Information
-
Patent Application
-
20030051331
-
Publication Number
20030051331
-
Date Filed
October 10, 200222 years ago
-
Date Published
March 20, 200321 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
Abstract
A positioning device and method for moving a positioning stage is provided. The device includes a movable stage, at least one actuator, and the same number of sensors as there are actuators. Each actuator is placed such that it applies a force along a line parallel to the line of movement of the positioning stage. Each actuator can be operated to generate an input force for moving the movable stage. A sensor is placed along the force line of each included actuator. Each sensor detects movement of the positioning stage. A first force is applied to a first location on the positioning stage. A second force is applied to a second location on the positioning stage. Application of the first and the second forces moves the positioning stage. The first location and the second location are symmetrically located about an axis of the positioning stage.
Description
TECHNICAL FIELD
[0001] The present invention relates to positioners for positioning objects, and more particularly to a deformable positioning stage.
BACKGROUND ART
[0002] Assembly of optic-electronic devices requires precision alignment of optical fibers with lasers or sensors and then bonding. A worker looking through a microscope at the end of a fiber conventionally executes this precision alignment and bonding process.
[0003] The alignment and bonding process can take as little as five minutes. However, if there is a misalignment of the fiber ends, this process can take as long as forty-five minutes to an hour. Misalignment often occurs because the fibers are subject to other than pure linear movement during the alignment process. Accordingly, a need exists for an improved alignment process which will reduce, if not eliminate, misalignment of a fiber end.
[0004] It is likely that in the next ten years the use of opto-electronic devices will spread to automobiles and every phone and computer manufactured in the United States, resulting in an estimated volume of 25 million units produced per year. Conventional assembly of opto-electronic devices can, as discussed above, require substantial worker time and therefore be quite costly. Accordingly, a need exists for a way to assemble opto-electronic devices which would require less worker effort and hence reduce the cost of assembly.
[0005] In other fields, delicate precision micrometer, sub-micrometer and nanometer assembly or positioning is also required. Such fields include medicine, biotechnology and electronic manufacturing. For example, individual atoms, molecules or nano-particles may be combined or separated to build materials and devices exhibiting desirable properties. Positioning devices currently available do not provide the precision and range of motion required in these and other technological fields. Accordingly, an improved technique is required for performing precision movement, often referred to as fine movement, at each of the micrometer, sub-micrometer and nanometer levels.
[0006] A planar biaxial micropositioning stage, which includes a deformable structure micro-positioning stage and which utilizes two nested cantilever flexure mechanisms facilitating movement of the stage in each of the X and Y axes has been proposed for use in precision manufacturing. A force can be applied to the proposed structure by an actuator to move the stage along the intended axis of movement. The actuator placement in this positioner is perpendicular to the axis of movement of the stage. However, the resulting movement in each of the X and Y directions is not purely linear. Rather, the proposed structure introduces a yaw which is unacceptable for precision manufacturing applications. This yaw is often referred to as a rotational cross talk error.
[0007] Known prior art positioning devices cannot eliminate rotational cross talk unless additional actuators are included in the device to apply counterbalancing rotation and thereby ensure pure linear movement. These actuators add undesirable complexity and costs to the devices. Additionally, complex control algorithms must be developed and used to operate multiple actuators in concert to compensate for the cross talk.
[0008] In the proposed micro-positioning stage discussed above, as well as other proposed stages, the rotational cross talk error is inherent in the design. That is, applying a force intended to move a stage in one direction necessarily produces an unintended rotation. Accordingly, a need exists for a micro-positioner which does not impart rotational cross talk error into intended linear movement.
[0009] Control of conventional micro-positioners is performed through the use of feedback loops. At least one sensor is required to measure movement of a stage. Conventional deformable structure micro-positioners use sensors which are typically located at a position which results in inaccurate measurement of the true stage displacement. This inaccuracy due to sensor placement is commonly referred to as Abbe effect. Accordingly, a positioner is required which provides more accurate sensing.
