Polyolefin compositions

Abstract
Polyolefin composition, comprising in percent by weight: 1) 75-85% of a copolymer of propylene, said copolymer containing up to 15% by weight, of ethylene and/or C4-C10 α-olefin(s) and having a fraction soluble in Xilene at room temperature lower than 6% by weight, and2) 15-25% of a copolymer of ethylene with one or more C4-C10 α-olefin(s) containing from 10 to 25% by weight of said C4-C10 α-olefin(s);said composition having the value of MFR, measured at 230° C., 2.16 kg, of less than 2.5 g/10 min, the total content of ethylene of from 14 to 22% by weight, the total content of C4-C10 α-olefin(s) of less than 4.5% by weight, the ratio of the total content of ethylene to the total content of C4-C10 α-olefin(s) equal to or higher than 4, the value of the intrinsic viscosity of the total fraction soluble in xylene at room temperature equal to or less than 1.5 dl/g, and the ratio of the amount of component 2) and the amount of C4-C10 α-olefin(s) in component 2) equal to or higher than 0.80.
Description

The present invention concerns polyolefin compositions comprising a propylene random copolymer containing ethylene and/or other α-olefins as comonomers, and a copolymer of ethylene with C4-C10 α-olefins.


The compositions of the present invention can be easily converted into various kinds of finished or semi-finished articles. In particular, they are suited for the preparation of extrusion blow molded articles.


It is widely known in the art that propylene copolymers can be conveniently used in extrusion processes, and in particular to obtain extrusion blow molded articles, because of their good balance of physical-mechanical properties. Propylene copolymers commonly used in extrusion processes are endowed with acceptable stiffness and impact properties and good optical properties, i.e. low haze values.


It has been known for a long time that the impact resistance of the polypropylene can be improved by adding an adequate quantity of propylene-ethylene elastomeric copolymer by mechanical mixing or sequential polymerization; usually, however, this copolymer loses its transparency.


Low MFR compositions comprising crystalline polypropylene matrix and a rubbery phase formed by an elastomeric copolymer of ethylene with α-olefins are already known in the art, and described in particular in European patent 0373 660. The compositions disclosed have improved impact resistance characteristics at low temperatures and good transparency; the balance of properties is met only if the content of comonomer(s) in the crystalline and rubbery components and the intrinsic viscosity meet certain critical values.


However, it is still felt the need of compositions having low MFR providing improved balance of properties, particularly good transparency and impact properties at low temperatures, for applications such as sheet extrusion/thermoforming, form-fill-seal and blow moulding which are known, particularly when heterophasic compositions are used, to exhibit an undesired lost of transparency after moulding and/or re-heating/annealing of the molded article.


Therefore, there still remains a continuous demand for compositions of this kind with improved properties balanced for specific target applications.


A new and valuable balance of properties has now been achieved by the polyolefin composition of the present invention, comprising in percent by weight (referred to the weight of the composition):

    • 1) 75-85%, preferably 77-83%, of a copolymer of propylene, said copolymer containing up to 15%, preferably from 2.5 to 5%, more preferably from 2.5 to 3.5% by weight of ethylene and/or C4-C10 α-olefin(s) and having a fraction soluble in Xilene at room temperature (Xsm) lower than 6%, preferably of from 3 to 5.5%, more preferably from 3.5 to 5.5% by weight (referred to the weight of component 1), and
    • 2) 15-25%, preferably 17-23%, of a copolymer of ethylene with one or more C4-C10 α-olefin(s) containing from 10 to 25%, preferably from 12 to 20% by weight (referred to the weight of component 2), of said C4-C10 α-olefin(s);
    • said composition having
      • the value of MFR, measured at 230° C., and 2.16 kg, of less than 2.5 g/10 min, preferably from 1.5 to 2 g/10 min,
      • the total content of ethylene of from 14 to 22% by weight,
      • the total content of C4-C10 α-olefin(s) of less than 4.5%, preferably from 2.5 to 4%, more preferably from 3 to 4% by weight,
      • the ratio of the total content of ethylene to the total content of C4-C10 α-olefin(s) equal to or higher than 4, preferably higher than 5,
      • the value of the intrinsic viscosity of the total fraction soluble in xylene at room temperature equal to or less than 1.5 dl/g, preferably of from 1.1 to 1.5 dl/g, and
      • the ratio of the amount of component 2) (Split 2) and the amount of C4-C10 α-olefin(s) in component 2) (i.e. Split 2/comonomer in component 2)) equal to or higher than 0.80, preferably higher than 0.9, more preferably higher than 1. Other preferred features for the composition of the present invention are:
      • the total fraction soluble in xylene of the composition at room temperature (Xstot) of 18% by weight or lower referred to the weight of the composition;
      • the fraction soluble in xylene at room temperature of component 2) is at least 40% by weight or more, referred to the weight of component 2);
      • the ratio (Xstot/Xsm) of the total fraction soluble in xylene of the composition at room temperature on the fraction soluble in xilene of the component 1) of from 2 to 4, preferably from 2.5 to 3.5;
      • the flexural modulus higher than 700 MPa.


