Articles of manufacture, apparatuses, processes for using the articles and apparatuses, processes for making the articles and apparatuses, and products produced by the process of making, along with necessary intermediates. For example, the article or apparatus may be a device such as an alarm device, security tag, or the like.
The technical background includes Chinese patents CN 200963017 Y, 206628044 U, 202795620 U and U.S. Pat. Nos. 9,489,808 and 9,711,032. Yet a need exists for an alternative to such as the foregoing.
Portions of a device can address the aforesaid need and/or afford such as improved versatility, functionality, and/or situational capability. Relatedly, there can be processes of making and using the portions and/or the device.
Generally, a device can be configured in portions, the portions having a combined state and a separated state, e.g., each portion's state being defined with respect to another of the portion(s). In the combined state, the portions can be any combination of mated, interlocked, locked, and armed and not-armed. In some embodiments, one or more of the portions can have functionality independent from that of the combination of the portions, and in some embodiments, forming the states can afford functionality beyond joining, such as by blocking access to a component. In any of such implementations, there can be a technical effect of improved versatility, functionality, and/or alternative or situationally-improved capabilities over conventional approaches, and in any case a technical effect even if not expressly stated as such. The disclosure herein employs a security device as a way of teaching the foregoing principles and other principles discussed below, and thus these principles are not necessarily limited to such a device.
Industrial applicability is representatively directed to that of apparatuses and devices, manufacturing the foregoing and using them, including electrical devices, security systems, alarms, tags, consumer theft-protection apparatuses. Industrial applicability includes industries engaged in the foregoing, as well as industries operating in cooperation therewith, depending on the implementation.
As mentioned above, the disclosure herein employs a security device or tag as a way of teaching the broader principles relating to portions configured to have separated and combined states with respect to each other, e.g., a first portion is configured to have a combined state and a separated state with respect to another of the portions; similarly, the other of the portions is configured to have the separated state and the combined state with respect to the first of the portions. Unless otherwise mentioned or apparent from the context, referring to one portion or another as the “first portion” or the “second portion” is arbitrary and not limiting.
Conceptually, there can be a first portion configured to mate with at least one other portion, e.g., be configured to connect or be connected mechanically to another portion. To illustrate the concept of being configured to connect or be connected mechanically to another portion, consider that a peg can be configured cylindrically to mate with a cylindrical void, e.g., the right diameter and depth. Additionally, or in the alternative if so desired, the first portion can be configured to interlock with at least one other portion, e.g., to become interconnected together or to engage by overlapping or by the fitting together of projections and recesses. To illustrate the concept of being interconnected together or engaged by overlapping or by the fitting together of projections and recesses, consider that a bolt can be configured to screw into a nut or pieces of a jigsaw puzzle can be configured to have pieces that fit together due to projections and recesses. Yet in addition, or in the alternative if so desired, the first portion can be configured to lock together. To illustrate the concept of being locked together, consider that a deadbolt can lock a door to a door frame or a safe door can be locked to a safe with a combination lock. Still further, or in the alternative if so desired, the first portion can be configured to have an armed and an unarmed state. To illustrate the concept of an armed and a disarmed state, consider a burglar alarm that can be turned ON to detect for an unauthorized intrusion, or turned OFF while the premises are otherwise guarded. These can be implemented individually or in any combination, depending on the embodiment that is desired for one application or another. Of course, the principles and devices herein are not limited to a peg in a hole, a screw, jigsaw puzzle pieces, a deadbolt lock, a combination lock, or an armed/unarmed—these are only illustrative teachings of principles.
As mentioned above, the portions can, but need not always, have can have functionality independent from that of the combination of the portions. For example, there can be a variety of types of the second portion, and the first portion can interchangeably connect to each of the types, and/or the second portion can have operational functionality that is enhanced when combined with the first portion.
Example 1 Now consider these concepts in an application toward the teaching example of a security device. A first portion of the security device can be configured to mate with another portion of the security device, e.g., mechanically, electrically, magnetically, etc. For example, consider that the first portion can be configured to have a plug-in or peg-like section that coincides with a cylindrical void-like section of another portion, e.g., the peg-like section can have a diameter and, if desired, a depth that fits into the cylindrical void-like section of the other portion. Another approach can be to have at least one tab on one portion can extend into a corresponding slot on another portion. In any case such case, the portions can be mechanically mated into a combined state.
