This disclosure relates to a video magnifier. More particularly, the present disclosure relates to a desktop video magnifier that is portable.
Video magnifiers are important tools for blind and/or low vision (“BLV”) users. These devices allow BLV users to view objects and/or text by positioning an associated camera and selecting a desired level of magnification. Color contrasting and image rotation can also be provided to ease viewing. Video magnifiers typically include a camera and an associated monitor. The camera is often mounted on an arm that can be positioned over the object to be viewed. A separate controller can be used to change: magnification level; the position of the image upon the screen; contrast; as well as other image features.
Video magnifiers have typically been designed to permanently reside on a table or desktop. An example of a desktop magnification system is illustrated by U.S. Pat. No. 7,825,949 to Trulaske. Trulaske illustrates a closed circuit video magnification system. The system incorporates a base upon which the operating components of the system are mounted. The system also includes a platform that is shiftable both laterally and depth-wide for viewing the matter to be scanned. A camera is mounted upon arms over the table. Although Trulaske is beneficial for viewing objects place upon the platform, it suffers from a lack of transportability. Namely, Trulaske includes many moving parts and cannot be efficiently folded for transport or storage.
The portability of video magnifiers has often proved problematic. For example, U.S. Pat. No. 7,336,295 to Sukenari discloses a video magnifier having a rectangular display screen. A camera holder is detachably attached to a mounting section. A tilting mechanism is included for inclining the monitor. However, Sukenari, as with most other portable magnifiers, must be at least partially or totally disassembled for storage and transport. Even for sighted users, this is far from an ideal solution. It is an especially problematic solution for BLV users, who often times cannot carry out the disassembly/assembly process. Efforts have been made over the years to provide truly portable video magnifiers. However, many portable magnifier cameras are designed to be handheld, which can be problematic in the event the user needs both hands free while viewing the object.
What is needed, therefore, is a desktop video magnifier that is transportable with stored and deployed configurations and that employs a camera at a fixed location over the object plane. The video magnifier of the present disclosure is designed to fulfill these and other shortcomings present with existing video magnifiers.
This disclosure provides a desktop video magnifier that is portable with both a storage and a deployed configuration.
The disclosed system has several important advantages. For example, the video magnifier uses a camera at a fixed location over an object plane.
Another advantage is realized by providing a video magnifier that although designed for desktop use is readily transportable by blind and/or low vision users.
A further possible advantage is achieved by employing a camera arm that has collapsed and extended orientations.
Still yet another possible advantage is achieved by providing a carrying handle for a desktop video magnifier.
Various embodiments of the invention may have none, some, or all of these advantages. Other technical advantages of the present invention will be readily apparent to one skilled in the art.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following descriptions, taken in conjunction with the accompanying drawings, in which:
Similar reference numerals refer to similar parts throughout the several views of the drawings.
The present disclosure relates to a magnifier camera. The camera has both storage and deployed configurations. In the storage configuration, the entire assembly can be carried via an associated handle. The camera is designed to rest on a desktop, or other planar surface, in the deployed configuration. When deployed, a monitor arm is positioned in a cantilevered arrangement over top of an object to be viewed. A camera housing, with an associated camera, is pivotally connected to the monitor arm. The camera can be positioned over the object to be viewed when in the deployed configuration. The various features of the present disclosure, and the manner in which they interrelate, are described in greater detail hereinafter.
With reference now to
Base 20 includes a set of hinges 22 for pivotally interconnecting housing 30. Housing 30 forms the cover for magnifier 10 when in its stowed orientation. Housing 30 further includes an interior compartment for accepting monitor arm 40 and monitor 60 when magnifier 10 is stowed. Housing 30 includes end caps for retaining the opposing portions of housing 30 and for enclosing associated fasteners. End caps can also house counter balancing springs, which are engaged upon raising or lowering housing 30. Hinges 22 each include two distinct detent positions. The first detent position corresponds to housing 30 being in facing relation to base 20. Second detent position corresponds to housing 30 being at approximately a 45° to a 50° angle with respect to base 20. This corresponds to the deployed configuration. Base 20 also operates as a stand to allow camera 10 to rest upon a desk or other surface. It further function as a support for the object being viewed.
