuing evolution, generating variant forms of progenitor nucleic acid sequences (Gusella, Ann. Rev. Biochem. 55, 831-854 (1986)). The variant forms may confer an evolutionary advantage or disadvantage, relative to a progenitor form, or may be neutral. In some instances, a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism. In other instances, a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of most members of the species and effectively becomes the progenitor form. In many instances, both progenitor and variant form(s) survive and co-exist in a species population. The coexistence of multiple forms of a sequence gives rise to polymorphisms.
Several different types of polymorphisms have been known, including restriction fragment length polymorphisms (RFLPs), short tandem repeats (STRs), variable number tandem repeats (VNTRs) and single-nucleotide polymorphisms (SNPs). Among them, SNPs take the form of single-nucleotide variations between individuals of the same species. When SNPs occur in protein coding sequences, any one of the polymorphic forms may give rise to the expression of a defective or a variant protein. On the other hand, when SNPs occur in non-coding sequences, some of these polymorphisms may result in the expression of defective or variant proteins (e.g., as a result of defective splicing). Other SNPs have no phenotypic effects.
It is known that human SNPs occur at a frequency of 1 in about 1,000 bp. When such SNPs induce a phenotypic expression such as a disease, polynucleotides containing the SNPs can be used as primers or probes for diagnosis of a disease. Monoclonal antibodies specifically binding with the SNPs can also be used in diagnosis of a disease. Currently, research into the nucleotide sequences and functions of SNPs is under way by many research institutes. The nucleotide sequences and other experimental results of the identified human SNPs have been made into database to be easily accessible.
Even though findings available to date show that specific SNPs exist on human genomes or cDNAs, phenotypic effects of such SNPs have not been revealed. Functions of most SNPs have not been disclosed yet except some SNPs.
It is known that 90-95% of total diabetes patients suffer type II diabetes mellitus. Type II diabetes mellitus is a disorder which is developed in persons who abnormally produce insulin or have low sensitivity to insulin, thereby resulting in large change in blood glucose level. When disorder of insulin secretion leads to the condition of type II diabetes mellitus, blood glucose cannot be transferred to body cells, which renders the conversion of food into energy difficult. It is known that a genetic cause has a role in type II diabetes mellitus. Other risk factors of type II diabetes mellitus are age over 45, familial history of diabetes mellitus, obesity, hypertension, and high cholesterol level. Currently, diagnosis of diabetes mellitus is mainly made by measuring a pathological phenotypic change, i.e., blood glucose level, using fasting blood glucose (FSB) test, oral glucose tolerance test (OGTT), and the like [National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, http://www.niddk.nih.gov, 2003]. When diagnosis of type II diabetes mellitus is made, type II diabetes mellitus can be prevented or its onset can be delayed by exercise, special diet, body weight control, drug therapy, and the like. In this regard, it can be said that type II diabetes mellitus is a disease in which early diagnosis is highly desirable. Millenium Pharmaceuticals Inc. reported that diagnosis and prognosis of type II diabetes mellitus can be made based on genotypic variations present on HNFI gene [PR newswire, Sep. 1, 1998]. Sequenom Inc. reported that FOXA2 (HNF3β) gene is highly associated with type II diabetes mellitus [PR Newswire, Oct. 28, 2003]. Even though there are reports about some genes associated with type II diabetes mellitus, researches into the incidence of type II diabetes mellitus have been focused on specific genes of some chromosomes in specific populations. For this reason, research results may vary according to human species. Furthermore, all causative genes responsible for type II diabetes mellitus have not yet been identified. Diagnosis of type II diabetes mellitus by such a molecular biological technique is now uncommon. In addition, early diagnosis before incidence of type II diabetes mellitus is currently unavailable. Therefore, there is an increasing need to find new SNPs highly associated with type II diabetes mellitus and related genes that are found in whole human genomes and to make early diagnosis of type II diabetes mellitus using the SNPs and the related genes.
The present invention provides a polynucleotide containing single-nucleotide polymorphism associated with type II diabetes mellitus.