[0010] Conventional deformable structure micro-positioners require that the actuator used to impart a force upon a movable stage be attached to the movable stage with an epoxy compound, or some other adhesive. These attachments impart a loss of force into the system. For example, when a force is applied to an epoxy connection between the actuator and the moving stage, the epoxy compresses, resulting in up to a 60 percent loss in applied force. Hence, an improved technique is required to attach an actuator to a movable stage to reduce the loss of force.
[0011] Using an epoxy or screws for the coupling, it is also difficult to obtain a pure parallel alignment of the actuator and the moving stage. Unparallel alignment results in a loss of force in the system. Furthermore, misalignment between the components may produce damaging stresses on the actuator. Accordingly, an improved coupling is required to achieve a parallel attachment between the coupling and an actuator.
[0012] Epoxy couplings are also subject to maintenance difficulties and durability limits. To remove an actuator from a deformable structure micro-positioner with epoxy couplings, the epoxy coupling must be cut using a machine tool. The two surfaces exposed by the cutting must be cleaned before they are reattached. This cutting and cleaning process may damage both the actuator and the deformable structure micro-positioner. Accordingly, a need exists for an improved technique of attaching and removing an actuator from a micro-positioner which eliminates the potentially damaging cutting and cleaning process.
[0013] Conventional deformable structure micro-positioners can be subjected to forces which may damage the individual components of a positioner. These forces may include inadvertent contact with the movable stage portion of the positioner or over-actuation of a drive used to move the movable stage. Accordingly, a need exists for a deformable structure micro-positioner which can better withstand damaging forces.
[0014] Deformable structure micro-positioners with one and two-degrees of freedom are well known. Six-degree of freedom positioners in the macro-scale are common. One type of six-degree of freedom positioner is often referred to as a Stewart platform. One familiar use of Stewart platforms is in aircraft simulators. However, a practical adaptation of macro-scale Stewart platforms to the micro-scale using a deformable structure platform has not been previously achieved.
[0015] A Stewart platform utilizes six struts to support a platform. Historically, macro-scale Stewart platform devices place drives, e.g. actuators, in each of the struts to obtain movement of the platform. In the proposed micro-scale adaptations of Stewart platforms, actuators are also placed in the struts. However, actuators of the type typically used in micro-scale positioners do not have the required range of motion necessary for use in the struts of a micro-scale adapted Stewart platform. Hence, more expensive and much larger actuators must be used in the proposed micro-scale Stewart platforms.
[0016] The February 1994 issue of NASA Tech Briefs proposed a positioner, characterized as a minimanipulator, with six-degrees of freedom. The drives which produce movement of the platform include stepping motors and rotary actuators. Each of these drives is subject to sticktion and backlash. Hence, this manipulator is not capable of achieving fine movement, since none of the actuator configurations usable in this device can produce movement without some sticktion and/or backlash. Accordingly, a need exists for an improved six-degree of freedom positioner which is capable of providing fine movement in each of the six degrees of freedom.
[0017] The conventional process for manufacturing deformable structure micro-positioning devices is costly and time-consuming. Typically, each device must be individually machined from a separate piece of material. Additionally, six-degree of freedom micro-positioners require separate manufacturing and assembly steps for each of the individual positioners. Accordingly, a need exists for a manufacturing process to produce a plurality of deformable structure micro-positioning devices, including six-degree of freedom devices, which is less costly and time-consuming.
OBJECTIVES OF THE INVENTION
[0018] One object of the present invention is to provide an improved technique for fine precision object manipulation in manufacturing and assembly processes.
[0019] Another object of the present invention is to provide a micro-positioning stage with precision movement on at least one of the micrometer, sub-micrometer and nanometer levels.
[0020] Another object of the present invention is to provide a micro-positioning stage with pure translational or rotational movement along an intended axis of movement.