If so desired, though not always necessary, these portions can be configured to interlock, e.g., screw together. So for illustrative purposes, after one portion is mated to another portion, the portions can be screwed together to interlock.
And if so desired, the portions can be configured to lock together, e.g., by a pin that must be moved to unlock the portions from each other. Note that the portions need not always first mate nor interlock, e.g., two flat surfaces can be locked together, such as by a magnetic lock.
And any of the foregoing portion(s) can be configured with alarm circuitry, such as that which detects a breach of an armed state, such as by detecting for an electrical change in the circuitry, e.g., occasioned by a broken circuit, tripped switch, etc. Indeed, if so desired for example, when the portions are in the combined state to cooperate, alarm circuitry can be configured to span the first portion and the second portion, thereby detecting for a breach of the armed state occurring in either or both of the portions, so as to trigger an alarm during a breach of the armed state.
The manner of combining any the foregoing state can in some cases provide additional functionality. For example, in the combined state, in some embodiments, the first portion can be combined with the second portion so as to block access in a functional way. For example, consider portions that, when combined, block access to one of the portion's compartment for battery replacement, thereby allowing access to the battery compartment to be secured during the locked, interlocked, and/or armed state.
Consider now the application of the foregoing concepts applied to portions configured to have a separated state, e.g., a state in which one portion is separated from another portion or portions but configured to mate, etc. into the combined state. In this separated state, the portions can be in an un-interlocked or a re-interlockable un-interlocked condition with respect to another portion or portions. If so desired, in this separated state, the portions can be in an unlocked or a relockable unlocked condition with respect to each other portion or portions. In some but not all embodiments, at least one of the portions can be operationally functional on its own, yet provide additional, alternative, or optional functionality in the combined state.
Example 2 To illustrate further, consider a second portion of the security device that emanates a tether to releasably attach a consumer product, as arranged for antitheft protection. In this teaching example, the second portion has no power and/or no alarm, but is securable (e.g., by a screw) to a surface to anchor the second portion as a security device and thus anchor the releasably attached consumer product. In this condition, the second portion is in the separated state with respect to the first portion is yet functional as a security device, devoid of one or more other portions. Nonetheless, as above, the second portion can be configured to mate, etc. with the first portion (or portions) that contains a source of power and an alarm, such that when the portions are in a combined state, the tether of the second portion becomes part of the circuitry of both portions, and the alarm sounds when the circuitry detects a breach of the armed state. Accordingly, at least one of the portions can be operationally functional on its own, yet provide additional, alternative, or optional functionality in the combined state. Also consider various types of the second portion, say, one providing a loop through a purse handle, another connecting to a computer, and yet another adhered to an object such as a bottle of perfume. The first portion can interchangeably function with each of the various types without the merchant having to purchase entire separate security devices or train employees to handle completely different security devices.
Example 3 Now consider another, somewhat related teaching example. Again, in some but not all embodiments, there can be a configuration in which the second portion emanates the tether to attach the consumer product, as arranged for antitheft protection. In this other teaching example, the second portion may or may not have power and/or an alarm, but is securable to a surface, e.g., by one or more screws. The second portion has a housing with a screw hole into which a screw can be inserted to carry out the securing of the second portion to the surface. But by providing the screw hole for the screw, the existence of the screw is visible after the securing, thereby indicating that the security device can be thwarted by unscrewing the device from the surface and stealing the device along with the consumer product attached thereto.
Consider further, though, that the housing also has a particular exterior curvature and color, and perhaps texture and/or pattern. A cap can be adapted to conform to particular exterior curvature, color, etc. of the housing to conceal the existence of the portal for the screw, and thus obscure the means for attaching the housing to the surface. And if an adhesive pad is also located between the housing and the surface, with the cap in place, it is not apparent whether the sole means of surface mounting is the adhesive pad, thereby affording improved versatility, functionality, and/or situational capability.
