1. Field
The presently disclosed subject matter relates to devices, systems, and processes useful as a portable modular gate or obstruction system.
2. Description of the Related Art
Existing perimeter security systems are typically permanent installations that require extensive site preparation and labor-intensive assembly to erect them. For example, after clearing the perimeter of vegetation and other obstructions, post holes are typically dug at spaced intervals along the perimeter to provide firm planting for posts that support the fencing structure.
Although limited modular gate systems are known, the design is typically directed to ease of installation in urban or suburban environments in which reduction of installation time can provide a cost savings to the contractor or other installer. Thus, once in place, the gate typically remains a part of the infrastructure and requires typical power supply and permanent fixturing for aesthetics.
However, certain secured sites may have restrictions that prohibit, or otherwise adversely alter, the typical construction of a permanently installed perimeter security system. Additionally, these typical perimeter security systems are prohibitively costly to secure a temporary site and require a large time investment for planning and construction.
Accordingly, there is a long-felt need for a portable modular gate or obstruction system that can be easily and quickly set up and maintained. There is also a need for a modular gate system that can be used in a plurality of different locations and that is easily transported and installed. Still further, among other needs uncovered, it is apparent that a modular gate system that is relatively self sustaining (i.e., provides its own power source) and is quickly and easily implemented, is in desire.
According to one aspect of the disclosure, a portable gate module for selectively opening and closing a path through a secured perimeter can include: a base structure, a gate support structure, a chain link gate structure, a power source, and a drive structure. The base structure can be configured to be removably positionable in the secured perimeter adjacent the path. The base structure can have a first end configured to lie adjacent the path when the portable gate module is positioned in the secured perimeter adjacent the path. The base structure can have a second end spaced from the first end and configured to be spaced from the path when the portable gate module is positioned in the secured perimeter adjacent the path. The gate support structure can be secured to the base structure. The chain link gate structure can be cantilevered to the gate support structure and movable between an opened position where the gate is configured to open the path when the portable gate module is positioned in the secured perimeter adjacent the path and a closed position where the gate is configured to close the path when the portable gate module is positioned in the secured perimeter adjacent the path. The power source can be located on the base structure. The drive structure can be connected to the power source and coupled to the chain link gate to displace the gate between the opened positioned and the closed position.
According to another aspect of the disclosed subject matter, the portable gate module can include a gate panel having a frame structure that includes a first vertical beam and a second vertical beam and an in-fill spanning between the first vertical beam and second vertical beam. The in-fill can include chain link fence, but can also include pickets, a panel, and other known in-fill structures for fencing. The frame structure can include a first vertical beam and a second vertical beam connected together by at least one horizontal beam, wherein the first vertical beam, second vertical beam, and horizontal beam each have a cross sectional shape selected from the group consisting of circular, square, rectangular and polygonal.
According to another embodiment, the portable gate module can include a base structure that is a hollow plastic structure configured to be filled with a material when located adjacent the path. For example, the base could be filled with sand, water, dirt, mud, gravel, cement, or other materials and combinations of materials.
According to an aspect of the disclosed subject matter, a portable obstruction module for selectively opening and closing a path can include a base structure, a support structure, an obstruction structure, a power source, and a drive structure. The base structure can be made from a precast composition of material and configured to be removably positioned adjacent the path. The base structure can have a width extending in a direction away from the path when the base is positioned adjacent the path. The base structure can have a length extending in a direction substantially perpendicular with respect to the width. The base structure can include a height extending in a direction substantially perpendicular to both the width and length. The width can be greater than the length, and the length can be greater than the height. The support structure can be attached to the base structure. The obstruction structure can be mounted on the support structure and can be one of moveable and rotatable with respect to the support structure. The power source located on the base structure. The drive structure can be connected to the power source and coupled to the obstruction structure to displace the obstruction structure between an opened position where the obstruction structure is configured to open the path when the portable obstruction module is positioned adjacent the path and a closed position where the obstruction structure is configured to close the path when the portable gate module is positioned adjacent the path.
