This application claims the priority of Chinese patent application number 201110343136.9, filed on Nov. 3, 2011, the entire contents of which are incorporated herein by reference.
The present invention relates to the field of integrated circuit manufacturing, and more particularly, to a PIS capacitor in a SiGe HBT process. The present invention also relates to a method of manufacturing PIS capacitor in a SiGe HBT process.
Generally, PIS capacitors are manufactured by CMOS process in the prior art. In the structure of such PIS capacitors, an upper plate of the PIS capacitor may be formed by a polysilicon gate; a lower plate of the PIS capacitor may be formed by a substrate (an active region); the upper and lower plates are of the same doping type, namely both N-type or both P-type. In the CMOS process, an active region under the polysilicon gate is lightly doped (in the form of a lightly doped N-well or P-well), and an insulator such as SiO2 or other oxides is used to separate the upper and lower plates. However, in order to reduce the effective series resistance of the capacitor, an additional implantation step is used to form a heavily doped active region of the lower plate.
With the development of the semiconductor technology, SiGe HBTs have become the main force of ultra-high-frequency devices. However, as no polysilicon gate process is included in the SiGe HBT process, a PIS capacitor that can be achieved in combination with the SiGe HBT process is desired.
An objective of the present invention is to provide a PIS capacitor manufactured by using SiGe HBT process so as to provide one more device option for the SiGe HBT process. To this end, another objective of the present invention is to provide a method of manufacturing such a PIS capacitor in the SiGe HBT process.
To achieve the above objective, the present invention provides a PIS capacitor in a SiGe HBT process, which includes: a silicon substrate; a P-well formed in the silicon substrate; shallow trench isolations formed in the silicon substrate; a P-type heavily doped region formed in an upper portion of the P-well; wherein the P-type heavily doped region serves as one plate of the PIS capacitor; an oxide layer formed on a surface of the silicon substrate and covering part of the P-type heavily doped region; a SiGe epitaxial layer formed on the oxide layer, wherein the SiGe epitaxial layer serves as the other plate of the PIS capacitor; spacers formed on sidewalls of the oxide layer and the SiGe epitaxial layer; and contact holes for picking up the P-well and the SiGe epitaxial layer and connecting each of the P-well and the SiGe epitaxial layer to a metal wire, wherein the metal wires serves as two ends of the PIS capacitor.
To achieve the another objective, the present invention further provides a method of manufacturing PIS capacitor in a SiGe HBT process, the method including: (1) form a P-well in a silicon substrate by implantation; (2) form shallow trench isolations; (3) form a P-type heavily doped region by P-type heavily doped implantation, wherein the P-type heavily doped region serves as one plate of the PIS capacitor; (4) deposit an oxide layer; (5) grow a SiGe epitaxial layer serving as the other plate of the PIS capacitor; (6) form spacers by etch; and (7) pick up the P-well and the SiGe epitaxial layer through contact holes and connect each of the P-well and the SiGe epitaxial layer to a metal wire.
The PIS capacitor of the present invention and its manufacturing method have broken through the limitation that there is no MOS-related structure in the SiGe HBT process, and therefore has provided one more device option for the SiGe HBT process.
The present invention will be described and specified below in combination with accompanying drawings and exemplary embodiments.
Referring to
A method of manufacturing such a PIS capacitor of the present invention will be described below in combination with
Step S1: as shown in
Step S2: form shallow trench isolations 2 in the silicon substrate 1;
Step S3: perform heavily doped ion implantation beneath a surface of the silicon substrate 1 to form a P-type heavily doped region in an upper portion of the P-well 3, wherein the impurity implanted may be boron or boron fluoride; an energy of the implantation may be from 5 KeV to 50 KeV; and a dose of the implantation may be from 5e14 cm−2to 1e17 cm−2;
Step S4: as shown in
Step S5: as shown in
Step S6: as shown in
Step S7: pick up the P-well 3 and the SiGe epitaxial layer 6 through contact holes 8 and connect each of the P-well 3 and the SiGe epitaxial layer 6 to a metal wire 9, so as to form the PIS capacitor as shown in
The above embodiments are provided for the purpose of describing the invention and are not intended to limit the scope of the invention in any way. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention.
Number | Date | Country | Kind |
---|---|---|---|
201110343136.9 | Nov 2011 | CN | national |