The cap can, if so desired, be located on a plug structured to fill the portion of each screw hole remaining after the screw has attached the housing to the surface, thereby having a combined state with the portion having the housing. For example, in some embodiments, the cap/plug arrangement can be simultaneously molded with the housing so as to blend in well with the housing and be breakably separable from the molded housing. Alternatively, the cap/plug arrangement can be produced separately. In any case, though, the cap/plug arrangement can be placed into the combined state with respect to the housing after the screw has mounted the device to a surface. The cap/plug arrangement can be configured to mate and/or interlock with the housing, and the housing can be configured to mate and/or interlock with the cap/plug arrangement. For example, the cap/plug arrangement fits into the portion of the portal remaining after the screw has mounted the security device to the surface and such that the cap blends with the exterior of the housing to conceal, (e.g., disguise, camouflage) the existence of the screw. These are thusly interconnected together or to engage by overlapping or by the fitting together of projections and recesses, thereby enhancing security by making it more difficult for a potential thief to determine how the security device is secured to the surface. When located in the portal. the cap/plug arrangement is in the combined state, and when not in the portal, is in the separated state. And the cap/plug (as the first portion) is removable and reinsertable to bring about the interlockable and un-interlocked re-interlockable states, e.g., for relocation of the security device to another surface.
Note that in such embodiments, unlike the screw used to attach the device to the surface, the cap or the cap/plug arrangement is especially made or especially adapted for use as a component or portion of the security device and not as a staple article or commodity for substantial other use. Also note that any combination of the teachings of Examples 1, 2, and 3 can be employed if so desired. Further note that when configuring the portions to mate, interlock, and/or lock, the portions can also be configured to not mate, interlock, and/or lock with other devices (to enhance security), e.g., a receptor for a remote control for the portions be configured to not mate with remote controls other than the remote control for the portions, as discussed further below.
The range of these teaching examples is to illustrates that many configurations are possible within the scope of the principles disclosed herein.
Turn now to
As illustrated, extension 5 has a protrusion 7 adjacent to a flexible line 8, such as a tether. In some cases such as that illustrated in
Returning to
Contrastingly in
Returning to
In those embodiments in which a remote control 12 is employed, remote control 12 can in some embodiments be operable to turn the armed state of security device 3 to OFF and/or into a STANDBY mode, depending on the implementation of interest. In some embodiments, remote control 12 can also be operable in whole or part to turn the alarm device 3 ON and/or into an activated mode, though use of a protrusion 7 is another approach. Such IR remote controls as can be used in remote control 12 are used in television and cable box switching, and suppliers include Sharp™, LG™, Samsung™ and Comcast™, and ATT™ digital. The remote control 12 illustrated in
While many forms of mating can be employed where desired, as illustrated in
Similarly, for example, the first portion 1 can have a generally circular base 76 (male portion) having a diameter less than the diameter of a ring-like structure 37 on the second portion 2, such that some of the first portion 1 fits within the ring-like structure 37 (female portion) of portion 2. The ring-like structures need not be rings, e.g., can be curvilinear section or otherwise facilitate mating by male and/or female intersecting. Additionally, please note that the male/female intersecting can be carried out with either section providing the male structure, and the other section providing the female structure.
The first portion 1 can, if so desired, have a lip-like structure 38 that aligns with another ring-like structure 39 of the second portion 2, to provide stability during the the aforesaid rotation. Again, the ring-like structures need not be rings to facilitate stability, if stability during the rotation is desired in the embodiment of interest. Similarly, if so desired, the first portion 1 can have an outer ring-like structure 40 that tops the second portion 2, after the portions 1 and 2 are interlocked. Yet again, the ring-like structures need not be rings, e.g., can be curvilinear, etc.
If so desired in one design or another, the first portion 1 can include counterdirectional indicators of rotational motion. For example, there can be counter directional arrows 41 with or without such as a lock marker 42 and unlock marker 43, collectively indicating rotational directions for interlocking (and locking) and un-interlocking (and unlocking) portions 1 and 2.