According to another aspect of the disclosed subject matter, a method for selectively opening and closing access to a path can include: providing a portable gate module that can include a base structure made from a precast composition of material, a gate support structure secured to the base structure, a chain link gate structure cantilevered to the gate support structure and movable between an opened position and a closed position, a power source secured to the base structure, and a drive structure connected to the power source and coupled to the gate to displace the gate between the opened positioned and the closed position; and moving the base structure and gate structure in unison and as a single unit to a location adjacent the path such that the chain link gate structure is configured to cross the path when in the closed position.
According to yet another aspect of the disclosed subject matter, a method for selectively opening and closing access to a path can include providing a portable gate module including a base structure, a gate support structure secured to the base structure, a gate panel structure having a frame cantilevered to the gate support structure and movable between an opened position and a closed position, a power source secured to the base structure, and a drive structure connected to the power source and coupled to the gate panel structure to displace the gate panel structure between the opened positioned and the closed position. The method can include moving the base structure and gate panel structure in unison and as a single unit to a location adjacent the path such that the gate panel structure is configured to cross the path when in the closed position. The method can also include sliding the gate panel structure relative to the gate support structure to cross the path into the closed position. Alternatively, the method can include rotating the gate panel structure relative to the gate support structure to cross the path into the closed position. The method can also include filling a hollow portion of the base structure with at least one of sand, water, cement, concrete, and mud after the step of moving the base structure and gate panel structure. In another aspect, the method can include providing a base structure that includes at least two apertures configured to receive forks from a forklift, and moving can include inserting forks into the at least two apertures and moving the portable gate module as a unit to a location adjacent the path such that the gate panel structure is configured to cross the path when in the closed position. The method can also include providing the frame of the gate panel with a first vertical beam at a first end of the gate panel structure and a second vertical beam at a second end of the gate panel structure, and an in-fill structure that is located between and spans the first vertical beam structure and the second vertical beam structure. The in-fill structure that is provided can include at least one of a chain link fence and pickets.
According to another aspect, the portable gate module can further include a wireless keypad in electrical communication with the power source and the drive structure.
According to another aspect of the disclosed subject matter, the portable gate module can be configured such that crash fortification can be accomplished with ease, and at various desired amounts. For example, components could be strengthened and support structures designed to withstand vehicle crashes by adding composite or other material (e.g., sand, sludge, etc.) to the base, gate, or post structures to provide variable fortification of the gate. In addition, crumple zones can be provided into any of the base structure, gate panel structure and/or gate post structure that causes the structure to receive and deplete energy from an impact while allowing a remaining damaged structure to maintain the closure status of the gate across the path. For example, a relatively elastic material can be provided within any or all of the structures that allows the structure(s) to elastically deform and then rebound after a crash incident.
The disclosed subject matter of the present application will now be described in more detail with reference to exemplary embodiments of the apparatus and method, given by way of example, and with reference to the accompanying drawings, in which:
The base structure 12 can include a first end 62 and a second end 64. The base structure 12 can be dimensioned and of sufficient mass to provide a stable platform for the gate or obstruction structure 16 to move between the opened and closed positions. The base structure 12 can have a width extending in a direction away from the path when the base structure 12 is positioned adjacent the path P. The base structure 12 can have a length extending in a direction substantially perpendicular with respect to the width and parallel with a driving direction of a vehicle entering though the gate or “path crossing” direction. The base structure 12 can include a height extending in a direction substantially perpendicular to both the width and length, and upwards as shown in
Referring to
Each support post assembly 22 can include a support post 28 secured to the base structure 12 and which extends upwardly from the base structure 12. The gate support structure 14 can include a plurality of beams 29. The beams 29 can be made from at least one of metal, wood, and plastic or combinations thereof. The beams 29 can be precast in the base structure 12 such that the precast composition of material is in continuous contact with and completely surrounds an entire periphery of the beam. Although two beams 29 are illustrated in
Referring to
The truck 30 can include a pair of horizontal rollers 38 (only one is visible in
The lower guide assembly 26 can engage the sides (not numbered) of a lower member 44 of the gate or obstruction structure 16 to limit horizontal displacement of the gate or obstruction structure 16 toward and away from the support post 28 as the gate or obstruction structure 16 moves between the closed position and the opened position along the linear path. The lower guide assembly 26 can include an opposed pair of rollers 46 that can engage the lower member 44.