The present invention also provides a microarray and a type II diabetes mellitus diagnostic kit, each of which includes the polynucleotide containing single-nucleotide polymorphism associated with type II diabetes mellitus.
The present invention also provides a method of analyzing polynucleotides associated with type II diabetes mellitus.
The present invention provides a polynucleotide for diagnosis or treatment of type II diabetes mellitus, including at least 10 contiguous nucleotides of a nucleotide sequence selected from the group consisting of nucleotide sequences of SEQ ID NOS: 1-80 and including a nucleotide of a polymorphic site (position 101) of the nucleotide sequence, or a complementary polynucleotide thereof.
The polynucleotide includes a contiguous span of at least 10 nucleotides containing the polymorphic site of a nucleotide sequence selected from the nucleotide sequences of SEQ ID NOS: 1-80. The polynucleotide is 10 to 400 nucleotides in length, preferably 10 to 100 nucleotides in length, and more preferably 10 to 50 nucleotides in length. Here, the polymorphic site of each nucleotide sequence of SEQ ID NOS: 1-80 is at position 101.
Each of the nucleotide sequences of SEQ ID NOS: 1-80 is a polymorphic sequence. The polymorphic sequence refers to a nucleotide sequence containing a polymorphic site at which single-nucleotide polymorphism (SNP) occurs. The polymorphic site refers to a position of a polymorphic sequence at which SNP occurs. The nucleotide sequences may be DNAs or RNAs.
In the present invention, the polymorphic sites (position 101) of the polymorphic sequences of SEQ ID NOS: 1-80 are associated with type II diabetes mellitus. This is confirmed by DNA sequence analysis of blood samples derived from type II diabetes mellitus patients and normal persons. Association of the polymorphic sequences of SEQ ID NOS: 1-80 with type II diabetes mellitus and characteristics of the polymorphic sequences are summarized in Tables 1-1, 1-2, 2-1, and 2-2.
In Tables 1-1 and 1-2, the contents in columns are as defined below.
Tables 2-1 and 2-2 present characteristics of SNP markers based on the NCBI build 123.
As shown in Tables 1-1, 1-2, 2-1, and 2-2, according to the chi-square test of the polymorphic markers of SEQ ID NOS: 1-80 of the present invention, chi_exact_p-value ranges from 4.54×10−4 to 0.0104 in 95% confidence interval. This shows that there are significant differences between expected values and measured values in allele occurrence frequencies in the polymorphic markers of SEQ ID NOS: 1-80. Odds ratio ranges from 1.34 to 2.43, which shows that the polymorphic markers of SEQ ID NOS: 1-80 are associated with type II diabetes mellitus.
The SNPs of SEQ ID NOS: 1-80 of the present invention occur at a significant frequency in a type II diabetic patient group and a normal group. Therefore, the polynucleotide according to the present invention can be efficiently used in diagnosis, fingerprinting analysis, or treatment of type II diabetes mellitus. In detail, the polynucleotide of the present invention can be used as a primer or a probe for diagnosis of type II diabetes mellitus. Furthermore, the polynucleotide of the present invention can be used as antisense DNA or a composition for treatment of type II diabetes mellitus.
The present invention also provides an allele-specific polynucleotide for diagnosis of type II diabetes mellitus, which is hybridized with a polynucleotide including a contiguous span of at least 10 nucleotides containing a nucleotide of a polymorphic site of a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 1-80, or a complement thereof.
The allele-specific polynucleotide refers to a polynucleotide specifically hybridized with each allele. That is, the allele-specific polynucleotide has the ability that distinguishes nucleotides of polymorphic sites within the polymorphic sequences of SEQ ID NOS: 1-80 and specifically hybridizes with each of the nucleotides. The hybridization is performed under stringent conditions, for example, conditions of 1M or less in salt concentration and 25° C. or more in temperature. For example, conditions of 5×SSPE (750 mM NaCl, 50 mM Na Phosphate, 5 mM EDTA, pH 7.4) and 25-30° C. are suitable for allele-specific probe hybridization.