[0021] Another object of the present invention is to provide accurate sensing of movement of a micro-positioning stage.
[0022] Another object of the present invention is to provide a technique for reducing loss of a transmitted force between a coupling and a micro-positioning stage.
[0023] Another object of the present invention is to provide a technique for achieving improved coupling of an actuator to a micro-positioning stage.
[0024] Another object of the present invention is to provide a technique for removing an actuator from a micro-positioning stage without cutting the bond between the actuator and the micro-positioning stage.
[0025] Additional objects, advantages, and novel features of the present invention will become apparent to those skilled in the art from this disclosure, including the following detailed description, as well as by practice of the invention. While the invention is described below with reference to preferred embodiment(s), it should be understood that the invention is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the invention as disclosed and claimed herein and with respect to which the invention could be of significant utility.
SUMMARY DISCLOSURE OF THE INVENTION
[0026] In accordance with the present invention, a technique for applying force to a positioning stage is provided. The positioning stage may be used to position many different types and sizes of objects. These objects can range from large objects, which are commonly referred to as macro-scale objects, to very small objects, which are often referred to as micro-scale objects. Some objects in the micro-scale are measured in micrometers. However, smaller objects in the micro-scale are measured in sub-micrometers. And, extremely small objects in the micro-scale are measured in nanometers. Objects at the nano-level are smaller than those measured in sub-micrometers. Objects in this smallest scale can include individual atoms.
[0027] The positioning stage is moved in a first direction by applying a first force at a first location on the positioning stage and a second force at a second location on the positioning stage.
[0028] The first location is symmetrical about a first axis of the positioning stage to the second location. That is, the first and second locations are the same distance from the first axis, but on opposite sides of the first axis. The first axis will be referred to as the Y-axis. The Y-axis divides the positioning stage into two halves.
[0029] In one advantageous implementation of the invention, the first force and the second force are generated by operating the same actuator. This single actuator is positioned along the Y-axis. As used herein, an actuator is a device for producing a moving force along a single axis by movement of at least one component of the actuator.
[0030] Beneficially, movement of the positioning stage is also detected and measured. Movement is advantageously detected from a location which is on the Y-axis of the positioning stage.
[0031] In an alternative implementation of the invention, to move the positioning stage the first force is generated by operation of one actuator, and the second force is generated by operation of another actuator. Both the first and the second actuators are positioned parallel to the Y-axis. That is, they both produce a moving force along a respective axis of movement parallel to the Y-axis. Furthermore, they are both symmetrically positioned about the Y-axis. That is, the two actuators are positioned parallel to each other and the same distance from, but on opposite sides of, the Y-axis.
[0032] Also, in this alternative implementation of the invention, movement of the positioning stage is beneficially detected and measured at locations along the axis of the force generated by one actuator and along the axis of the force generated by the other actuator.
[0033] Advantageously, there are at least three modes in which the two actuators can be operated. In the first mode, the two actuators are operated simultaneously to produce equal forces. In the second mode, the two actuators are also operated simultaneously, but the forces produced by the actuators are unequal. In a third mode of operation, only one of the actuators is operated.
[0034] In another implementation of the invention, the positioning stage is moved in a second direction by applying a third force at a third location on the positioning stage and a fourth force at a fourth location on the positioning stage. The second direction is different than the first direction.
[0035] The third location is symmetrical about a second axis of the positioning stage to the fourth location. That is, the third and the fourth locations are the same distance from the second axis, but on opposite sides of the second axis. The second axis will be referred to as the X-axis. The X-axis is preferably perpendicular to the Y-axis and crosses the Y-axis at the center of the positioning stage. Hence, the X-axis divides the positioning stage into two halves.
[0036] In this implementation, both the first force and the second force can be generated by operating a single actuator positioned along the Y-axis. Both the third and fourth forces can be generated by operating another single actuator positioned along the X-axis.