Referring to
As shown in
Referring to
As shown, the gate structure has a chain link as panel in-fill. However, it should be understood that this panel in-fill could include a variety of other options—such as pickets, expanded metal, wooden slats, plastic mesh, solid panels, etc. The gate panel 16 is a structure to hold whatever in-fill the owner desires. In addition, the gate panel structure 16 can be configured as a first and second vertical pole attached together by in-fill such as chain link fencing. The first and second vertical poles can be made of various shapes and materials, including circular, square, non-symmetrical, rectangular, polygonal and other cross-sectional shapes, and plastics, metals, woods, cements, composite materials, plastic bodies with fill therein, etc.
When the gate or obstruction structure 16 is in the opened position, the first end 52 of the gate or obstruction structure 16 can lie adjacent the first open position O1 and the second end 54 of the gate or obstruction structure 16 can lie adjacent the second open position O2. The first open position O1 can be adjacent the first end 62 of the base structure 12 and the second open position O2 can be spaced away from the second end 64 of the base structure 12 in a direction opposite from the first end 52 of the base structure 12. The first end 52 of the gate or obstruction structure 16 can lie adjacent the base structure first end 62 when the gate is in the opened position. The second end 54 of the gate or obstruction structure 16 can be cantilevered from the gate support structure 14 in a direction away from the base structure first end 62 and toward the base structure second end 64 when the gate or obstruction structure 16 is in the opened position. That is, the second end 54 of the gate or obstruction structure 16 is spaced from the base structure first end 62 in a direction away from the path P, such that the gate or obstruction structure 16 opens the path P.
With reference to
All of the structures of the portable modular gate or obstruction assembly 10 can be mounted to the base structure 12 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable modular gate or obstruction assembly 10 can also be portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable modular gate or obstruction assembly 10 and can allow for installation in remote or unimproved locations.
The base structure 112 can include a first end 162 and a second end 164. The base structure 112 can be dimensioned and of sufficient mass to provide a stable platform for the gate or obstruction structure 116 to move between the opened and closed positions. The base structure can 112 have a width extending in a direction away from the path when the base structure 112 is positioned adjacent the path P. The base structure 112 can have a length extending in a direction substantially perpendicular with respect to the width. The base structure 112 can include a height extending in a direction substantially perpendicular to both the width and length. The width can be greater than the length, and the length can be greater than the height. The base structure 112 can be of sufficient mass such that it is resistant to undesired displacement away from the path through the secured perimeter. The base structure 112 can be made from a precast composition of material, such as but not limited to concrete, an aggregate embedded in epoxy, or other appropriate pre-formable material composition. In the exemplary embodiment of
Referring to
The gate support structure 114 can also include a plurality of beams 129. The beams 129 can be made from at least one of metal, wood, stone, concrete, and plastic or combinations thereof. The beams 129 can be precast in the base structure 112 such that the precast composition of material is in continuous contact with and completely surrounds an entire periphery of the beam. Although two beams 129 are illustrated in
The drive structure 120 (schematically illustrated) can be mounted to the frame structure 124. In an alternate embodiment, the drive structure 120 can be mounted directly to the base structure 112. Referring to
Referring to
When the gate or obstruction structure 116 is in the opened position, the first end 152 of the gate or obstruction structure 116 can be spaced upwardly away from the base first end 162. The first end 152 of the gate or obstruction structure 116 and the second end 154 of the gate or obstruction structure 116 can each extend from the base first end 162 toward the base second end 164. The first end 152 of the gate or obstruction structure 116 can be cantilevered from the gate support structure 114 in a direction upwardly away from the base structure first end 162 when the gate or obstruction structure 116 is in the opened position.
