The invention is generally related to encoded information reading (EIR) terminals and is specifically related to RFID reading terminals including radio-frequency identification (RFID) reading devices.
RFID methods are widely used in a number of applications, including smart cards, item tracking in manufacturing, inventory management in retail, etc. An RFID tag can be attached, e.g., to an inventory item. An RFID reading terminal can be configured to read the memory of an RFID tag attached to an inventory item.
In one embodiment, there is provided a portable radio-frequency identifier (RFID) reading terminal comprising a microprocessor, a memory, an RFID reading device including a radio frequency (RF) antenna, and a display. The portable RFID reading terminal can be configured to display a scan trace provided by a line comprising a plurality of time varying points. Each point can be defined by a projection of the coverage shape of an RF signal transmitted by the RFID reading device onto a chosen plane at a given moment in time.
In one embodiment, the portable RFID reading terminal can, by reading RFID tags attached to the items, reconcile a count of items stored in a manufacturing, retail, and/or storage facility against an expected count which can be received, e.g., from an external computer. In another embodiment, the portable RFID reading terminal can, by reading RFID tags attached to the items, reconcile an inventory of items stored in a manufacturing, retail, and/or storage facility against an expected inventory list received, e.g., from an external computer. In a further aspect, the portable RFID reading terminal can transmit to the external computer the list or the count of read RFID tags.
In one embodiment, the portable RFID reading terminal can further comprise a two-dimensional imager. The portable RFID reading terminal can be further configured to determine a spatial position of the RF signal coverage shape based on a known position and orientation of the RF antenna relative to the position of the field of view of the two-dimensional imager.
In one embodiment, the portable RFID reading terminal can be further configured to measure a distance to an object using the two-dimensional imager. The portable RFID reading terminal can be further configured to determine and display the projection of the RF signal coverage shape onto the plane defined by the physical structure which in one embodiment can contain a plurality of inventory items.
In one embodiment, the portable RFID reading terminal can further comprise at least one accelerometer. The portable RFID reading terminal can be further configured to determine a change of the spatial position and orientation of the RF signal coverage shape based on the proper acceleration values received from the accelerometer.
In one embodiment, the portable RFID reading terminal can be configured to display a quantity of scanned items, a quantity of items which have not be scanned yet, and/or a total quantity of items to be scanned.
In one embodiment, the portable RFID reading terminal can be configured to display an indicator of a ratio of quantity of scanned items to a total quantity of items to be scanned.
In one embodiment, the portable RFID reading terminal can be configured to display a scan trace overlaid over an image of a physical structure which can contain one or more scanned items and/or one or more items to be scanned. In a further aspect, the image of the physical structure can be acquired by the two-dimensional imager or received from an external computer. In one embodiment, portable RFID reading terminal can be configured to receive a description of the physical structure, and create an image of the physical structure based on the description.
In one embodiment, the portable RFID reading terminal can be configured to display an indicator of an RF signal coverage over a scan trace overlaid over an image of a physical structure.
In one embodiment, the portable RFID reading terminal can be configured to display an indicator of an RF signal coverage over a current position within the scan trace.
For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
a-5b schematically illustrate determining a spatial position of the RF signal coverage shape based on the known position and orientation of an RF antenna relatively to the position of the field of view of a two-dimensional imager;
a-20c schematically illustrate embodiments of an RFID reading terminal.
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
RFID reading devices usually offer improved efficiency over barcode scanning devices for retail inventory, by being capable of reading multiple RFID tags that are within range of the RF signal transmitted by an RFID reading device. A downside to this multiple-read capability is lack of scanned items localization, due to insufficient correlation between where the RFID reader is located or oriented, and the RFID tags being read. Retail inventory management typically requires more than 90% of the RFID tags present in a department to be successfully acquired during the inventory process. When this high accuracy is not achieved, it is necessary to rescan the entire department, since the locations of any unread RFID tags are unknown.