The ductile/brittle transition temperature is generally equal to or lower than −20° C., the lower limit being indicatively of about −60° C.


From the above definitions it is evident that the term “copolymer” as used in the present description includes polymers containing more than one kind of comonomers.


The copolymer component 2) as above defined, having a solubility in xylene at room temperature preferably greater than 40% by weight, include from low crystalline to amorphous materials, exhibits typically elastic properties and thus can be indicated as “elastomeric” or “rubbery” component.


The compositions of the present invention provide a valuable combination of properties in particular of impact resistance (in terms of ductile/brittle transition temperature and Izod impact resistance), and top load, impact and transparency measured on bottles according to the methods specified in the description.


The said C4-C10 α-olefins, which are or may be present as comonomers in the components and fractions of the compositions of the present invention, are represented by the formula CH2═CHR, wherein R is an alkyl radical, linear or branched, with 2-8 carbon atoms or an aryl (in particular phenyl) radical.


Examples of said C4-C10 α-olefins are 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-octene. Particularly preferred is 1-butene.


The compositions of the present invention can be prepared by a sequential polymerization, comprising at least two sequential steps, wherein components 1) and 2) are prepared in separate subsequent steps, operating in each step, except the first step, in the presence of the polymer formed and the catalyst used in the preceding step. The catalyst is added only in the first step, however its activity is such that it is still active for all the subsequent steps.


Preferably component 1) is prepared before component 2).


Therefore, the present invention is further directed to a process for the preparation of the polyolefin compositions as reported above, said process comprising at least two sequential polymerization stages with each subsequent polymerization being conducted in the presence of the polymeric material formed in the immediately preceding polymerization reaction, wherein the polymerization stage of propylene to the co-polymer component 1) is carried out in at least one stage, then at least one copolymerization stage of mixtures of ethylene with one or more C4-C10 α-olefin(s) to the elastomeric polymer component 2) is carried out. The polymerisation stages may be carried out in the presence of a stereospecific Ziegler-Natta catalyst.


According to a preferred embodiment, all the polymerisation stages are carried out in the presence of a catalyst comprising a trialkylaluminium compound, optionally an electron donor, and a solid catalyst component comprising a halide or halogen-alcoholate of Ti and an electron-donor compound supported on anhydrous magnesium chloride. Catalysts having the above-mentioned characteristics are well known in the patent literature; particularly advantageous are the catalysts described in U.S. Pat. No. 4,399,054 and EP-A-45 977. Other examples can be found in U.S. Pat. No. 4,472,524.


Preferably the polymerisation catalyst is a Ziegler-Natta catalyst comprising a solid catalyst component comprising:


a) Mg, Ti and halogen and an electron donor (internal donor),


b) an alkylaluminum compound and, optionally (but preferably),


c) one or more electron-donor compounds (external donor).


The internal donor is preferably selected from the esters of mono or dicarboxylic organic acids such as benzoates, malonates, phthalates and certain succinates. They are described in U.S. Pat. No. 4,522,930, European patent 45977 and international patent applications WO 00/63261 and WO 01/57099, for example. Particularly suited are the phthalic acid esters and succinate acids esters. Alkylphthalates are preferred, such as diisobutyl, dioctyl and diphenyl phthalate and benzyl-butyl phthalate.


Among succinates, they are preferably selected from succinates of formula (I) below:




embedded image



wherein the radicals R1 and R2, equal to, or different from, each other are a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms; the radicals R3 to R6 equal to, or different from, each other, are hydrogen or a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms, and the radicals R3 to R6 which are joined to the same carbon atom can be linked together to form a cycle; with the proviso that when R3 to R5 are contemporaneously hydrogen, R6 is a radical selected from primary branched, secondary or tertiary alkyl groups, cycloalkyl, aryl, arylalkyl or alkylaryl groups having from 3 to 20 carbon atoms.


The Al-alkyl compounds used as co-catalysts comprise Al-trialkyls, such as Al-triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO4 or SO3 groups. The Al-alkyl compound is generally used in such a quantity that the Al/Ti ratio be from 1 to 1000.


The external donor (c) can be of the same type or it can be different from the succinates of formula (I). Suitable external electron-donor compounds include silicon compounds, ethers, esters such as phthalates, benzoates, succinates also having a different structure from those of formula (I), amines, heterocyclic compounds and particularly 2,2,6,6-tetramethylpiperidine, ketones and the 1,3-diethers of the general formula (II):




embedded image



wherein RI and RII are the same or different and are C1-C18 alkyl, C3-C18 cycloalkyl or C7-C18 aryl radicals; RIII and RIV are the same or different and are C1-C4 alkyl radicals; or the 1,3-diethers in which the carbon atom in position 2 belongs to a cyclic or polycyclic structure made up of 5, 6 or 7 carbon atoms and containing two or three unsaturations.


Ethers of this type are described in published European patent applications 361493 and 728769.