[0037] Beneficially, movement of the positioning stage in the first and the second directions is detected and measured. Movement is preferably sensed at two locations, the first of which is along the Y-axis of the positioning stage and the second of which is along the X-axis of the positioning stage.
[0038] In this latter implementation, the first and second forces and/or the third and forth forces can be generated by operating the same actuator positioned along the Y-axis and/or X-axis, as applicable. However, if desired, the third force could be generated by operation of another single actuator, and the fourth force could be generated by operation of another single actuator, both positioned parallel to and symmetrical about the X-axis. That is, the two actuators can be positioned parallel to each other and the same distance from, but on opposite sides of, the X-axis.
[0039] Advantageously, movement of the stage in this latter implementation can also be detected and measured. Preferably, if two actuators are used to generate the third and fourth forces, movement is sensed at locations along the Y-axis of the positioning stage, along the axis of the force generated by the second actuator, and along the axis of the force generated by the third actuator.
[0040] On the other hand, if desired, the first force could be generated by operation of a single actuator and the second force could be generated by operation of another single actuator. Both actuators are positioned parallel to and symmetric about the Y-axis. That is, the first and the second actuators are positioned parallel to each other and the same distance from, but on opposite sides of, the Y-axis. The third force can also be generated by operation of a single actuator and the fourth force can be generated by operation of yet another actuator. Both the third and the fourth actuators are positioned parallel to, and symmetric about, the X-axis. That is, the third and the fourth actuators are positioned parallel to each other and the same distance from, but on opposite sides of, the X-axis.
[0041] In the four actuator configuration, movement of the stage is preferably detected and measured by sensing movement along the axis of the force generated by the first actuator, along the axis of the force generated by the second actuator, along the axis of the force generated by the third actuator, and along the axis of the force generated by the fourth actuator.
[0042] According to a further aspect of the invention, a coupling is positioned between an actuator and the stage to transmit force generated by the actuator to the positioning stage. The coupling preferably includes a circular portion, a threaded rod portion extending from the center of one side of the circular portion, and a smooth rod portion extending from the center of the other side of the circular portion. Beneficially, the circular portion includes a raised lip about the outermost circumferencial edge on the side from which the threaded rod extends.
[0043] The smooth rod portion may include a hinge, referred to as a flexure hinge. The hinge forms the center-most part of the smooth rod. The smooth rod is configured to bend about the flexure. The flexure hinge can be formed by removing material from the smooth rod. In a preferred configuration, the hinge includes two pairs of holes extending through the smooth rod perpendicular to the central axis of the smooth rod. The two pairs of holes are perpendicular to one another.
[0044] From each hole extends a slot up to and through the surface of the smooth rod. Each slot includes a first slot portion which extends from its associated hole at an angle other than ninety degrees from the central axis of the smooth rod, but does not continue up through the surface. A second slot portion continues from where the first slot portion ends, extending perpendicular to the central axis of the smooth rod. Together, the first and the second slot portions form a unitary slot which starts at a hole and extends up through the surface of the smooth rod. The unitary slots extending from each of a pair of holes are mirror images of each other. The flexure hinge advantageously includes four of these unitary slots.
[0045] In yet another implementation of the invention, a positioning device is provided with multiple positioning stages. At least one horizontal actuator is provided for moving one positioning stage. Each of the at least one horizontal actuators is positioned to apply a force typically generated by the actuator along a line parallel to a line of movement of the one positioning stage in a horizontal plane. A sensor may, if desired, be positioned along the force line of each included horizontal actuator to detect movement of the positioning stage. A vertical actuator is positioned on the surface of the one positioning stage. Another positioning stage is disposed vertically above or below the vertical actuator. The vertical actuator moves this other positioning stage in a direction perpendicular to the horizontal plane in which the first positioning stage moves.
BRIEF DESCRIPTION OF DRAWINGS
[0046] In order to facilitate a fuller understanding of the present invention, reference is now made to the appended drawings. These drawings should not be construed as limiting the present invention, but are intended to be exemplary only.