In one embodiment, there is provided a portable radio-frequency identifier (RFID) reading terminal configured to present a visual indication of defined areas which have been scanned and areas which have not been scanned for RFID tags. Such a capability provides increased operational efficiency of RFID tag reading for retail inventory management. Various embodiments of the RFID reading terminal can be used in a numerous applications, including but not limited to, item tracking in manufacturing, storage, and retail, real-time inventory control systems, etc.
Item tracking and/or inventory control can be implemented by placing an RFID tag on each inventory item. The RFID reading terminal can comprise at least one RFID reading device which can be configured to read and/or modify a memory of an RFID tag containing an encoded message. The RFID reading device can transmit and/or receive radio frequency (RF) signals to and from RFID tags attached to inventory items. Each RFID tag can store the tag identifier in its memory. An RFID tag attached to an inventory item can further store in the tag's memory a product code of the item, an EPC (Electronic Product Code) of the item, and/or at least one alphanumeric string identifying the item.
The RFID reading device can be further configured to output decoded message data corresponding to the encoded message, e.g., decoded message data containing identifiers of the items to which the RFID tags are attached. The RFID reading terminal can be configured to store in its memory and/or transmit to an external computer the item identifiers received from the plurality of RFID tags.
In a further aspect, the RFID reading terminal can be configured to receive an expected count of inventory items or an expected inventory list of items of interest stored within a storage, manufacturing, and/or retail facility. As used herein, “inventory list” shall refer to a collection of item descriptions, each item description comprising at least the item identifier.
In one embodiment, the RFID reading terminal can receive the expected count of inventory items or the expected inventory list over a network from an external computer. In another embodiment, the RFID reading terminal can receive the expected count of inventory items or the expected inventory list via the user interface. In a yet another embodiment, the RFID reading terminal can receive the expected count of inventory items or the expected inventory list by reading an external memory device connected to one of the terminal's I/O ports (e.g., a USB port, or a PCMCIA interface). In a yet another embodiment, the RFID reading terminal can be equipped with a 2D imager and can receive the expected count of inventory items or the expected inventory list via the 2D imager, for example, by scanning a plurality of optical decodable indicia (e.g., a plurality of bar codes), or by acquiring an image of a textual document containing the expected count of inventory items or the expected inventory list and then processing the image using optical character recognition (OCR) methods.
The RFID reading terminal can be further configured to reconcile the inventory of items stored within a storage, manufacturing, and/or retail facility against the expected count of inventory items or the expected inventory list by reading the RFID tags attached to the inventory items.
The RFID reading terminal can read RFID tags from a range of distances and various terminal orientations with respect to an RFID tag being read. To further improve the reliability of scanning operations and the terminal's operator experience, the RFID reading terminal can be configured to emit audible signals (e.g., beeps) to indicate an occurrence of a pre-defined event, thus providing an audible feedback to the operator of the RFID reading terminal. In one embodiment, the RFID reading terminal can be configured to emit an audible signal of a first type every time a unique RFID tag has been successfully read and reconciled against an inventory list. The RFID reading terminal can be further configured to and emit an audible signal of a second type every time a unique RFID tag has been successfully read but failed to reconcile against the inventory list. The RFID reading terminal can be further configured to emit an audible signal of a third type every time a pre-defined timeout has elapsed without reading an RFID tag. However, the audible feedback inherently fails to indicate the location of the RFID tag having been successfully read.
To further improve the readability of scanning operations, the RFID reading terminal can in one embodiment be configured to display on the terminal's display one or more scan traces, thus providing the terminal's operator with a visual feedback with respect to the scanning progress, as schematically shown in
At any moment in time, the RF signal coverage emitted by an RFID reading terminal can be defined by a 3D shape, as schematically shown in
At any given moment in time, a target scan area by an RFID reading terminal can be visualized as a projection 2040 of the 3D RF signal coverage shape 2020 onto an arbitrarily chosen plane 2050, including an imaginary plane. For a moving RFID reading terminal, a visual scan trace can be provided by a line defined by a multitude of time varying points, each point being a projection 2040 of the 3D RF signal coverage shape 2020 onto the arbitrarily chosen plane 2050 at a given moment in time.