Some embodiments structure the first portion 1 to include friction enhancers rimming the first portion 1 to increase manual gripping when rotational motion is imparted with respect to the first portion 1 and the second portion 1. For example, grippers 44 facilitate manually imparting the rotational motion. In some cases, disguised among the grippers 44 there can be one or more opening(s) 46 that allow the sound of the alarm to better emanate from first portion 1.
Returning to
Returning to
Attention in
Also shown is micro-switch 72, i.e., the second switch, operable by a spring-loaded plunger to have an extended position and a retracted position. The extended position can reach farther outwards from printed circuit board 78 than in the retracted position, and when armed, the PCB 78 can respond to a change to the extended position as a breach of the armed state. Thus, for example, if portions 1 and 2 are separated while the device 3 is armed, microswitch 72 will trigger an alarm, discussed below. Thusly, a breach can recognized during the armed condition from a position of a switch (e.g., switch 72) located to detect for the circuitry separation of the first portion 1 and the second portion 2.
Also, if so desired, there can be a third switch 86 or micro-switch, sometimes known as a signal collector or receiver operable to receive a broadcast signal from remote control 12, to turn the alarm unit circuitry OFF or to a standby mode. Remote control 12 can, if so desired, broadcast an infrared code to which the receiver switch 86 is receptive for controlling its switching. Such remote controls and receivers are commonly commercially available, as mentioned above. If so desired, the circuitry of PCB 78 can use an indicator light 84 (e.g., an LED) that can display illumination via light portal 24 in
The first portion 1 can be configured to lock to the second portion 2 by a magnetic lock. Within the top cover 74 and bottom cover 76 of the first portion 1, there can be a spring 88 which disposes lock pin 66 so as to operate as a magnetic lock in connection with indentation 68. Spring 88 disposes lock pin 66 downward to engage and lock in the locked condition with the second portion 2 at indentation 68. However, application of a magnet in remote control 12 pulls the lock pin 66 toward the magnet against spring 88, releasing the lock pin 66 from indentation 68, thereby unlocking first portion 1 from second portion 2 into a re-lockable unlocked condition, allowing the lip(s) 32 and notch(es) 34 to unscrew into an un-interlocked condition.
The circuitry of PCB 78 can include the aforesaid control chip 94, which can be a small IC control chip. Chip logic can be hard wired or implemented with a CPU (e.g., for a computer) and programmable logic or a combination thereof. The chip 94 can be a HS173NS08-.J (available from Shenzhen Bofutong Technology Co., ltd.) or the like. Program logic can, but need not, be such as in
Returning to
Attention is now drawn to the second portion 2 in
PCB 110 is supported on wheel 112 rotatably mounted to bottom cover 110. Onto wheel 112 is spooled extension 5 (and thus line 8) in a pulley arrangement. Line 8 of extension 5 can have wires 173 and 175 (
Cap 120 aligns with a metal pin 122 to collectively slidable locate within second portion 2. In some cases, the cap 120 and pin 122 are withdrawable within the bounds of the second housing 106 and bottom cover 101. But when the first portion 1 is mated with second portion 2, cap 120 engages with a portion of “second switch,” microswitch 72. Cap 120 engages to pin 122 so that pin 122 can protrude beyond the bottom cover 108. In this configuration, during removal of the second portion 2 from a surface, pin 122 and cap 120 are no longer disposed toward micro-switch 72, such that when armed, the removal results in a breach of the armed state, triggering the alarm 96 of device 3. In this arrangement, the manner of negating the disposing of pin 122 and cap 120 away from micro-switch 72 can be carried out by gravity, or if so desired, be carried out by spring loading.
A number of configurations are possible for surface mounting portion 2, and one is illustrated as adhesive sticker 124 that can be adhered to the bottom cover 108. Adhesive sticker 124 can have a tabbed cover that is removed to expose an adhesive face which can be employed to adhere the second portion a surface. A central opening in the sticker 124 allows pin 122 to reach the surface to which the adhesive is attached.
Alternatively, or in addition, one or more openings can be provided through second portion 2 to more fixedly attach the second portion 2 than by just relying only on adhesive means. Thus, another configuration for surface mounting second portion 2 includes at least one screw, herein illustrated as two tapping screws 126. Tapping screws 126 are locatable into holes 128 which have a decreased diameter at 130 adjacent bottom cover 108 to allow each head tapping screws 126 to bind second portion 2 to a surface.