[0047]
FIG. 1 shows a one-degree of freedom micro-positioner in accordance with the present invention.
[0048]
FIG. 2 shows a two-degree of freedom micro-positioner in accordance with the present invention.
[0049]
FIG. 3 shows a one-degree of freedom micro-positioner with safety stops in accordance with the present invention.
[0050]
FIG. 4 shows a detail of a safety stop shown in FIG. 3.
[0051]
FIG. 5 shows a three-degree of freedom micro-positioner with three actuators in accordance with the present invention.
[0052]
FIG. 6 shows a reduced size one-degree of freedom micro-positioner in accordance with the present invention.
[0053]
FIGS. 7 and 8 show a coupling used in any of the micro-positioners shown in FIGS. 1-6.
[0054]
FIG. 9 shows a coupling installed in any of the micro-positioners shown in FIGS. 1-6.
[0055]
FIG. 10 shows a detail of a coupling attached to an input block of a micro-positioner as shown in FIG. 9.
[0056]
FIGS. 11A and 11B show performance measures of the coupling of FIGS. 7 and 8.
[0057] FIGS. 12A-12I show a six-degree of freedom deformable structure micro-positioner in accordance with the present invention in different positions.
[0058]
FIG. 13 shows a side view of a six-degree of freedom deformable structure micro-positioner of FIG. 12.
[0059]
FIG. 14 shows a positioning device being machined into a single piece of material in accordance with the present invention.
[0060]
FIG. 15 shows a single piece of material with a positioning device machined into it being sliced into a plurality of positioning devices in accordance with the present invention.
[0061]
FIG. 16 shows a three-degree of freedom micro-positioner with four actuators in accordance with the present invention.
[0062]
FIG. 17 shows a four-degree of freedom positioning device with four actuators in accordance with the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
[0063] Preferred Embodiments
[0064] One-Degree of Freedom Embodiment:
[0065]
FIG. 1 depict a view of a high performance, low fabrication cost deformable structure parallel cantilever biaxial micro-positioning stage 100 in accordance with one aspect of the present invention. The deformable structure micro-positioner includes a moving stage 101 formed within and planar to a support structure 102. The moving stage is connected to the support structure via four levers 103a, 103b, 103c and 103d. Lever 103a is attached to the moving stage via flexure 104a and to the support structure via flexure 105a. Lever 103b is attached to the moving stage via flexure 104b and to the support structure via flexure 105b. Lever 103c is attached to the moving stage via flexure 104c and to the support structure via flexure 105c. Lever 103d is attached to the moving stage via flexure 104d and to the support structure via flexure 105d.
[0066] The four levers are bi-axially symmetrical. Lever pair 103a and 103d is symmetrical to lever pair 103b and 103c with respect to the Y-axis of the moving stage. Levers 103a and 103b are in-line. Levers 103c and 103d are also in-line. Lever pair 103a and 103b is symmetrical to lever pair 103d and 103c with respect to the X-axis of the moving stage.
[0067] The attaching flexures are also bi-axially symmetrical. Flexure 104a is symmetrical to flexure 104d with respect to the X-axis of the moving stage. Likewise, flexures 105a and 105d are symmetrical with respect to this axis. Flexures 105b and 105c are also symmetrical with respect this axis. Flexures 104b and 104c are also symmetrical to this X-axis. Flexure pair's 104a and 104b, 105a and 105b, 104d and 104c, and 105d and 105c are symmetric with respect to the Y-axis of the moving stage.
[0068] Input force is generated for movement in the direction of the Y-axis of the moving stage by actuator 110. The actuator is placed such that actuator movement is along the path of movement of the moving stage. The actuator may be removablely mounted within the deformable structure micro-positioner. Actuator 110 imparts a force upon input block 190.