Objects being viewed are illuminated via an illumination panel 34 positioned on the inside of housing 30. Panel 34 is preferably formed by two rows of aligned LEDs, with each row being positioned at an opposite side of panel 34. Panel 34 itself includes one of more sheets of a reflective material to reflect and dissipate the light generated by the LEDs. The result is an LCD-type panel 34 that generates a uniform amount of light for the object being viewed. The entire assembly 10, including panel 34, can be powered via an external power supply via a DC power jack or inlet 32 within housing 30. Power jack 32 can also be used to charge a rechargeable battery, such as a Lithium Ion battery. Battery is preferably positioned within the lower extent of housing 30.
Housing 30 is pivotally connected to a U-shaped monitor arm 40. U-shaped arm 40 includes first and second ends; the first end pivotally connects to housing 30, while the opposite end pivotally connects to the back side of monitor 60. This allows monitor 60 to be fully articulated with respect to arm 40. The U-shaped nature of the arm 40 creates a space for accepting camera housing 52. A variety of different monitor sizes can be supported by arm 40. For example, a 10″, 12″ or even 15″ inch monitor can be supported depending upon the anticipated use of assembly 10.
Monitor 60 includes a lower bezel or control panel with both a number of rotatable control knobs 62 and a number of push buttons 64. In the depicted embodiment, there are a series of three control buttons 64a, 64b, and 64c and three control knobs 62a, 62b, 62c (
Monitor 60 may likewise include a self-view camera 66, which would preferably be included along the top of the bezel. Camera 66 would allow the user to view themselves or for video messaging. Camera 66 allows the user to view enlarged images of themselves. Magnification levels of 2.5× and greater can be supported. A manual shudder 68 can be included to address privacy concerns and prevent camera 66 from viewing the user. Camera 66 can be configured such that it is operable when shudder 68 is opened and inoperable when shudder 68 is closed.
Magnifier assembly 10 may optionally include a USB port to allow the device to be coupled to an external computer. This may be desirable, for example, if magnifier 10 is to be used for on-screen measurements or for optical character recognition. Coupling magnifier 10 to an external computer also allows for captured images to be stored and processed by the external computer. Assembly 10 may also optionally include a Wi-Fi connection and video compression to allow streaming videos to be viewed by monitor 60.
When in the storage configuration (
The sequence for collapsing the assembly is depicted in
Thus, magnifier camera 10 has a stowed orientation (
Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure.
This application is a continuation of, and claims priority to, application Ser. No. 14/830,576, filed on Aug. 19, 2015, entitled “Portable Desktop Video Magnifier Camera,” now U.S. Pat. No. 10,348,942, issued Jul. 9, 2019, which in turn claims priority to U.S. Application Ser. No. 62/039,261, filed Aug. 19, 2014, and entitled “Portable Desktop Video Magnifier Camera,” the contents of which are fully incorporated herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6064426 | Waterman | May 2000 | A |
7336295 | Sukenari et al. | Feb 2008 | B2 |
7825949 | Trulaske | Nov 2010 | B2 |
8681268 | Reznik et al. | Mar 2014 | B2 |
10638626 | Park | Apr 2020 | B1 |
20030089832 | Gold | May 2003 | A1 |
20030095200 | Nagano | May 2003 | A1 |
20050122396 | Mizukami et al. | Jun 2005 | A1 |
20090059038 | Seakins et al. | Mar 2009 | A1 |
20100026854 | Rodriguez et al. | Feb 2010 | A1 |
20110074940 | Goldenberg et al. | Mar 2011 | A1 |
20140022364 | Rodriguez et al. | Jan 2014 | A1 |
20140078389 | Merz | Mar 2014 | A1 |
20140176690 | Hamel et al. | Jun 2014 | A1 |
20150066511 | Baek | Mar 2015 | A1 |
20150304518 | Diaz | Oct 2015 | A1 |
20150316774 | Murphy | Nov 2015 | A1 |
20180263723 | Beaumont | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
102011075273 | Nov 2012 | DE |
1921838 | May 2008 | EP |
2003264718 | Sep 2003 | JP |
2006025087 | Jan 2006 | JP |
3773457 | May 2006 | JP |
2014513875 | Jun 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20190335066 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62039261 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14830576 | Aug 2015 | US |
Child | 16504841 | US |