With reference to
All of the structures of the portable modular gate or obstruction assembly 110 can be mounted to the base structure 112 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable modular gate or obstruction assembly 110 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable modular gate or obstruction assembly 110 and can allow for installation in remote or unimproved locations.
The base structure 212 can include a first end 262 and a second end 264. The base structure 212 can be dimensioned and of sufficient mass to provide a stable platform for the gate or obstruction structure 216 to move between the opened and closed positions. The base structure can 212 have a width extending in a direction away from the path when the base structure 212 is positioned adjacent the path P. The base structure 212 can have a length extending in a direction substantially perpendicular with respect to the width. The base structure 212 can include a height extending in a direction substantially perpendicular to both the width and length. The width can be greater than the length, and the length can be greater than the height. The base structure 212 can be of sufficient mass such that it is resistant to undesired displacement away from the path through the secured perimeter. The base structure 212 can be made from a precast composition of material, such as but not limited to concrete, an aggregate embedded in epoxy, or other appropriate pre-formable material composition. In the exemplary embodiment of
The gate support structure 214 can be formed as a bracket or other appropriate structure capable of supporting the gate or obstruction structure 216 in a cantilevered manner. The gate support structure 214 can also include a plurality of beams 229. The beams 229 can be made from at least one of metal, wood, stone, concrete, and plastic or combinations thereof. The beams 229 can be precast in the base structure 212 such that the precast composition of material is in continuous contact with and completely surrounds an entire periphery of the beam. Although two beams 229 are illustrated in
The drive structure 220 (schematically illustrated) can be mounted to the base structure 212. Referring to
The gate support structure 214 can be connected to the drive shaft 226 so that the gate or obstruction structure 216 can move between the closed position and the opened position along an arcuate path.
Referring to
When the gate or obstruction structure 216 is in the opened position, the first end 252 of the gate or obstruction structure 216 can be spaced upwardly away from the base first end 262. The first end 252 of the gate or obstruction structure 216 and the second end 254 of the gate or obstruction structure 216 can each extend from the base first end 262 toward the base second end 264. The first end 252 of the gate or obstruction structure 216 can be cantilevered from the gate support structure 214 in a direction upwardly away from the base structure first end 262 when the gate or obstruction structure 216 is in the opened position.
With reference to
All of the structures of the portable modular gate or obstruction assembly 210 can be mounted to the base structure 212 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable modular gate or obstruction assembly 210 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable modular gate or obstruction assembly 210 and can allow for installation in remote or unimproved locations.
A portable access control module 72 of
The base structure 74 can be of sufficient mass such that it is resistant to undesired displacement away from the path through the secured perimeter. The base structure 74 can be made from a precast composition of material, such as but not limited to concrete, an aggregate embedded in epoxy, or other appropriate pre-formable material composition. In the exemplary embodiment of
The base structure 74 can include a plurality of beams 82. The beams 82 can be made from at least one of metal, wood, and plastic, concrete, stone or mixed composition thereof. The beams 82 can be precast in the base structure 74 such that the precast composition of material is in continuous contact with and completely surrounds an entire periphery of the beam. Although two beams 82 are illustrated in
In another alternate embodiment, the solar panel structure 76, the sign-in desk or control structure 78, and the wireless keypad 80 can be secured to the base structure 74 by casting the material of the base structure around the solar panel structure 76, a sign in desk or control structure 78 and a wireless keypad 80. In another alternate embodiment, the solar panel structure 76, the sign in desk or control structure 78 and the wireless keypad 80 can be secured to fasteners affixed to the base structure 74.