In the present invention, the allele-specific polynucleotide may be a primer. As used herein, the term “primer” refers to a single stranded oligonuleotide that acts as a starting point of template-directed DNA synthesis under appropriate conditions, for example in a buffer containing four different nucleoside triphosphates and polymerase such as DNA or RNA polymerase or reverse transcriptase and an appropriate temperature. The appropriate length of the primer may vary according to the purpose of use, generally 15 to 30 nucleotides. Generally, a shorter primer molecule requires a lower temperature to form a stable hybrid with a template. A primer sequence is not necessarily completely complementary with a template but must be complementary enough to hybridize with the template. Preferably, the 3′ end of the primer is aligned with a nucleotide of each polymorphic site (position 101) of SEQ ID NOS: 1-80. The primer is hybridized with a target DNA containing a polymorphic site and starts an allelic amplification in which the primer exhibits complete homology with the target DNA. The primer is used in pair with a second primer hybridizing with an opposite strand. Amplified products are obtained by amplification using the two primers, which means that there is a specific allelic form. The primer of the present invention includes a polynucleotide fragment used in a ligase chain reaction (LCR).
In the present invention, the allele-specific polynucleotide may be a probe. As used herein, the term “probe” refers to a hybridization probe, that is, an oligonucleotide capable of sequence-specifically binding with a complementary strand of a nucleic acid. Such a probe may be a peptide nucleic acid as disclosed in Science 254, 1497-1500 (1991) by Nielsen et al. The probe according to the present invention is an allele-specific probe. In this regard, when there are polymorphic sites in nucleic acid fragments derived from two members of the same species, the probe is hybridized with DNA fragments derived from one member but is not hybridized with DNA fragments derived from the other member. In this case, hybridization conditions should be stringent enough to allow hybridization with only one allele by significant difference in hybridization strength between alleles. Preferably, the central portion of the probe, that is, position 7 for a 15 nucleotide probe, or position 8 or 9 for a 16 nucleotide probe, is aligned with each polymorphic site of the nucleotide sequences of SEQ ID NOS: 1-80. Therefore, there may be caused a significant difference in hybridization between alleles. The probe of the present invention can be used in diagnostic methods for detecting alleles. The diagnostic methods include nucleic acid hybridization-based detection methods, e.g., southern blot. In a case where DNA chips are used for the nucleic acid hybridization-based detection methods, the probe may be provided as an immobilized form on a substrate of a DNA chip.
The present invention also provides a microarray for diagnosis of type II diabetes mellitus, including the polynucleotide according to the present invention or the complementary polynucleotide thereof. The polynucleotide of the microarray may be DNA or RNA. The microarray is the same as a common microarray except that it includes the polynucleotide of the present invention.
The present invention also provides a type II diabetes mellitus diagnostic kit including the polynucleotide of the present invention. The type II diabetes mellitus diagnostic kit may include reagents necessary for polymerization, e.g., dNTPs, various polymerases, and a colorant, in addition to the polynucleotide according to the present invention.
The present invention also provides a method of diagnosing type II diabetes mellitus in an individual, which includes: isolating a nucleic acid sample from the individual; and determining a nucleotide of at least one polymorphic site (position 101) within polynucleotides of SEQ ID NOS: 1-80 or complementary polynucleotides thereof. Here, when the nucleotide of the at least one polymorphic site of the sample nucleic acid is the same as at least one risk allele presented in Tables 1-1, 1-2, 2-1, 2-2, 3, 4, and 5, it may be determined that the individual has a higher likelihood of being diagnosed as at risk of developing type II diabetes mellitus.
The step of isolating the nucleic acid sample from the individual may be carried out by a common DNA isolation method. For example, the nucleic acid sample can be obtained by amplifying a target nucleic acid by polymerase chain reaction (PCR) followed by purification. In addition to PCR, there may be used LCR (Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)), self-sustained sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA 87, 1874 (1990)), or nucleic acid sequence based amplification (NASBA). The last two methods are related with isothermal reaction based on isothermal transcription and produce 30 or 100-fold RNA single strands and DNA double strands as amplification products.