Preferred electron-donor compounds that can be used as external donors include aromatic silicon compounds containing at least one Si—OR bond, where R is a hydrocarbon radical. A particularly preferred class of external donor compounds is that of silicon compounds of formula Ra7Rb8Si(OR9)c, where a and b are integer from 0 to 2, c is an integer from 1 to 3 and the sum (a+b+c) is 4; R7, R8, and R9, are C1-C18 hydrocarbon groups optionally containing heteroatoms. Particularly preferred are the silicon compounds in which a is 1, b is 1, c is 2, at least one of R7 and R8 is selected from branched alkyl, alkenyl, alkylene, cycloalkyl or aryl groups with 3-10 carbon atoms optionally containing heteroatoms and R9 is a C1-C10 alkyl group, in particular methyl. Examples of such preferred silicon compounds are cyclohexyltrimethoxysilane, t-butyltrimethoxysilane, t-hexyltrimethoxysilane, cyclohexylmethyldimethoxysilane, 3,3,3-trifluoropropyl-2-ethylpiperidyl-dimethoxysilane, diphenyldimethoxysilane, methyl-t-butyldimethoxysilane, dicyclopentyldimethoxysilane, 2-ethylpiperidinyl-2-t-butyldimethoxysilane, (1,1,1-trifluoro-2-propyl)-methyldimethoxysilane and (1,1,1-trifluoro-2-propyl)-2-ethylpiperidinyldimethoxysilane. Moreover, are also preferred the silicon compounds in which a is 0, c is 3, R8 is a branched alkyl or cycloalkyl group, optionally containing heteroatoms, and R9 is methyl. Particularly preferred specific examples of silicon compounds are (tert-butyl)2Si(OCH3)2, (cyclohexyl)(methyl) Si(OCH3)2, (phenyl)2Si(OCH3)2, (cyclopentyl)2Si(OCH3)2, and diiso-propyl dimethoxi silane.


Preferably the electron donor compound (c) is used in such an amount to give a molar ratio between the organoaluminum compound and said electron donor compound (c) of from 0.1 to 500, more preferably from 1 to 300 and in particular from 3 to 30.


As explained above, the solid catalyst component comprises, in addition to the above electron donors, Ti, Mg and halogen. In particular, the catalyst component comprises a titanium compound, having at least a Ti-halogen bond and the above mentioned electron donor compounds supported on a Mg halide. The magnesium halide is preferably MgCl2 in active form, which is widely known from the patent literature as a support for Ziegler-Natta catalysts. U.S. Pat. No. 4,298,718 and U.S. Pat. No. 4,495,338 were the first to describe the use of these compounds in Ziegler-Natta catalysis. It is known from these patents that the magnesium dihalides in active form used as support or co-support in components of catalysts for the polymerisation of olefins are characterized by X-ray spectra in which the most intense diffraction line that appears in the spectrum of the non-active halide is diminished in intensity and is replaced by a halo whose maximum intensity is displaced towards lower angles relative to that of the more intense line.


The preferred titanium compounds are TiCl4 and TiCl3; furthermore, also Ti-haloalcoholates of formula Ti(OR)n-yXy can be used, where n is the valence of titanium, y is a number between 1 and n, X is halogen and R is a hydrocarbon radical having from 1 to 10 carbon atoms.


The preparation of the solid catalyst component can be carried out according to several methods, well known and described in the art.


According to a preferred method, the solid catalyst component can be prepared by reacting a titanium compound of formula Ti(OR)n-yXy, where n is the valence of titanium and y is a number between 1 and n, preferably TiCl4, with a magnesium chloride deriving from an adduct of formula MgCl2.pROH, where p is a number between 0.1 and 6, preferably from 2 to 3.5, and R is a hydrocarbon radical having 1-18 carbon atoms. The adduct can be suitably prepared in spherical form by mixing alcohol and magnesium chloride in the presence of an inert hydrocarbon immiscible with the adduct, operating under stirring conditions at the melting temperature of the adduct (100-130° C.). Then, the emulsion is quickly quenched, thereby causing the solidification of the adduct in form of spherical particles.


Examples of spherical adducts prepared according to this procedure are described in U.S. Pat. No. 4,399,054 and U.S. Pat. No. 4,469,648. The so obtained adduct can be directly reacted with the Ti compound or it can be previously subjected to thermally controlled dealcoholation (80-130° C.) so as to obtain an adduct in which the number of moles of alcohol is generally lower than 3, preferably between 0.1 and 2.5. The reaction with the Ti compound can be carried out by suspending the adduct (dealcoholated or as such) in cold TiCl4 (generally 0° C.); the mixture is heated up to 80-130° C. and kept at this temperature for 0.5-2 hours. The treatment with TiCl4 can be carried out one or more times. The electron donor compound(s) can be added during the treatment with TiCl4.


Regardless of the preparation method used, the final amount of the electron donor compound(s) is preferably such that the molar ratio with respect to the MgCl2 is from 0.01 to 1, more preferably from 0.05 to 0.5.