The solar panel structure 76 can be in electrical communication with the wireless keypad structure 80. The wireless keypad 80 can be in electrical communication with the drive structure of any of the assemblies 10, 110, 210 described above to active the drive structure upon entry of a valid access code via the wireless keypad structure. In an alternate exemplary embodiment, the solar panel structure 76 can be omitted and the wireless keypad 80 can be in electrical communication with the power source structure and the drive structure of any one of the assemblies 10, 110, 210.
The sign-in desk or control structure 78 can receive and display information regarding the authorized passage of pedestrians and vehicular traffic through the path P. The structure 78 can also include computer controls, such as a programmable logic controller or other type of controller that assists or controls the operation of the gate system. The base 12 would include wireless or satellite communications capability that would allow the system 10 to communicate with remote operators or remote computers to control operation of the system. The control structure 78 can also include a camera or multiple cameras that would allow further remote operability for the system. For example, an operator at an off-location site can use a camera to view an entity requesting entry via the gate system. If authorized, the operator can wirelessly actuate the system to operate the gate structure for access (or denial of access) along the pathway in which the system is installed.
All of the structures of the portable access control module 72 can be mounted to the base structure 74 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable access control module 72 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable access control module 72 and can allow for installation in remote or unimproved locations.
In an alternate embodiment, a fork pocket can replace each beam 29, 82, 129, 229 in the exemplary base structures 12, 74, 112, 212 described above. The fork pocket can be positioned and dimensioned to receive a fork of a forklift truck to facilitate removal and installation of each base structure 12, 74, 112, 212 described above. Any appropriate reinforcement can be added to the base structures 12, 74, 112, 212 to enhance the material strength around the fork pocket, as necessary.
The base structure 312 can include a first end 362, a second end 364, a post hole 311 and two fork pockets 313 located between the first end 362 and the second end 364 and extending substantially parallel to one or both of the first end 362 and the second end 364. The post hole 311 can be dimensioned and positioned to receive a fence post (omitted from
A gate support structure 314 can be provided to connect the gate 316 to the drive structure 320 on the base 312. The gate support structure 314 can be formed as a bracket or other appropriate structure capable of supporting the gate or obstruction structure 316 in a cantilevered manner.
The drive structure 320 (schematically illustrated) can be mounted to the base structure 312 and can include a drive shaft 326 (shown in phantom) connected to the gate support structure 314. The remainder of the drive structure 320 can be, but is not limited to, a gear drive structure, a kinematic drive structure, or an electric motor direct-drive structure such that the drive shaft 326 is rotated in order to displace the gate or obstruction structure 316 between the closed position and the opened position along the arcuate path. In an alternate embodiment, the drive shaft 326 can be omitted and replaced with a different drive structure such as but not limited to a cable structure, kinematic structure, or a counter-weight structure.
The gate support structure 314 can be connected to the drive shaft 326 so that the gate or obstruction structure 316 can move between the closed position and the opened position along an arcuate path.
The power source 318 can include an electrical cabinet 327. The cabinet 327 can include a hinged lid 329 (shown in the open position). The cabinet 327 can house one or more power supply components 331 (shown schematically and in phantom) such as but not limited to wiring, a battery, a generator and a junction for receiving shore power. The power supply component(s) 331 can be in electrical communication with the drive structure 320 to supply power for the operation of the drive structure 320.
The base structure 312 can include one or more conduits, such as loop conduits 333, and a grounding device 335. Each loop conduit can be molded into the base structure 312 during the formation of the base structure 312 and can be configured to retain or run loop wires as well as other types of wires therein. The loop conduits 333 can house one or more electrical conductors (not shown—see, for example, electrical conductors 441 of
Use of conduits is a common method for enclosing control wires. The use of such a conduit in such a case can be referred to as a loop conduit as the intention is to run loop wires in the conduits, but they could also be used for other control wiring. Multiple conduits can be used to prevent cross talk between control wires. Ground loops are control devices for gate systems—they sense the magnetic field change when vehicles pass over them (sensing steel—not people).