In a further aspect, the imaginary plane onto which the visual scan trace is projected can be chosen to intersect a physical structure (e.g., a shelf) containing the inventory items, and thus the scan trace can be overlaid over an image of the physical structure as schematically shown in
Component-level diagram of one embodiment of the RFID reading terminal is now being described with references to
RFID reading terminal 100 can further comprise a communication interface 340 communicatively coupled to the system bus 370. In one embodiment, the communication interface can be provided by a wireless communication interface. The wireless communication interface can be configured to support, for example, but not limited to, the following protocols: at least one protocol of the IEEE 802.11/802.15/802.16 protocol family, at least one protocol of the HSPA/GSM/GPRS/EDGE protocol family, TDMA protocol, UMTS protocol, LTE protocol, and/or at least one protocol of the CDMA/1xEV-DO protocol family.
RFID reading terminal 100 can further comprise a battery 356. In one embodiment, the battery 356 can be provided by a replaceable rechargeable battery pack. The RFID reading terminal 100 can further comprise a GPS receiver 380. The RFID reading terminal 100 can further comprise at least one connector 390 configured to receive a subscriber identity module (SIM) card.
The RFID reading terminal 100 can further comprise an imaging device 330, provided, for example, by a two-dimensional imager.
The RFID reading terminal 100 can further comprise an RFID reading device 333. In one embodiment, the RFID reading device 333 can be configured to read a memory of an RFID tag containing an encoded message and to output raw message data containing the encoded message. In another embodiment, the RFID reading device 333 can be configured to read a memory of an RFID tag containing an encoded message and to output decoded message data corresponding to the encoded message. As used herein, “message” is intended to denote a bit sequence or a character string comprising alphanumeric and/or non-alphanumeric characters. An encoded message can be used to convey information, such as identification of the source and the model of an item, for example, in an EPC code.
In one embodiment, the RFID reading terminal 100 can further comprise a graphical user interface including a display adapter 175 and a keyboard 179. In one embodiment, the RFID reading terminal 100 can further comprise an audio output device, e.g., a speaker 181.
It is not necessary that a device's primary function involve reading RFID tags in order to be considered an RFID reading terminal; for example, a cellular telephone, a smart phone, a PDA, or other portable computing device that is capable of reading RFID tags can be referred to as an RFID reading terminal for purposes of this disclosure.
In a further aspect, the RFID reading terminal can be incorporated in a data collection system. One embodiment of the data collection system, schematically shown in
An RFID reading terminal 100a-100z can establish a communication session with an external computer 171. In one embodiment, network frames can be exchanged by the RFID reading terminal 100 and the external computer 171 via one or more routers 140, access points 135, and other infrastructure elements. In another embodiment, the external computer 171 can be reachable by the RFID reading terminal 100 via a local area network (LAN). In a yet another embodiment, the external computer 171 can be reachable by the RFID reading terminal 100 via a wide area network (WAN). In a yet another embodiment, the external computer 171 can be reachable by the RFID reading terminal 100 directly (e.g., via a wired or wireless interface). A skilled artisan would appreciate the fact that other methods of providing interconnectivity between the RFID reading terminal 100 and the external computer 171 relying upon LANs, WANs, virtual private networks (VPNs), and/or other types of network are within the scope of this disclosure.