[0069] The actuator force is transmitted to the moving stage from input block 190 through flexure 111a of lever 103a and through flexure 111b of lever 103b. Lever 103a pivots about flexure 105a in an arc, transmitting the actuator force to the moving stage through flexure 104a. Lever 103b pivots about flexure 105b in an arc, transmitting the actuator force to the moving stage through flexure 104b.
[0070] As a result of the stage's movement, lever 103d pivots about flexure 105d in an arc. Also, lever 103c pivots about flexure 105c in an arc.
[0071] The symmetry of these four levers and four attachments makes these arcs symmetrical with respect to the Y-axis of the moving stage, with the components of motion along the x-axis equal and opposite, resulting in the cancellation of motion along the X-axis. The result is pure motion in the Y-axis direction and the elimination of translational and angular cross-talk error.
[0072] Levers 103a and 103b act as cantilevers, modifying the input force generated by the actuator. Flexures 105a and 105b serve as the fulcrums of the cantilevers. For example, a 1 micrometer input displacement from the actuator can result in a displacement of 10 micrometers at flexures 104a and 104b.
[0073] The cantilever design compensates for the very small motion capabilities of the limited number of actuators available for use in deformable structure micro-positioning devices. The movement generated by the actuator is amplified mechanically to achieve the desired range of motion. The range of motion can be from nanometer movement to multiple micrometer movement.
[0074] A sensor 112 may be provided on-axis with the actuator and perpendicular to the moving stage to provide precision measurement and control of the moving stage. The on-axis design reduces Abbe offset error, thus obtaining precision measurement.
[0075] Preferably, a capacitance type gauge is employed as a sensor. The capacitance gauge monitors the output resulting from the actuator input multiplied by the leverage and minus losses in the system. A sensor is critical for feedback control, but may be omitted for open-loop applications in which calibration of the stage may be sufficient to characterize the stage motion, or when other types of feedback, such as vision, are used.
[0076]
FIG. 3 depicts a deformable structure micro-positioner with safety stops 301-308, any or all of which may be included in the deformable structure micro-positioner. Unlabeled components in FIG. 3 are identical to those in FIG. 1 as described above. Safety stops may be positioned on either side of each lever. FIG. 4 depicts a single safety stop, as shown in FIG. 3, embedded in the support structure 402. A partial hole 401 is formed into the support structure. A rod 405 is inserted into the hole. The rod extends into gap 404 between the lever 403 and the support structure. The rod prevents the lever from traveling the entire width of the gap. This prevents accidental damage to the actuator due to, for example, unintended contact between a robot and the moving stage. In case of accidental contact, only limited rotation about the flexure would occur before the lever contacts the safety stop. As should be understood, a safety stop positioned on the other side of a lever is also formed of a hole and a rod. The difference being, the hole is formed in the moving stage.
[0077] The deformable structure micro-positioner of the present invention is monolithic. It is formed out of a single piece of material. The components of the positioner may be machined out of the material, which may include aluminum, other types of metals, or a silicon sheet. A single piece of material may be machined with the form of the micro-positioner. FIG. 14 shows a single piece of material 1401 and a machining device 1402. The machining device may be an electric discharge machining (EDM) device. This single piece can then be sliced to produce several deformable structure micro-positioners out of the single piece of material and a single machining. FIG. 15 shows a single piece of material 1501 with the components of a positioning stage machined into piece 1502. A slicing device 1503 is shown for slicing the piece into a plurality of positioning devices 150415051506. This reduces the cost of manufacture compared to some commercial micro-stages currently available for sale.
[0078] When manufacturing the deformable structure micro-positioner out of silicon, several can be stamped out at the same time, as in manufacturing semiconductors. A large number of these devices can be included on a single piece of silicon performing nano-assembly work.
[0079] The moving stage portion of the positioner may be machined or etched in a honeycomb pattern. This lightens the entire device, improving dynamics.