The grounding device 335 (shown schematically and in phantom) can be in electrical communication with one or more of the power supply component(s) 331, as appropriate, and can be configured as a metal plate or a metal bar or other appropriate metal structure. The grounding device 335 can be attached to an outer surface of the base structure 312 or integrally molded with the base structure 312.
A photo-eye 337 can be mounted to an outer surface of the drive structure 320. The photo-eye can be any sensor device that can detect the presence or absence of an object within a predetermined field of view and output a signal indicative of the presence or absence of an object. The photo-eye can be sensitive to light and/or motion within the predetermined field of view. The photo-eye can be in electrical communication with the drive structure 320. The photo-eye 337 can be oriented relative to the path P in order to detect the presence or absence of a vehicle in the immediate vicinity of the portable modular gate or obstruction structure 310. The photo-eye 337 (and other electronic components) can include transmitters and/or receivers that communicate with a CPU or other control device located within the power supply components 331. Thus, the assembly 310 can operate using wireless communication between components, but can also be hard wired for more secure communications between components. Alternatively, the drive structure 320 can be configured with hardware and/or software to process the signal(s) from the photo-eye 337 and/or other sensors to regulate the movement of the gate or obstruction structure 316.
All of the structures of the portable modular gate or obstruction assembly 310 can be mounted to the base structure 312 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable modular gate or obstruction assembly 310 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable modular gate or obstruction assembly 310 and can allow for installation in remote or unimproved locations.
The base structure 412 can include a first end 462, a second end 464, a post hole 411 and two fork pockets 413 located between the first end 462 and the second end 464 and extending substantially parallel to one or both of the first end 462 and the second end 464. The post hole 411 can be dimensioned and positioned to receive a fence post (omitted from
The gate support structure 414 can be formed as a bracket or other appropriate structure capable of supporting the gate or obstruction structure in a cantilevered manner.
The drive structure 420 (schematically illustrated) can be mounted to the base structure 412. The drive structure 420 can include a drive shaft (omitted from
The gate support structure 414 can be connected to the drive shaft so that the gate or obstruction structure can move between the closed position and the opened position along an arcuate path.
The power source 418 can include an electrical cabinet 427. The cabinet 427 can include a hinged lid 429 (shown in the open position). The cabinet 427 can house one or more power supply components 431 (shown schematically and in phantom) such as but not limited to wiring, a battery, a generator and a junction for receiving shore power. The power supply component(s) 431 can be in electrical communication with the drive structure 420 via electrical conductors 439 to supply power for the operation of the drive structure 420. The electrical conductors 439 can be housed within one or more conduits.
The base structure 412 can include one or more loop wires 433 and a grounding device 435. Each loop wire can be molded into the base structure 412 during the formation of the base structure 412. The loop wires 433 can be configured as electrical conductors 441 connected to a power supply different from the power source 418 and/or connected to other structure(s) of the security system to distribute power from the power source 418. For example, the loop wires 433 can be located within a loop conduit, and the loop conduit can be considered a conduit for wired gate control devices.
The grounding device 435 (shown schematically and in phantom) can be in electrical communication with one or more of the power supply component(s) 431, as appropriate. The grounding device 435 can be configured as a metal plate or a metal bar or other appropriate metal structure. The grounding device 435 can be attached to an outer surface of the base structure 412 or integrally molded with the base structure 412.
A sensor, such as a photo-eye 437, can be mounted to an outer surface of the drive structure 420. The photo-eye can be any sensor device that can detect the presence or absence of an object within a predetermined field of view and output a signal indicative of the presence or absence of an object. The photo-eye 437 can be sensitive to light and/or motion within the predetermined field of view, or can be a weight, vibration, or magnetic sensor. The photo-eye 437 can be in electrical communication with the drive structure 420. The photo-eye 437 can be oriented relative to the path P in order to detect the presence or absence of a vehicle in the immediate vicinity of the portable modular gate or obstruction structure 410. The drive structure 420 can be configured with hardware and/or software to process the signal(s) from the photo-eye 437 and regulate the movement of the gate or obstruction structure.