The said catalyst components and catalysts are described in WO 00/63261 and WO 01/57099.


The catalysts may be precontacted with small quantities of olefin (prepolymerisation), maintaining the catalyst in suspension in a hydrocarbon solvent, and polymerising at temperatures from ambient to 60° C., thus producing a quantity of polymer from 0.5 to 3 times the weight of the catalyst. The operation can also take place in liquid monomer, producing, in this case, a quantity of polymer 1000 times the weight of the catalyst.


By using the above mentioned catalysts, the polyolefin compositions are obtained in spheroidal particle form, the particles having an average diameter from about 250 to 7,000 μm, a flowability of less than 30 seconds and a bulk density (compacted) greater than 0.4 g/ml.


The polymerisation stages may occur in liquid phase, in gas phase or liquid-gas phase. Preferably, the polymerisation of the co-polymer component 1) is carried out in liquid monomer (e.g. using liquid propylene as diluent), while the copolymerisation stages of the elastomeric copolymer component 2) is carried out in gas phase. Alternatively, all the sequential polymerisation stages can be carried out in gas phase.


The reaction temperature in the polymerisation stage for the preparation of the polymer component 1) and in the preparation of the elastomeric copolymer component 2) may be the same or different, and is preferably from 40 to 100° C.; more preferably, the reaction temperature ranges from 50 to 80° C. in the preparation of polymer component 1), and from 70 to 100° C. for the preparation of polymer component 2).


The pressure of the polymerisation stage to prepare polymer component 1), if carried out in liquid monomer, is the one which competes with the vapor pressure of the liquid propylene at the operating temperature used, and it may be modified by the vapor pressure of the small quantity of inert diluent used to feed the catalyst mixture, by the overpressure of optional monomers and by the hydrogen used as molecular weight regulator.


The polymerisation pressure preferably ranges from 33 to 43 bar, if done in liquid phase, and from 5 to 30 bar if done in gas phase. The residence times relative to the stages depend on the desired ratio between polymer components 1) and 2), and can usually range from 15 minutes to 8 hours. Conventional molecular weight regulators known in the art, such as chain transfer agents (e.g. hydrogen or ZnEt2), may be used.


The compositions of the present invention can also be obtained by preparing separately the said components 1) and 2), by operating with the same catalysts and substantially under the same polymerization conditions as previously explained (except that a wholly sequential polymerization process will not be carried out, but the said components will be prepared in separate polymerization steps) and then mechanically blending said components in the molten or softened state. Conventional mixing apparatuses, like screw extruders, in particular twin screw extruders, can be used.


The compositions of the present invention can also contain additives commonly employed in the art, such as antioxidants, light stabilizers, heat stabilizers, nucleating agents, colorants and fillers.


In particular, the addition of nucleating agents brings about a considerable improvement in important physical-mechanical properties, such as flexural modulus, Heat Distortion Temperature (HDT), tensile strength at yield and transparency.


Typical examples of nucleating agents are the Na benzoate, talc and the 1,3- and 2,4-dibenzylidenesorbitols.


The nucleating agents are preferably added to the compositions of the present invention in quantities ranging from 0.01 to 2% by weight, more preferably from 0.05 to 1% by weight with respect to the total weight.


The addition of inorganic fillers, such as talc, calcium carbonate and mineral fibers, also brings about an improvement to some mechanical properties, such as flexural modulus and HDT.


The particulars are given in the following examples, which are given to illustrate, without limiting, the present invention.


The data shown in the tables are obtained by using the following test methods.


Molar Ratios of the Feed Gases

    • Determined by gas-chromatography.


Ethylene and 1-Butene Content of the Polymers

    • Determined by I.R. spectroscopy


Melt Flow Rate (MFR)

    • Determined according to ISO 1133 at 230° C. and 2.16 Kg; corresponding to ASTM D 1238, condition L (MFR“L”).


Xylene Soluble and Insoluble Fractions

    • Determined as follows:
    • 2.5 g of polymer and 250 ml of xylene are introduced in a glass flask equipped with a refrigerator and a magnetical stirrer. The temperature is raised in 30 minutes up to the boiling point of the solvent. The so obtained clear solution is then kept under reflux and stirring for further 30 minutes. The closed flask is then kept for 10-15 minutes at 100° C. and in thermostatic water bath at 25° C. for 30 minutes as well. The so formed solid is filtered on quick filtering paper. 100 ml of the filtered liquid is poured in a previously weighed aluminum container which is heated on a heating plate under nitrogen flow, to remove the solvent by evaporation. The container is then kept in an oven at 80° C. under vacuum until constant weight is obtained. The weight percentage of polymer soluble in xylene at room temperature is then calculated.


Intrinsic Viscosity (I.V.)

    • Determined in tetrahydronaphthalene at 135° C.


Flexural Modulus

    • Determined according to ISO 178 after conditioning for 24 hours.


Izod Impact Strength (Notched)

    • Determined according to ISO180/1A after conditioning for 24 hours, on T-bar samples prepared according to ISO 1873.