A “computer” herein shall refer to a programmable device for data processing and control, including a central processing unit (CPU), a memory, and at least one communication interface. For example, in one embodiment, a computer can be provided by a server running a single instance of a multi-tasking operating system. In another embodiment, a computer can be provided by a virtual server, i.e., an isolated instance of a guest operating system running within a host operating system. A “network” herein shall refer to a set of hardware and software components implementing a plurality of communication channels between two or more computers. A network can be provided, e.g., by a local area network (LAN), or a wide area network (WAN). While different networks can be designated herein, it is recognized that a single network as seen from the application layer interface to the network layer of the OSI model can comprise a plurality of lower layer networks, i.e., what can be regarded as a single Internet Protocol (IP) network, can include a plurality of different physical networks.
The communications between the RFID reading terminal 100 and the external computer 171 can comprise a series of requests and responses transmitted over one or more TCP connections. A skilled artisan would appreciate the fact that using various transport and application level protocols is within the scope and the spirit of the invention.
At least one of the messages transmitted by the RFID reading terminal 100 can include decoded message data corresponding to an RFID label attached to an inventory item. For example, an RFID reading terminal can transmit a request to the external computer to retrieve product information corresponding to a product identifier encoded by an RFID tag attached to a retail item, or to transmit an item tacking record for an item identified by an RFID tag attached to the item.
As noted herein supra, the RFID reading terminal 100 can be configured to receive from the external computer 171 an inventory list containing item identifiers, or count, of items stored within a storage, manufacturing, and/or retail facility. The inventory list or count can further contain storage location information of specific items. The RFID reading terminal 100 can be further configured to reconcile an inventory of items stored in a manufacturing, retail and/or storage facility against the inventory list or count, by reading RFID tags attached to the items. The RFID reading terminal 100 can be configured to transmit the reconciled list or count to the external computer 171.
The RFID reading terminal 100 can be further configured to display a scan trace on the terminal's display, thus providing to the operator a visual feedback with respect to the scanning progress. In one embodiment, one or more scan traces 111a, 111b can be overlaid over an image of physical structure 115 containing the inventory items as schematically shown in
A noted herein supra, in one embodiment, the RFID reading terminal can comprise a two-dimensional imager. The RFID reading terminal can be configured to determine a spatial position of the RF signal coverage shape based on the known position and orientation of the RF antenna relatively to the position of the field of view (FOV) of the two-dimensional imager, as schematically shown in
The plane 2050 can represent an arbitrary chosen plane, e.g., a plane intersecting a physical structure hosting one or more inventory items. The RF antenna can be oriented relatively to the view finder in such a way that the central axis 5010 of the field of view of the imager would be parallel to the central axis 5020 of the RF signal coverage shape by the antenna. Reducing the distance between the RFID reading terminal and the plane 2050 and/or increasing the RF transmit power level results in a larger projection of the RF signal coverage area onto the plane 5020, as schematically shown in
In a further aspect, the RFID reading terminal can be configured to measure the distance to an object using a two-dimensional imager. Based on the known shape of the signal coverage and the distance and orientation of the RF antenna to a physical structure 115 containing the inventory items, the RFID reading terminal can determine and display the projection of the 3D RF signal coverage shape onto the plane defined by the physical structure 115.
In another embodiment, the RFID reading terminal can comprise one or more accelerometers and can be configured to determine the change of the spatial position and orientation of the RF signal coverage shape based on the proper acceleration values received from the accelerometers. In one illustrative embodiment, the RFID reading terminal can comprise three or more accelerometers.
In one embodiment, the RFID reading terminal 100 can be further configured to display a quantity of scanned items, a quantity of items which have not been scanned yet, and/or a total quantity of items to be scanned, the latter quantity determined based on an inventory count or list of items describing a storage, manufacturing, and/or retail facility. A progress indicator 191 of
In one embodiment, the RFID reading terminal 100 can be further configured to display an indicator 119 of the RF signal coverage over a scan trace, as schematically shown in
In one embodiment, the RFID reading terminal 100 can be further configured to display a scan trace overlaid over an image of a physical structure (e.g., a shelf) containing one or more scanned items and one or more items to be scanned. In one embodiment, the image of the physical structure containing the inventory items can be received by the RFID reading terminal 100 over the network from an external computer. In another embodiment, the RFID reading terminal 100 can comprise a two-dimensional imager, and the image of the physical structure containing the inventory items can be acquired by the two-dimensional imager. In another embodiment, the image of the physical structure is drawn, with appropriate detail, on the RFID reading terminal display, based on a description of the physical structure received by the terminal 100 via the user interface, from an external peripheral device or from an external computer.