In this teaching, if so desired, second portion 2 is outfitable with a cap 4 attached to a plug 132. The cap 4 and plug 132 arrangements can be configured as described above, to conceal (e.g., hide, camouflage, disguise) the existence (or non-existence) of the screws and/or portals for the screws or other securing means. This can be done by having the plug 132 be of a length short enough to fill the remaining portion of hole 128 after screw 126 has been inserted and screwed into the surface, but not long enough that cap 4 protrudes from the surface of housing 106. Also, plug 132 can have a diameter sufficient to mate with each hole 128 so tightly as to interlock, e.g., so as not to freely come out of hole 128. A manner of characterizing mechanical interlocking by compression is that removal of the cap 4 and plug 132 can in some cases produce a “pop” noise. Such mechanical interlocking can be furthered, if so desired, by having a portion of the plug 132 be hollow or deformable, so as to deformable grip within hole 128. Internal ribs to connect to ribs on plug 132 are another approach.
For efficiency, the housing 106 of the second portion 2 can be molded or 3D printed simultaneously with the along with cap 4/plug 132 arrangement to conform well to the housing 106 in color, shape, and/or texture. Where initially produced integral, each cap 4/plug 132 arrangement can be snapped off from the housing 106 if the portion 2 is to be surface mounted by such as screws 118. Thus, in cases when device 3 is secured only by the adhesive pad 124, the cap 4/ plug 132 combination is superfluous (until the device 1 is repurposed and uses the screws 126).
Note that while the cap 4/plug 132 combination and housing 106 can be initially made integral, this need not be the only case. The cap 4/plug 132 combination can be separately produced. In any case, as mentioned above, after tapping screws 118 are located into holes 128 and 130, the cap 4 and plug 132 arrangements can be located into holes 120 to mechanically bind (interlock) with second housing 108, yet conform to the exterior shape, color, etc. of the second housing 108, so as to conceal the existence of tapping screws 118 and/or holes for the screws. The plastic used in the molding can be acrylonitrile butadiene styrene or another thermoplastic and amorphous polymer.
Many, but not all, embodiments can employ one of a variety of extensions 4. To illustrate, consider
In operation, there can be a process of detecting, by alarm device 3, for a change in state, as one but not the only way, to detect a change from the armed state to the unarmed state, as illustrated in
Further in
When the protrusion 7 and housing 10 are manipulated so that key 180 is inserted into housing 10 (illustrated by a comparison of
In embodiments utilizing a magnetic lock 178, a magnetic key magnet as in remote control 12 (see, e.g.,
In operation, there can be a process of detecting, by device 3, for a change in state (e.g., for a breach of the armed state) such as a change in resistance, a short circuit, a surge, etc. If an embodiment such as is illustrated in
Turn now to
Illustrative of yet another embodiment of protrusion 7 and thus extension 5 is depicted in
In using this embodiment, a process can include depressing switch 1106 to complete the electrical flow in line 8 and allow the circuit board 1102 to send a pulse or otherwise illuminate light 1104, signaling that the protrusion 7 and thus the alarm device 3 are activated. When the alarm device 3 is activated, and switch 1106 is removed from the article (not shown), the process includes spring-loading switch 1106 to the OFF position, thereby interrupting the power in line 8, resulting in alarm device 3 sounding the alarm 98. If so desired, the process can include having light 1104 remain illuminated, rather than pulse as another form of alarm.
Yet another embodiment for protrusion 7, and thus extension 5, is illustrated in
Used in a process, there can be a detecting, by alarm device 3, for a change in electrical state, as discussed above. In the instant embodiment, when the plug shells 1112 and 1114 are removed from the article being protected, the process includes interrupting the power in the line 8, thereby causing the alarm device 3 to trigger the alarm 98.