Preparation of the Plaque Specimens


Plaques for D/B Measurement:

    • Plaques for D/B measurement, having dimensions of 127×127×1.5 mm were prepared with an injection press Negri Bossi™ type (NB 90) with a clamping force of 90 tons. The mould is a rectangular plaque (127×127×1.5 mm).
    • The main process parameters are reported below:


















Back pressure (bar):
20



Injection time (s):
3



Maximum Injection pressure (MPa):
14



Hydraulic injection pressure (MPa):
6-3



First holding hydraulic pressure (MPa):
4 ± 2



First holding time (s):
3



Second holding hydraulic pressure (MPa):
3 ± 2



Second holding time (s):
7



Cooling time (s):
20



Mould temperature (° C.):
60












    • The melt temperature was between 220 and 280° C.





Plaques for Haze Measurement

    • Plaques for haze measurement, 1 mm thick, were prepared by injection moulding with injection time of 1 second, temperature of 230° C., mould temperature of 40° C. The injection press was a Battenfeld™ type BA 500CD with a clamping force of 50 tons. The insert mould lead to the moulding of two plaques (55×60×1 mm each).


Preparation of the Bottle Specimens

    • Cylindrical 1 L bottles (35 g) were prepared from the compositions of the examples, with a blow molding machine AUTOMA SPEED 3M—Extrusion continuous Incline Shuttle.
    • The main process parameters are reported below:



















screw diameter
70
mm










length/diameter (L/D) ratio
24











melt temperature
180°
C.,



mould temperature
25°
C.












    • The bottles were tested for impact (at 4° C. and 23° C.), Haze and top load properties according to the procedures described below.





Ductile/Brittle Transition Temperature (D/B)

    • determined according to the method specified below.
    • The bi-axial impact resistance was determined through impact with an automatic, computerised striking hammer.
    • The circular test specimens were obtained from plaques, prepared as described above, by cutting with circular hand punch (38 mm diameter). They were conditioned for at least 12 hours at 23° C. and 50 RH and then placed in a thermostatic bath at testing temperature for 1 hour.
    • The force-time curve was detected during impact of a striking hammer (5.3 kg, hemispheric punch with a 1.27 cm diameter) on a circular specimen resting on a ring support. The machine used was a CEAST 6758/000 type model No. 2.
    • D/13 transition temperature means the temperature at which 50% of the samples undergoes fragile break when submitted to the said impact test.


Haze on Plaque

    • determined according to the method specified below.
    • The plaques were conditioned for 12 to 48 hours at relative humidity of 50±5% and temperature of 23±1° C.
    • The instrument used for the test was a Gardner photometer with Haze-meter UX-10 equipped with a G.E. 1209 lamp and filter C. The instrument calibration was made by carrying out a measurement in the absence of the sample (0% Haze) and a measurement with intercepted light beam (100% Haze).
    • The measurement and computation principle are given in the norm ASTM-D 1003.
    • The haze measurement was carried out on five plaques.


Melting and Crystallization Temperature (Tm and Tc):

    • Determined by DSC according to ISO 11357/3, with a temperature variation of 20° C. per minute.


Top Load on Bottles

    • For the test a Instron dynamometer was used, equipped with a balance of 0.2 gr accuracy and with a micrometer of 0.01 mm accuracy. After at least 10-hours conditioning at 23°±1° C. and 50% relative humidity, the bottle is settled between the two plates of the dynamometer and compressed with a stress velocity of the plate of 5 cm/min. The stress at collapse of the bottle is recorded and the value reported in N. The Top Load value is the mean value obtained from measurements repeated on 10 bottles.


Impact on Bottles

    • Impact was measured on the sample bottles filled with water ⅞ full. After conditioning for 2 hours at the temperature of the test (23° C. and 4° C.) the bottles were left falling from increasing height (up to 280 cm). The parameter reported in table 2 is the height at which 50% of the bottles breaks.


Haze on Bottles

    • The same method and instrument described for haze measurement on plaque was followed. Samples having average thickness of 0.5 mm were cut from the bottles walls in order to obtain a flat sample that the specimen holder could grasp, according to the above norm ASTM-D1003.
    • The haze measurement was carried out on five samples.







EXAMPLES 1-5 AND COMPARATIVE 1C

In a plant operating continuously according to the mixed liquid-gas polymerization technique, runs were carried out under the conditions specified in Table 1.


The polymerization was carried out in the presence of a catalyst system in a series of two reactors equipped with devices to transfer the product from one reactor to the one immediately next to it.


Preparation of the Solid Catalyst Component


The Ziegler-Natta catalyst was prepared according to the Example 5, lines 48-55 of the European Patent EP728769. Triethylaluminium (TEAL) was used as co-catalyst and dicyclopentyldimethoxysilane as external donor, with the weight ratios indicated in Table 1.