[0080] Because of the symmetry of the flexures being in the vertical, the deformable structure micro-positioner has the ability to support a larger payload than the vast majority of commercial deformable structure micro-positioners. This deformable structure micro-positioner can tolerate a larger amount of weight compared to other deformable structure micro-positioners.
[0081] Two-Degree of Freedom Embodiment:
[0082]
FIG. 2 depicts a view of a deformable structure micro-positioner 200 in accordance with another aspect of the present invention. The deformable structure micro-positioner of FIG. 2 provides pure linear motion in the direction of both the X and Y axes of the moving stage. Two-degrees of freedom are obtained by placing a first actuator/symmetrical lever-set within a second actuator/symmetrical lever-set. Both of these actuator/symmetrical lever-sets are borne of the same design as the actuator/symmetrical lever-set described above in the one-degree of freedom embodiment. The outer actuator/symmetrical lever-set is an enlarged and rotated 90 degrees version of the inner actuator/symmetrical lever-set. When the outer actuator/symmetrical lever-set is operated, the entire inner actuator/symmetrical lever-set moves as a result.
[0083] A moving stage 201 is connected to an inner support structure 202 via four levers 203a, 203b, 203c and 203d. Lever 203a is attached to the moving stage via flexure 204a and to the inner support structure via flexure 205a. Lever 203b is attached to the moving stage via flexure 204b and to the inner support structure via flexure 205b. Lever 203c is attached to the moving stage via flexure 204c and to the inner support structure via flexure 205c. Lever 203d is attached to the moving stage via flexure 204d and to the inner support structure via flexure 205d.
[0084] Lever pair 203a and 203d is symmetrical to lever pair 203b and 203c with respect to the Y-axis of the moving stage. Levers 203a and 203b are in-line. Levers 203c and 203d are also in-line. Lever pair 203a and 203b is symmetrical to lever pair 203d and 203c with respect to the X-axis of the moving stage.
[0085] Flexure 204a is symmetrical to flexure 204d with respect to the X-axis of the moving stage. Likewise, flexures 205a and 205d are symmetrical with respect to this X-axis. Flexures 205b and 205c are also symmetrical with respect to this X-axis. Flexures 204b and 204c are also symmetrical with respect to this X-axis. Flexure pairs 204a and 204b, 205a and 205b, 204d and 204c, and 205d and 205c are symmetric with respect to the Y-axis of the moving stage.
[0086] Input force is generated for movement in the direction of the Y-axis of the moving stage by actuator 210. The actuator is placed such that actuator movement is along the Y-axis of the moving stage. The actuator may be removablely mounted within the deformable structure micro-positioner.
[0087] The actuator force is transmitted to the moving stage through flexure 211a of lever 203a and through flexure 211b of lever 203b. Lever 203a pivots about flexure 205a in an arc, transmitting the actuator force to the moving stage through flexure 204a. Lever 203b pivots about flexure 205b in an arc, transmitting the actuator force to the moving stage through flexure 204b.
[0088] As a result of the stage's movement, lever 203d pivots about flexure 205d in an arc. Also, lever 203c pivots about flexure 205c in an arc.
[0089] The symmetry of these four inner levers and four inner attachments makes the arcs symmetrical with respect to the Y-axis of the moving stage, with the components of motion along the X-axis equal and opposite, resulting in the cancellation of motion along the X-axis. The result is pure motion in the Y-axis direction and the elimination of translational and angular cross-talk error.
[0090] The inner support structure and moving stage are formed within an outer support structure 206. The inner support structure is connected to the outer support structure via four levers 207a, 207b, 207c and 207d. Lever 207a is attached to the inner support structure via flexure 208a and to the outer support structure via flexure 209a. Lever 207b is attached to the inner support structure via flexure 208b and to the outer support structure via flexure 209b. Lever 207c is attached to the inner support structure via flexure 208c and to the outer support structure via flexure 209c. Lever 207d is attached to the inner support structure via flexure 208d and to the outer support structure via flexure 209d.