According to an embodiment of the present invention, the step of determining a nucleotide of a polymorphic site includes hybridizing the nucleic acid sample onto a microarray on which polynucleotides for diagnosis or treatment of type II diabetes mellitus, including at least 10 contiguous nucleotides derived from the group consisting of nucleotide sequences of SEQ ID NOS: 1-80 and including a nucleotide of a polymorphic site (position 101), or complementary polynucleotides thereof are immobilized; and detecting the hybridization result.
A microarray and a method of preparing a microarray by immobilizing a probe polynucleotide on a substrate are well known in the pertinent art. Immobilization of a probe polynucleotide associated with type II diabetes mellitus of the present invention on a substrate can be easily performed using a conventional technique. Hybridization of nucleic acids on a microarray and detection of the hybridization result are also well known in the pertinent art. For example, the detection of the hybridization result can be performed by labeling a nucleic acid sample with a labeling material generating a detectable signal, such as a fluorescent material (e.g., Cy3 and Cy5), hybridizing the labeled nucleic acid sample onto a microarray, and detecting a signal generated from the labeling material.
According to another embodiment of the present invention, as a result of the determination of a nucleotide sequence of a polymorphic site, when at least one nucleotide sequence selected from SEQ ID NOS: 2. 4, 5, 8, 9, 11, 13, 16, 18, 20, 21, 23, 25, 27, 30, 32, 33, 36, 38, 40, 42, 44, 46, 47, 49, 51, 53, 55, 57, 59, 62, 63, 65, 67, 69, 71, 75, 77, and 80 containing risk alleles is detected, it may be determined that the individual has a higher likelihood of being diagnosed as at risk of developing type II diabetes mellitus. If more nucleotide sequences containing risk alleles are detected in an individual, it may be determined that the individual has a much higher likelihood of being diagnosed as at risk of developing type II diabetes mellitus.
Hereinafter, the present invention will be described more specifically by Example. However, the following Example is provided only for illustrations and thus the present invention is not limited thereto.
Effect of the Invention
The polynucelotide according to the present invention can be used in diagnosis, treatment, or fingerprinting analysis of type II diabetes mellitus.
The microarray and diagnostic kit including the polynucleotide according to the present invention can be used for efficient diagnosis of type II diabetes mellitus.
The method of analyzing polynucleotides associated with type II diabetes mellitus according to the present invention can efficiently detect the presence or a risk of type II diabetes mellitus.
In this Example, DNA samples were extracted from blood streams of a patient group consisting of 300 Korean persons that had been identified as type II diabetes mellitus patients and had been being under treatment and a normal group consisting of 300 persons free from symptoms of type II diabetes mellitus and being of the same age with the patient group, and occurrence frequencies of specific SNPs were evaluated. The SNPs were selected from a known database (NCBI dbSNP:http://www.ncbi.nlm.nih.gov/SNP/) or (Sequenom:http://www.realsnp.com/). Primers hybridizing with sequences around the selected SNPs were used to assay the nucleotide sequences of SNPs in the DNA samples.
1. Preparation of DNA Samples
DNA samples were extracted from blood streams of type II diabetes mellitus patients and normal persons. DNA extraction was performed according to a known extraction method (Molecular cloning: A Laboratory Manual, p 392, Sambrook, Fritsch and Maniatis, 2nd edition, Cold Spring Harbor Press, 1989) and the specification of a commercial kit manufactured by Centra system. Among extracted DNA samples, only DNA samples having a purity (A260/A280 nm) of at least 1.7 were used.
2. Amplification of Target DNAs
Target DNAs, which are predetermined DNA regions containing SNPs to be analyzed, were amplified by PCR. The PCR was performed by a common method as the following conditions. First, 2.5 ng/ml of target genomic DNAs were prepared. Then, the following PCR mixture was prepared.
Here, the forward and reverse primers were designed based on upstream and downstream sequences of SNPs in known database. These primers are listed in Table 3 below.
The thermal cycles of PCR were as follows: incubation at 95° C. for 15 minutes; 45 cycles at 95° C. for 30 seconds, at 56° C. for 30 seconds, and at 72° C. for 1 minute; and incubation at 72° C. for 3 minutes and storage at 4° C. As a result, amplified DNA fragments which were 200 or less nucleotides in length were obtained.