Catalyst System and Prepolymerization Treatment


The solid catalyst component described above was contacted at 12° C. for 24 minutes with aluminium triethyl (TEAL) and dicyclopentyldimethoxysilane (DCPMS) as outside-electron-donor component. The weight ratio between TEAL and the solid catalyst component and the weight ratio between TEAL and DCPMS are specified in Table 1.


The catalyst system is then subjected to prepolymerization by maintaining it in suspension in liquid propylene at 20° C. for about 5 minutes before introducing it into the first polymerization reactor.


Polymerization


The polymerisation nm is conducted in continuous in a series of two reactors equipped with devices to transfer the product from one reactor to the one immediately next to it. The first reactor is a liquid phase reactor, and the second reactor is a fluid bed gas phase reactor. Polymer component 1) is prepared in the first reactor, while polymer component 2) is prepared in the second reactor.


Temperature and pressure are maintained constant throughout the course of the reaction. Hydrogen is used as molecular weight regulator.


The gas phase (propylene, ethylene and hydrogen) is continuously analysed via gas-chromatography.


At the end of the run the powder is discharged and dried under a nitrogen flow.


The data relating to Xilene solubles and comonomer content in the final polymer compositions reported in table 1 and 2 are obtained from measurements carried out on the so obtained polymers, stabilized when necessary.


Then the polymer particles are introduced in an extruder, wherein they are mixed with 1500 ppm of a commercial additive marketed by Ciba-Geigy under the name Irganox B 215 (made of 1 part of pentaerytrityl tetrakis 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate and 2 parts of tris(2,4-di-tert-butylphenyl) phosphite), 500 ppm of Ca stearate, and 1800 ppm of 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol a clarifying agent marketed by Milliken under the name Millad 3988. The polymer particles are extruded under nitrogen atmosphere in a twin screw extruder, at a rotation speed of 220 rpm and a melt temperature of 200-250° C.


The data relating to the physical-mechanical properties of the final polymer compositions reported in table 2 are obtained from measurements carried out on the so extruded polymers and on bottles obtained according to the procedure described.


REFERENCE EXAMPLE (1R)

The amount of comonomer and properties of a commercially available random copolymer of propylene for injection blow molding application are reported as a reference example.









TABLE 1







Polymerization Process









EXAMPLE














1C
1
2
3
4
5

















TEAL/solid catalyst
weight
14
16
16
14
17
17


component
ratio








TEAL/DCPMS
molar
3.3
3.6
3.6
3.5
6.3
6.3



ratio













1st liquid phase reactor: propylene-ethylene copolymer - component 1)














Polymerisation temperature
° C.
70
70
70
70
70
70


Pressure
MPa
39
39
39
39
39
39


Residence time
min
78
76
76
74
88
79


H2 bulk
ppm
3256
3720
3720
4094
3421
3642


MFR “L”
g/10 min
1.9
1.5
1.3
1.8
1.3
1.3


Ethylene in component 1)

2.7
2.8
2.6
2.7
3.1
3.3


Xylene soluble fraction
wt %
4.1

4.4
4.3
4.9



of component 1) (Xsm)









Amount of component 1)
wt %
84.2
80
82
79
78
80


(Split 1)














1st gas phase reactor: rubbery ethylene-butene-1 copolymer - component 2)














Polymerisation temperature
° C.
85
85
85
85
85
85


Pressure
bar
19
19
19
19
19
19


Residence time
min
21
23
23
24
26
18


H2/C2
mol ratio
0.23
0.24
0.24
0.22
0.25
0.25


C4/(C4 + C2)
mol ratio
0.40
0.40
0.40
0.33
0.31
0.29


Amount of component 2)
wt %
15.8
20
18
21
22
20


(Split 2)









Butene-1 - comonomer in
wt %
21
20
19
16
15
15


component 2)









Xylene soluble fraction
wt %
56

57
44
45



of component 2)









Ratio Split 2/comonomer

0.76
0.99
0.94
1.26
1.38
1.36


in component (2)





Notes:


H2 bulk = hydrogen concentration in the liquid monomer; C2 = ethylene; C3 = propilene; C4 = butene-1














TABLE 2








Example















1R
1C
1
2
3
4
5


















MFR “L”
g/10 min
1.9
2.2
1.8
1.6
1.8
1.7
1.7


Ethylene content
wt %
4.4
14.8
18.3
16.8
19.1-19.8
20.7
20.7


(C2 tot)










Butene-1 content
wt %

3.3
4.1
3.5
3.4
3.4
3.4


(C4tot)










Ratio C2tot/C4tot)


4.5
4.5
4.8
5.7
6.1
6.1


Xylene-soluble
wt %

12.3
14.2
13.9
12.6
13.6
13.0


fraction (XStot)










I.V. of xylene-
dl/g

1.26
1.42
1.39
1.43
1.34
1.33


soluble fraction










Flexural modulus
MPa
870
895
870
900
807
813
815


Izod impact
kJ/m2
45.3
49.5
58.7
57.8
54.9
61
61.6


resistance at 23° C.










Izod impact
kJ/m2
6.1
27.3
44.6
36.5
36.3
48.6
44.1


resistance at 0° C.