All of the structures of the portable modular gate or obstruction assembly 410 can be mounted to the base structure 412 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable modular gate or obstruction assembly 410 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable modular gate or obstruction assembly 410 and can allow for installation in remote or unimproved locations.
The base structure 512 can include a first end 562, a second end 564 and two fork pockets 513 located between the first end 562 and the second end 564 and extending substantially parallel to one or both of the first end 562 and the second end 564. Each fork pocket 513 can be positioned and dimensioned to receive a fork of a forklift truck to facilitate removal and installation of each base structure 512. Any appropriate reinforcement can be added to the base structure 512 to enhance the material strength around the fork pockets 513, as necessary. The base structure 512 can be configured similar to the base structure of any of the other disclosed embodiments.
The solar panel structure 570 can include a frame 571, one or more solar panels 573, an adjustment mount frame 575 and a plurality of pivot bases 577. The solar panel(s) 573 can be secured to the frame 571. One end of the frame 571 can be pivotally mounted to a pair of pivot bases 577 on the base 512. The adjustable mount frame 575 can be rotatably and/or slidably secured to the frame 571 by any appropriate releasable connection, such as but not limited to bolts/nuts, screws with or without nuts, ball and detent assembly, ratchet assembly, or spring biased pins and mating holes, etc. This arrangement can provide adjustment of the solar panels 573 for optimal solar energy collection.
The base structure 512 can include one or more conduits (such as conduits 333 of
One of the portable access control modules 672 can be positioned on the unsecured side of security system 600 to permit access into the secured side of the security system 600. The other of the portable access control modules 672 can be positioned on the secured side of security system 600 to permit access out the secured side of the security system 600.
Each of the portable access control modules 672 can include a base structure 674, a sign in desk structure 678 and a wireless keypad structure 680. The base structure 674 can include a first end 662, a second end 664 and a fork pocket 675 located between the first end 662 and the second end 664 and extending substantially parallel to one or both of the first end 662 and the second end 664. The fork pocket 675 can be positioned and dimensioned to receive a fork of a forklift truck to facilitate removal and installation of each base structure 674. Any appropriate reinforcement can be added to the base structure 674 to enhance the material strength around the fork pocket 675, as necessary. The base structure 674 can otherwise be formed in a similar manner as compared to any of the other disclosed base structures.
The solar panel structure, the sign-in desk or control structure 678, and the wireless keypad 680 can be secured to the base structure 674 by casting the material of the base structure around the solar panel structure, a sign in desk or control structure 678, and a wireless keypad 680. In another alternate embodiment, the solar panel structure, the sign in desk or control structure 678 and the wireless keypad 80 can be secured to fasteners affixed to the base structure 674.
The sign-in desk or control structure 678 can receive and display information regarding the authorized passage of pedestrians and vehicular traffic through the path P. The structure 678 can also include computer controls, such as a programmable logic controller or other type of controller that assists or controls the operation of the gate system, as well as sensors for keyless entry and the like. The base structure 674 could include wireless or satellite communications capability that would allow the security system 600 to communicate with remote operators or remote computers to control operation of the system. The control structure 678 can also include a camera or multiple cameras that would allow further remote operability for the system. For example, an operator at an off-location site can use a camera to view an entity requesting entry via the gate system. If authorized, the operator can wirelessly (or otherwise) actuate the system to operate the gate structure for access (or denial of access) along the pathway in which the system is installed.
All of the structures of the portable access control module 672 can be mounted to the base structure 674 to allow for ease of installation and removal, when necessary. Further, the power supply for operating the portable access control module 672 is also portable and self-contained. These features can minimize time and labor costs for installation and removal, if necessary, of the portable access control module 672 and can allow for installation in remote or unimproved locations.
The portable gate post module 700 can be positioned along the path P in alignment with the gate or obstruction structure 316. The portable gate post module can include a post 701 and a base structure 712.