In one embodiment, the items which have already been scanned and which have not yet been scanned can be displayed in two different colors, as schematically shown in
In one embodiment, schematically shown in
In a further aspect, RFID reading device 333 can be compliant with EPC™ Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz by EPCglobal, commonly known as the “Gen 2” standard, which defines physical and logical requirements for a passive-backscatter, interrogator-talks-first (ITF) RFID system operating in the 860 MHz-960 MHz frequency range.
In one embodiment, RFID reading terminal 100 can transmit information to a passive RFID tag by modulating an RF signal in the 860-960 MHz frequency range. An RFID tag can receive both information and operating energy from the RF signal transmitted by the RFID reading terminal 100. RFID reading terminal 100 can receive information from the RFID tag by transmitting a continuous-wave (CW) RF signal to the RFID tag. “Continuous wave” can refer to any waveform transmitted by an RFID reading device and suitable to power a passive RFID tag, e.g., a sinusoid at a given frequency. The RFID tag can respond by modulating the reflection coefficient of its antenna, thus backscattering an information signal to the RFID reading terminal 100. In one embodiment, the RFID tag can modulate the reflection coefficient of its antenna only responsive to receiving an RFID signal from RFID reading terminal 100.
In a further aspect, RFID reading terminal 100 can be configured to send information to one or more RFID tags by modulating an RF carrier using double-sideband amplitude shift keying (DSB-ASK), single-sideband amplitude shift keying (DSB-ASK), or phase-reversal amplitude shift-keying (PR-ASK) using a pulse-interval encoding (PIE) format. RFID tags can receive their operating energy from the same modulated RF carrier.
The RFID reading terminal 100 can be configured to receive information from an RFID tag by transmitting an unmodulated RF carrier and listening for a backscatter reply. RFID tags can transmit information by backscatter-modulating the amplitude and/or phase of the RFID carrier. RFID tags can encode the backscattered data using, e.g., FMO baseband or Miller modulation of a subcarrier at the data rate. The encoding method to be employed by an RFID tag can be selected by the RFID reading terminal 100.
In another aspect, RFID reading terminal can establish one or more sessions with one or more RFID tags. An RFID tag can support at least one session-dependent flag for every session. The session-dependent flag can have two states. An RFID tag can invert a session-dependent flag responsive to receiving a command from RFID reading terminal 100. Tag resources other than session-dependent flags can be shared among sessions. In another aspect, an RFID tag can support a selected status flag indicating that the tag was selected by the RFID reading terminal 100.
Responsive to receiving an interrogation signal transmitted by the RFID reading terminal 100, an RFID tag can transmit a response signal back to RFID reading terminal 100. The response signal can contain useful data, e.g., an Electronic Product Code (EPC) identifier, or a tag identifier (TID). The response signal can include a representation of a binary string, at least part of which is equal to at least part one of the specified one or more target item identifiers.
In one embodiment, RFID reading terminal can implement EPC™ Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz by EPCglobal. The RFID reading terminal 100 can interrogate RFID tags using the commands described herein infra
Select command can be used by the RFID reading terminal 100 to select a particular RFID tag population for the subsequent inventory round. Select command can be applied successively to select a particular tag population based on user-specified criteria. Select command can include the following parameters:
Inventory command set can be used by the RFID reading terminal 100 to single out one or more individual tags from a group. A tag can maintain up to four simultaneous sessions and a binary Inventoried flag for each session. Inventory command set includes the following commands:
An RFID tag can implement a state machine. Once energized, a tag can change its current state to Ready. A selected tag can, responsive to receiving Query command, select a random integer from the range of [0; 2Q−1]. If the value of zero is selected, the tag can transition to Reply state, backscattering a 16-bit random number. If a non-zero value is selected, the tag can load the selected random integer into its slot counter and change its state to Arbitrate.