Izod impact
kJ/m2

3.2
3.9
3.5
3.4
3.9
3.3


resistance at −20° C.










D/B transition
° C.
17
−19
−22.7
−29.4
−24
−24
−28


temperature










Haze on plaque (1 mm)
%
13.8
14.8
14.3
14.9
14.8
13.9
12.3


DSC Tm
%
143.3
149.5
149.1
149.7
150.2
147.5
146.3


DSC Tc
%
104.9
111.8
111.7
111.4
112.3
109.8
109.1


Top Load
MPa
275
246
256
253
255
249
240


Impact at 23° C.
cm*
280
>280
>280
>280
>280
>280
>280


Impact at 4° C.
cm*
62
80-100
>280
>280
>280
>280
>280


Haze on bottles
%
19-28.7
24.4
25.3
25.2
26.3
23.7
24.4





*falling height from which 50% of the ⅞ water filled bottles breaks





Claims
  • 1. A polyolefin composition, comprising in percent by weight: 1) 75-85% of a copolymer of propylene, said copolymer containing up to 15% by weight, of ethylene and/or C4-C10 α-olefin(s) and having a fraction soluble in xylene at room temperature lower than 6% by weight, and2) 15-25% of a copolymer of ethylene with at least one C4-C10 α-olefin(s) containing from 10 to 25% by weight of said C4-C10 α-olefin(s);said composition havinga value of MFR, measured at 230° C., 2.16 kg, of less than 2.5 g/10 min,a total content of ethylene of from 14 to 22% by weight,a total content of C4-C10 α-olefin(s) of less than 4.5% by weight,a ratio of the total content of ethylene to the total content of C4-C10 α-olefin(s) of at least 4,a value of the intrinsic viscosity of the total fraction soluble in xylene at room temperature of at most 1.5 dl/g, anda ratio of the amount of component 2) and the amount of C4-C10 α-olefin(s) in component 2) equal to or higher than 0.80.
  • 2. The polyolefin composition of claim 1, further comprising a flexural modulus is of more than 700 MPa.
  • 3. The polyolefin composition of claim 1, further comprising a ductile/brittle transition temperature of at most −20° C.
Priority Claims (1)
Number Date Country Kind
08152134 Feb 2008 EP regional
Parent Case Info