The base structure 712 can include a first end 762, a second end 764 and a fork pocket 713 located between the first end 762 and the second end 764 and extending substantially parallel to one or both of the first end 762 and the second end 764. The fork pocket 713 can be positioned and dimensioned to receive a fork of a forklift truck to facilitate removal and installation of each base structure 712. The base structure can be constructed similar to the other base structures of the disclosed subject matter.
The post 701 can be secured to a hole formed in the base structure 712, or the post can be integrally molded with the base structure 712. The post 701 can include one or more reflective marking and/or a light source. The light source can be in electrical communication with the portable modular gate or obstruction assembly 310 and/or with the portable solar panel module 500.
While certain embodiments of the invention are described above, it should be understood that the invention can be embodied and configured in many different ways without departing from the spirit and scope of the invention. For example, the solar panel structure or the battery can be the primary power source that powers the drive structure and the other can be a back-up. In another exemplary embodiment any combination of the power source structure and the drive structure can be mounted on a base structure separate from the base structure to which the gate or obstruction structure is mounted. The hanger assembly 24 can be secured to the support post 28 in any appropriate method such as but not limited to integrally forming with the support post 28, welding, or fasteners extending through the hanger structure 24 and the support post 28.
The base 12, 112, 212 is described as being modular and including the gate support structure integrally molded therein. However, it should be understood that the integral mold can comprise a tubular mount structure to which a separate portion of the gate support structure is mounted once the system arrives at an installation site. Similarly, tube structures can be provided and molded into the base 12, 112, 212 for attachment to the gate support structure, the power source structure and the control structure when the system arrives at an installation site.
The base 12, 112, 212 can include securing points (such as rings, forklift slots, and the like) that allow a front end loader or forklift or other construction equipment to quickly and easily move the system as a modular unit from a transportation vehicle to an appropriate location at an installation site.
In addition, the base can be configured to be optionally or selectively crash resistant. For example, the base (as well as the gate panels and other structures of the module) can be formed from hollow structures that can be filled with different types of material depending on the application. In one embodiment, where the gate module is to be used to secure the perimeter of a location that is subject to attack by vehicle, the hollow components of the module can be filled with sand, sludge, water, metal, or other dense material or composite, that would provide a desired mass for the module, thus increasing the crash resistance of the gate module. It is also contemplated that the base structure and/or gate panel(s) can be made larger to provide crash resistance for the gate module. Alternatively, each of the components can be reinforced by additional structure or treatments. In one embodiment, the base can be reinforced with rebar or additional strengthening bars that are placed within the base before or during any curing process that might occur. The gate panels can also be reinforced with a rebar type system, or by simply including a larger number of cross-bars and structural components.
Alternatively, the base structure and gate structure can be configured to include crumple zones in which at least one dampening structure is included in any of the structures to dampen or transmit a crash force such that the gate and base structure return substantially to their original shape to ensure continued operation of the gate structure (e.g., to ensure prevention of a breach of the gate structure by pedestrians or vehicles). In particular, any of the structures can include a dampening material integrally attached or attached as separated dampers, designed to absorb the kinetic energy from a crash event before the energy is transferred to the critical components of the gate structure, such as the gate panel structure, gate post structure, or gate base structure.
The gate structure is shown as both a cantilevered post type gate (for example, as shown in
While the subject matter has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. All related art references discussed in the above Description of the Related Art section are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4681479 | Wagner et al. | Jul 1987 | A |
5097790 | Massey | Mar 1992 | A |
5131631 | Cobbe | Jul 1992 | A |
5782039 | Scherer et al. | Jul 1998 | A |
6796084 | Gagnon | Sep 2004 | B2 |
7268701 | Rohl | Sep 2007 | B2 |
20070126598 | Carter et al. | Jun 2007 | A1 |
20080110413 | Kobayashi et al. | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20150240561 A1 | Aug 2015 | US |