Responsive to receiving the tag transmission, RFID reading terminal can acknowledge it with Ack command containing the same random number. Responsive to receiving Ack command, the tag can change its state to Acknowledged and backscatter its protocol control (PC) bits, EPC and cyclic redundancy check (CRC) value. Unacknowledged tag can select a new random integer from the range of [0; 2Q−1], load the value into its slot counter, and change its state to Arbitrate. Responsive to receiving QueryAdjust command, a tag in the Arbitrate state should decrement the value of its slot counter and backscatter its protocol control (PC) bits, EPC and CRC value if its slot counter is equal to zero.
Responsive to receiving the tag's transmission of its PC, EPC and 16-bit CRC value, RFID reading terminal can send a QueryAdjust command causing the tag to invert its Inventoried flag and to transition to Ready state.
Access command set can be used by the RFID reading terminal 100 for communicating with (reading from and writing to) a tag. An individual tag must be uniquely identified prior to access. Access command set includes the following commands:
ReqRn command can be used by the RFID reading terminal 100 to request a handle from a tag; the handle can be used in the subsequent Access command set commands. Responsive to receiving Req_RN commands, a tag returns a 16-bit random integer (handle) and transitions from Acknowledged to Open or Secured state.
Read command can be used by the RFID reading terminal 100 to read tag's Reserved, EPC, TID and User memory;
Write command can be used by the RFID reading terminal 100 to write to tag's Reserved, EPC, TID and User memory;
Kill command can be used by the RFID reading terminal 100 to permanently disable a tag;
Lock command can be used by the RFID reading terminal 100 to lock passwords preventing subsequent read or write operations; lock individual memory banks preventing subsequent write operations; permanently lock the lock status of passwords or memory banks;
Access command can be used by the RFID reading terminal 100 to cause a tag having a non-zero access password to transition from Open to Secured state.
A skilled artisan would appreciate the fact that other methods of interrogating RFID tags by the RFID reading terminal 100 are within the scope of this disclosure.
One embodiment of the RFID reading terminal 100 is schematically shown in
While the present invention has been particularly shown and described with reference to certain exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by claims that can be supported by the written description and drawings. Further, where exemplary embodiments are described with reference to a certain number of elements it will be understood that the exemplary embodiments can be practiced utilizing less than the certain number of elements.
A small sample of systems, methods, and apparata that are described herein is as follows:
A4. The portable RFID reading terminal of (A1), further comprising a user interface;
A7. The portable RFID reading terminal of (A1), wherein said portable RFID reading terminal is configured, by reading RFID tags attached to said items, to reconcile an inventory of items stored in a facility against at least one of: an expected inventory list, an expected count of items; and
A13. The portable RFID reading terminal of (A1), wherein said portable RFID reading terminal is further configured to display said scan trace overlaid over an image of a physical structure.