In some implementations, the alarm device can be structured so that the protrusion is a key which unlocks the first switch to the ON position. In some but not all cases, the key is releasably connectable to the housing by a lock, such as a magnetic lock having a magnetic key. If so preferred, there can be a fourth switch operable to trigger into an OFF position, to interrupt electricity in the wiring, if the protrusion's key is removed from the housing without using the lock key. Various embodiments of the alarm device can be implemented as may be preferred in one application or another. See generally,
Additionally, there can be a process for manufacturing that includes making a standardized alarm device second portion 2 in quantity, and making quantities of different types of extensions 5 (e.g.,
Many of the implementations flow from the teachings and principles disclosed herein. Though discussed herein is in the context of an electrical path, it should be understood that the path can instead be a light path (e.g., the extension being a light tube or the like) with the detecting including detecting a change or interruption in the light in the path of light. Thus, depending on the context herein, it should be understood that an electrical interrupt illustratively encompasses a disclosure of refers to a light or other energy interrupt. Also, while discussions herein mention resistance, conductivity can of course be used (i.e., resistance is the reciprocal of conductivity). Depending on the context, negative logic, i.e., testing for ON instead of OFF, power rather than no power, etc., can also be employed, and analog, digital, or a combination thereof are suitable for implementations consistent with the teachings herein.
So for example, one type of extension might employ one of the above-mentioned wiring, housing, and key embodiments (e.g.,
As noted above, there are many designs set out for variations of the teaching example, and any and all of the information
In sum, with respect to the description herein, numerous specific details are provided, such as examples of components and/or methods, to provide a thorough teaching and understanding of embodiments and underlying principles. One skilled in the relevant art will recognize, however, that an embodiment can be practiced without one or more of the specific details, or with other apparatus, systems, assemblies, methods, components, materials, parts, and/or the like. In other instances, well-known structures, materials, or operations are not specifically shown or described in detail to avoid obscuring aspects of embodiments of the present invention.
Similarly, embodiments can be implemented in many forms, and based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement an equivalent. Reference throughout this specification to “one embodiment”, “an embodiment”, or “a specific embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment and not necessarily in all embodiments. Thus, respective appearances of the phrases “in one embodiment”, “in an embodiment”, or “in a specific embodiment” in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics of any specific embodiment may be combined in any suitable manner with one or more other embodiments. It is to be understood that other variations and modifications of the embodiments described and illustrated herein are possible in light of the teachings herein and are to be considered as part of the spirit and scope of the present invention.
It will also be appreciated that one or more of the elements depicted in the drawings/Figures can also be implemented in a more separated or integrated manner, or even removed or rendered as otherwise operable in certain cases, as is useful in accordance with a particular application.
Additionally, any signal arrows in the drawings/Figures should be considered only as exemplary, and not limiting, unless otherwise specifically noted. Furthermore, the term “or” as used herein is generally intended to mean “and/or” unless otherwise indicated. Combinations of components or steps will also be considered as being noted, where terminology is foreseen as rendering the ability to separate or combine is unclear.
As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The foregoing description of illustrated embodiments, including what is described in the Abstract and the Summary, are not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. While specific embodiments of, and examples for, the invention are described herein for teaching-by-illustration purposes only, various equivalent modifications are possible within the spirit and scope of the present invention, as those skilled in the relevant art will recognize and appreciate. As indicated, these modifications may be made in light of the foregoing description of illustrated embodiments and are to be included within the true spirit and scope of the disclosure herein provided.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/029867 | 4/27/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/209325 | 10/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7522048 | Belden, Jr. | Apr 2009 | B2 |
7992259 | Goldstein | Aug 2011 | B2 |
8122744 | Conti | Feb 2012 | B2 |
8368543 | Yang | Feb 2013 | B2 |
9169670 | Shute | Oct 2015 | B2 |
9394727 | Fawcett | Jul 2016 | B2 |
9489808 | Wang | Nov 2016 | B1 |
10180017 | Ewing | Jan 2019 | B2 |
11459800 | Carreon | Oct 2022 | B2 |
20070146134 | Belden | Jun 2007 | A1 |
20120229975 | Yang | Sep 2012 | A1 |
20120318027 | Shute | Dec 2012 | A1 |
20160125712 | Napthine | May 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20210293052 A1 | Sep 2021 | US |