This application is the U.S. national phase of International Application PCT/EP2009/051269, filed Feb. 4, 2009, claiming priority to European Application 08152134.6 filed Feb. 29, 2008 and the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/068,197, filed Mar. 5, 2008; the disclosures of International Application PCT/EP2009/051269, European Application 08152134.6 and U.S. Provisional Application No. 61/068,197, each as filed, are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/051269 2/4/2009 WO 00 8/10/2010
Publishing Document Publishing Date Country Kind
WO2009/106411 9/3/2009 WO A
US Referenced Citations (64)
Number Name Date Kind
3515775 Combs et al. Jun 1970 A
4128606 Furutachi et al. Dec 1978 A
4143099 Duncan Mar 1979 A
4220579 Rinehart Sep 1980 A
4298718 Mayr et al. Nov 1981 A
4313867 Duvdevani Feb 1982 A
4316966 Mineshima et al. Feb 1982 A
4399054 Ferraris et al. Aug 1983 A
4469648 Ferraris et al. Sep 1984 A
4472524 Albizzati Sep 1984 A
4480065 Kawai et al. Oct 1984 A
4495338 Mayr et al. Jan 1985 A
4522930 Albizzati et al. Jun 1985 A
4705818 Kawai et al. Nov 1987 A
4734459 Cecchin et al. Mar 1988 A
4857613 Zolk et al. Aug 1989 A
4871796 Komatsu et al. Oct 1989 A
5055528 Kioka et al. Oct 1991 A
5115030 Tanaka et al. May 1992 A
5141896 Katoh Aug 1992 A
5145819 Winter et al. Sep 1992 A
5155030 Nakamura et al. Oct 1992 A
5239022 Winter et al. Aug 1993 A
5243001 Winter et al. Sep 1993 A
5288824 Kerth et al. Feb 1994 A
5324800 Welborn, Jr. et al. Jun 1994 A
5480972 Avjioglu et al. Jan 1996 A
5536789 Schwager et al. Jul 1996 A
5541260 Pelliconi et al. Jul 1996 A
5556918 Brodt et al. Sep 1996 A
5747592 Huff et al. May 1998 A
5763534 Srinivasan et al. Jun 1998 A
5824400 Petrakis et al. Oct 1998 A
5840644 Kuber Nov 1998 A
6051728 Resconi et al. Apr 2000 A
6054406 Smith Apr 2000 A
6191223 Dolle et al. Feb 2001 B1
6214934 Moriya et al. Apr 2001 B1
6395832 Pelliconi et al. May 2002 B1
6429250 Rohrmann Aug 2002 B1
6444833 Ewen et al. Sep 2002 B1
6451724 Nifant'ev et al. Sep 2002 B1
6518386 Resconi et al. Feb 2003 B1
6559252 Horton et al. May 2003 B1
6608224 Resconi et al. Aug 2003 B2
6635779 Ewen et al. Oct 2003 B1
6696520 Pellegatti et al. Feb 2004 B1
6841501 Resconi et al. Jan 2005 B2
6878786 Resconi et al. Apr 2005 B2
6953829 Kratzer et al. Oct 2005 B2
7101940 Schottek et al. Sep 2006 B2
7112638 Nifant'ev et al. Sep 2006 B2
7141527 Van Baar et al. Nov 2006 B1
7141637 Elder et al. Nov 2006 B2
7238818 Ewen et al. Jul 2007 B2
7572859 Pelliconi et al. Aug 2009 B2
7700690 Pelliconi et al. Apr 2010 B2
20030008984 Kratzer et al. Jan 2003 A1
20030013913 Schottek et al. Jan 2003 A1
20040010087 Obata et al. Jan 2004 A1
20060041072 Pelliconi et al. Feb 2006 A1
20060047071 Pelliconi et al. Mar 2006 A1
20060235139 Garagnani et al. Oct 2006 A1
20070078224 Dominic et al. Apr 2007 A1
Foreign Referenced Citations (73)
Number Date Country
0009276 Apr 1980 EP
0045975 Feb 1982 EP
0045977 Feb 1982 EP
0086473 Aug 1983 EP
0129368 Dec 1984 EP
0170255 Feb 1986 EP
0323715 Jul 1989 EP
0353981 Feb 1990 EP
0361493 Apr 1990 EP
361493 Apr 1990 EP
0361494 Apr 1990 EP
0362705 Apr 1990 EP
0373660 Jun 1990 EP
373660 Jun 1990 EP
0395083 Oct 1990 EP
0416815 Mar 1991 EP
0420436 Apr 1991 EP
0430490 Jun 1991 EP
0451645 Oct 1991 EP
0457082 Nov 1991 EP
472946 Mar 1992 EP
0485820 May 1992 EP
0485822 May 1992 EP
0519725 Dec 1992 EP
0553805 Aug 1993 EP
553806 Aug 1993 EP
0573862 Dec 1993 EP
0600246 Jun 1994 EP
0602512 Jun 1994 EP
0611801 Aug 1994 EP
0633289 Jan 1995 EP
45977 Mar 1995 EP
0671404 Sep 1995 EP
0674991 Oct 1995 EP
0692499 Jan 1996 EP
0728769 Aug 1996 EP
0782587 Jul 1997 EP
0792814 Sep 1997 EP
0816395 Jan 1998 EP
0831125 Mar 1998 EP
0844279 May 1998 EP
0844280 May 1998 EP
0844281 May 1998 EP
728769 Aug 1998 EP
0936247 Aug 1999 EP
0936248 Aug 1999 EP
1236769 Sep 2002 EP
01016848 Jan 1989 JP
WO-9102012 Feb 1991 WO
WO-9104257 Apr 1991 WO
WO-9200333 Jan 1992 WO
WO-9222607 Dec 1992 WO
WO-9622327 Jul 1996 WO
WO-9622995 Aug 1996 WO
WO-9822486 May 1998 WO
WO-9837144 Aug 1998 WO
WO-9921899 May 1999 WO
WO-9924446 May 1999 WO
WO-9958539 Nov 1999 WO
WO-0026295 May 2000 WO
WO 0063261 Oct 2000 WO
WO-0119915 Mar 2001 WO
WO-0121674 Mar 2001 WO
WO-0144318 Jun 2001 WO
WO-0147939 Jul 2001 WO
WO 0157099 Aug 2001 WO
WO-0162764 Aug 2001 WO
WO-03045964 Jun 2003 WO
WO-03051984 Jun 2003 WO
WO-2004003072 Jan 2004 WO
WO-2005014715 Feb 2005 WO
WO-2005044911 May 2005 WO
WO-2005121240 Dec 2005 WO
Non-Patent Literature Citations (4)
Entry
Wolters, J , “Polyolefin elastomers”, Kunststoffe 84 1994 , 446-450.
Randall, J., “A Review of High Resolution Liquid (13) Carbon Nuclear Magnetic Resonance Characterizations of Ethylene-Based Polymers”, JMS-Rev. Macromol. Chem. Phys. C29 (2&3) 1989 , 201-317.
Kakugo, Masahiro et al., “C NMR Determination of Monomer Sequence Distribution in Ethylene-Propylene copolymers prepared . . . ”, Macromolecules, vol. 15, No. 4, 1982 , 1150-1152.
Randall, James C., “3.4 Monomer Distributions and Number-Average Sequence Lengths in Ethylene-Propylene Copolymers”, Polymer Sequence Determination Cabon-13 NBR Method 1977 , 53-58.
Related Publications (1)
Number Date Country
20100308007 A1 Dec 2010 US
Provisional Applications (1)
Number Date Country
61068197 Mar 2008 US