Number | Name | Date | Kind |
---|---|---|---|
6543691 | Lemelson et al. | Apr 2003 | B1 |
6659344 | Otto et al. | Dec 2003 | B2 |
6991164 | Lemelson et al. | Jan 2006 | B2 |
7003138 | Wilson | Feb 2006 | B2 |
7015967 | Kochi et al. | Mar 2006 | B1 |
7063256 | Anderson et al. | Jun 2006 | B2 |
7161470 | Berquist et al. | Jan 2007 | B2 |
7237721 | Bilcu et al. | Jul 2007 | B2 |
7243849 | Lapstun et al. | Jul 2007 | B2 |
7270268 | Garber et al. | Sep 2007 | B2 |
7308158 | Herbert et al. | Dec 2007 | B2 |
7405662 | Steinke et al. | Jul 2008 | B2 |
7407096 | McQueen et al. | Aug 2008 | B2 |
7494063 | Kotlarsky et al. | Feb 2009 | B2 |
7501950 | Suzuki | Mar 2009 | B2 |
7535361 | Doan et al. | May 2009 | B2 |
7551090 | Doan et al. | Jun 2009 | B2 |
7602288 | Broussard | Oct 2009 | B2 |
7627191 | Xu et al. | Dec 2009 | B2 |
7677602 | Bennett et al. | Mar 2010 | B2 |
7696874 | Stevens | Apr 2010 | B2 |
7702187 | Rusman et al. | Apr 2010 | B2 |
7708205 | Kotlarsky et al. | May 2010 | B2 |
7735731 | Skaaksrud et al. | Jun 2010 | B2 |
7756292 | Lev | Jul 2010 | B2 |
7756319 | Odell | Jul 2010 | B2 |
7786865 | Park | Aug 2010 | B2 |
7786925 | Knibbe et al. | Aug 2010 | B1 |
7815121 | Kotlarsky et al. | Oct 2010 | B2 |
7821400 | Tabet et al. | Oct 2010 | B2 |
7831082 | Holsing et al. | Nov 2010 | B2 |
7855643 | Tuttle | Dec 2010 | B2 |
7857219 | Lackemann | Dec 2010 | B2 |
7870999 | Skaaksrud et al. | Jan 2011 | B2 |
7883013 | Skaaksrud et al. | Feb 2011 | B2 |
7886972 | Skaaksrud et al. | Feb 2011 | B2 |
7951003 | Russell et al. | May 2011 | B2 |
7961908 | Tzur et al. | Jun 2011 | B2 |
7965186 | Downie et al. | Jun 2011 | B2 |
8115601 | Nonaka | Feb 2012 | B2 |
8149094 | Deoalikar et al. | Apr 2012 | B2 |
8508344 | Hiramatu et al. | Aug 2013 | B2 |
20020165758 | Hind et al. | Nov 2002 | A1 |
20050212676 | Steinberg | Sep 2005 | A1 |
20050212817 | Cannon et al. | Sep 2005 | A1 |
20060208859 | Hougen et al. | Sep 2006 | A1 |
20060262961 | Holsing et al. | Nov 2006 | A1 |
20060266836 | Bilcu et al. | Nov 2006 | A1 |
20070008136 | Suzuki | Jan 2007 | A1 |
20070102506 | Stevens | May 2007 | A1 |
20070124216 | Lucas | May 2007 | A1 |
20070199995 | Kotlarsky et al. | Aug 2007 | A1 |
20070215706 | Kotlarsky et al. | Sep 2007 | A1 |
20080037899 | Xu et al. | Feb 2008 | A1 |
20080061937 | Park | Mar 2008 | A1 |
20080111661 | Lin et al. | May 2008 | A1 |
20080164313 | Kotlarsky et al. | Jul 2008 | A1 |
20080164317 | Kotlarsky et al. | Jul 2008 | A1 |
20080169343 | Skaaksrud et al. | Jul 2008 | A1 |
20080172303 | Skaaksrud et al. | Jul 2008 | A1 |
20080173706 | Skaaksrud et al. | Jul 2008 | A1 |
20080173710 | Skaaksrud et al. | Jul 2008 | A1 |
20080203147 | Skaaksrud et al. | Aug 2008 | A1 |
20080203166 | Skaaksrud et al. | Aug 2008 | A1 |
20080210749 | Skaaksrud et al. | Sep 2008 | A1 |
20080210750 | Skaaksrud et al. | Sep 2008 | A1 |
20080224870 | Yeo et al. | Sep 2008 | A1 |