3. Analysis of SNPs in Amplified Target DNA Fragments
Analysis of SNPs in the amplified target DNA fragments was performed using a homogeneous MassExtension (hME) technique available from Sequenom. The principle of the MassExtension technique was as follows. First, primers (also called as “extension primers”) ending immediately before SNPs within the target DNA fragments were designed. Then, the primers were hybridized with the target DNA fragments and DNA polymerization was performed. At this time, a polymerization solution contained a reagent (e.g., ddTTP) terminating the polymerization immediately after the incorporation of a nucleotide complementary to a first allelic nucleotide (e.g., A allele). In this regard, when the first allele (e.g., A allele) exists in the target DNA fragments, products in which only a nucleotide (e.g., T nucleotide) complementary to the first allele extended from the primers will be obtained. On the other hand, when a second allele (e.g., G allele) exists in the target DNA fragments, a nucleotide (e.g., C nucleotide) complementary to the second allele is added to the 3′-ends of the primers and then the primers are extended until a nucleotide complementary to the closest first allele nucleotide (e.g., T nucleotide) is added. The lengths of products extended from the primers were determined by mass spectrometry. Therefore, alleles present in the target DNA fragments could be identified. Illustrative experimental conditions were as follows.
First, unreacted dNTPs were removed from the PCR products. For this, 1.53 μl of deionized water, 0.17 μl of HME buffer, and 0.30 μl of shrimp alkaline phosphatase (SAP) were added and mixed in 1.5 ml tubes to prepare SAP enzyme solutions. The tubes were centrifuged at 5,000 rpm for 10 seconds. Thereafter, the PCR products were added to the SAP solution tubes, sealed, incubated at 37° C. for 20 minutes and then 85° C. for 5 minutes, and stored at 4° C.
Next, homogeneous extension was performed using the amplified target DNA fragments as templates. The compositions of the reaction solutions for the extension were as follows.
The reaction solutions were thoroughly mixed with the previously prepared target DNA solutions and subjected to spin-down centrifugation. Tubes or plates containing the reaction solutions were compactly sealed and incubated at 94° C. for 2 minutes, followed by homogeneous extension for 40 cycles at 94° C. for 5 seconds, at 52° C. for 5 seconds, and at 72° C. for 5 seconds, and storage at 4° C. The homogeneous extension products thus obtained were washed with a resin (SpectroCLEAN). Extension primers used in the extension are listed in Table 3 below.
Nucleotides of polymorphic sites in the extension products were assayed using mass spectrometry, MALDI-TOF (Matrix Assisted Laser Desorption and Ionization-Time of Flight). The MALDI-TOF is operated according to the following principle. When an analyte is exposed to a laser beam, it flies toward a detector positioned at the opposite side in a vacuum state, together with an ionized matrix. At this time, the time taken for the analyte to reach the detector is calculated. A material with a smaller mass reaches the detector more rapidly. The nucleotides of SNPs in the target DNA fragments are determined based on a difference in mass between the DNA fragments and known nucleotide sequences of the SNPs.
Determination results of the nucleotides of polymorphic sites of the target DNAs using the MALDI-TOF are shown in Tables 1-1, 1-2, 2-1, and 2-2. Each allele may exist in the form of homozygote or heterozygote in an individual. However, the distribution between heterozygotes frequency and homozygotes frequency in a given population does not exceed a statistically significant level. According to Mendel's Law of inheritance and Hardy-Weinberg Law, a genetic makeup of alleles constituting a population is maintained at a constant frequency. When the genetic makeup is statistically significant, it can be considered to be biologically meaningful. The SNPs according to the present invention occur in type II diabetes mellitus patients at a statistically significant level, as shown in Tables 1-1, 1-2, 2-1, and 2-2, and thus, can be efficiently used in diagnosis of type II diabetes mellitus.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0096191 | Dec 2003 | KR | national |
10-2004-0111102 | Dec 2004 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR04/03441 | 12/24/2004 | WO | 8/23/2005 |