20080249899 | Nasser | Oct 2008 | A1 |
20080285091 | Skaaksrud et al. | Nov 2008 | A1 |
20090021353 | Nonaka | Jan 2009 | A1 |
20090040025 | Volpi et al. | Feb 2009 | A1 |
20090045913 | Nelson et al. | Feb 2009 | A1 |
20090045924 | Roberts, Sr. et al. | Feb 2009 | A1 |
20090121025 | Romanchik | May 2009 | A1 |
20090161964 | Tzur et al. | Jun 2009 | A1 |
20090243801 | Strzelczyk | Oct 2009 | A1 |
20090245755 | Lee et al. | Oct 2009 | A1 |
20090322537 | Tapp et al. | Dec 2009 | A1 |
20100045436 | Rinkes | Feb 2010 | A1 |
20100073487 | Sogoh et al. | Mar 2010 | A1 |
20100109844 | Carrick et al. | May 2010 | A1 |
20100109903 | Carrick | May 2010 | A1 |
20100142825 | Maxwell et al. | Jun 2010 | A1 |
20100148985 | Lin et al. | Jun 2010 | A1 |
20100201488 | Stern et al. | Aug 2010 | A1 |
20100201520 | Stern et al. | Aug 2010 | A1 |
20100220894 | Ackley et al. | Sep 2010 | A1 |
20100226530 | Lev | Sep 2010 | A1 |
20100232712 | Tomita et al. | Sep 2010 | A1 |
20100252621 | Ito et al. | Oct 2010 | A1 |
20100262554 | Elliott | Oct 2010 | A1 |
20100271187 | Uysal et al. | Oct 2010 | A1 |
20100296753 | Ito et al. | Nov 2010 | A1 |
20100303348 | Tolliver et al. | Dec 2010 | A1 |
20100308964 | Ackley et al. | Dec 2010 | A1 |
20110052008 | Holsing et al. | Mar 2011 | A1 |
20110084808 | Tuttle | Apr 2011 | A1 |
20110115947 | Oh | May 2011 | A1 |
20110128125 | Kai et al. | Jun 2011 | A1 |
20110143811 | Rodriguez | Jun 2011 | A1 |
20110175933 | Soeda | Jul 2011 | A1 |
20110205387 | Tzur et al. | Aug 2011 | A1 |
20110212717 | Rhoads et al. | Sep 2011 | A1 |
20110280447 | Conwell | Nov 2011 | A1 |
20110284625 | Smith et al. | Nov 2011 | A1 |
20110290883 | Kotlarsky et al. | Dec 2011 | A1 |
20130154809 | Subramanian et al. | Jun 2013 | A1 |
20130173435 | Cozad, Jr. | Jul 2013 | A1 |
Entry |
---|
EPC Global, Specification for RFID Air Interface, EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz, Version 1.0.9, Jan. 31, 2005, pp. 1-94. |
U.S. Appl. No. 13/451,761 entitled “Portable Encoded Information Reading Terminal Configured to Locate Groups of RFID Tags” filed Apr. 20, 2012, pp. 1-21. |
U.S. Appl. No. 13/452,133 entitled “System and Method for Calibration and Mapping of Real-Time Location Data” filed Apr. 20, 2012, pp. 1-43. |
U.S. Appl. No. 13/451,744 entitled “Portable Encoded Information Reading Terminal Configured to Acquire Images” filed Apr. 20, 2012, pp. 1-27. |
U.S. Appl. No. 13/451,959 entitled “Portable Encoded Information Reading Terminal Configured to Adjust Transmit Power Level” filed Apr. 20, 2012, pp. 1-38. |
U.S. Appl. No. 13/474,014 entitled “Cloud-Based System for Reading of Decodable Indicia” filed May 17, 2012, pp. 1-28. |
U.S. Appl. No. 13/545,454 entitled “Cloud-Based System for Processing of Decodable Indicia” filed Jul. 10, 2012, pp. 1-24. |
Number | Date | Country | |
---|---|---|---|
20130194077 A1 | Aug 2013 | US |