[0091] Lever pair 207a and 207b is symmetrical to lever pair 207d and 207c with respect to the Y-axis of the moving stage. Levers 207a and 207b are in-line. Levers 207c and 207d are also in-line. Lever pair 207b and 207c is symmetrical to lever pair 207a and 207d with respect to the X-axis of the moving stage.
[0092] Flexure 208a is symmetrical to flexure 208b with respect to the X-axis of the moving stage. Likewise, flexure pairs 209a and 209b, 208c and 208d, and 209c and 209d are symmetrical with respect to this X-axis. Flexure pairs 208a and 208d, 208b and 208c, 209a and 209d, and 209b and 209c are symmetric with respect to the Y-axis of the moving stage.
[0093] Input force is generated for movement in the direction of the X-axis of the moving stage by actuator 212. The actuator is placed such that actuator movement is along the X-axis of the moving stage. This actuator may be removablely mounted within the deformable structure micro-positioner.
[0094] Actuator force is transmitted to the moving stage through flexure 213a of lever 207a and through flexure 213b of lever 207b. Lever 207a pivots about flexure 209a in an arc, transmitting the actuator force to the inner support structure through flexure 208a. Lever 207b pivots about flexure 209b in an arc, transmitting the actuator force to the inner support structure through flexure 208b. As a result of the inner support structure's movement, lever 207d pivots about flexure 209d in an arc. Also, lever 207c pivots about flexure 209c in an arc.
[0095] The symmetry of these four outer levers and four outer attachment points makes these arcs symmetrical with respect to the X-axis of the moving stage, with the components of motion along the Y-axis equal and opposite, resulting in the cancellation of motion along the Y-axis. The result is pure motion in the X-axis direction and the elimination of translational and angular cross-talk error.
[0096] As should be understood, like the one-degree of freedom embodiment, sensors may be included aligned with the actuators. Sensor 213 measures movement along the Y-axis of the moving stage. Sensor 214 measures movement along the X-axis of the moving stage.
[0097] Queensgate Instruments manufactures an X-Y deformable structure micro-positioning stage which introduces a rotational cross talk error into the intended linear movement. This deformable structure micro-positioning stage, marketed as NPS-XY-100A, has an error of 10 microradians, 0.573 mdegress, for a range of motion of 100 micrometers.
[0098] Physik Instrumente's P-762 XY nanopositioner also introduces a rotational cross talk error. For a range of motion of 100 micrometers, this stage also produces an error of 10 microradians, or 0.573 mdegrees.
[0099] The present invention has superior performance compared with these well respected devices. Performance measures indicate that the deformable structure micro-positioner of the present invention attains five times smaller rotational cross-talk error for the same range of motion of these devices.
[0100] Two Elcomat autocollimators with a true square are used to provide simultaneous measurement of pitch, roll and yaw of the two-degree of freedom deformable structure micro-positioner. Resolution of the Elcomat is at least 0.01 arcsecond. Accuracy is limited to perhaps an order of magnitude worse if care is not taken to enclose the optical beam path within a tube and average at least 20 seconds of data for each data point. The metrology instrument used is an LVDT displacement sensor, which monitors the input displacement to the moving stage from one of the actuators.
[0101] By combining autocollimator measurements with moving stage displacement measurements, straightness of travel may be estimated by using a numerical integration algorithm. A LabView program controls movement of the moving stage through a serpentine pattern along a 10×10 matrix of positions. At each position, approximately 1000 autocollimator measurements are collected and averaged together. Test results show that the two-degree of freedom deformable structure micro-positioner has an angular error of 0.3 to 0.4 arcseconds, or 0.11 mdegrees. This performance is 5.21 times better than the performance of both the Queensgate and Physik Instrumente deformable structure micro-positioners.
[0102] Three-Degree of Freedom Embodiment:
[0103]
FIG. 5 depicts a deformable structure micro-positioner with three degrees of freedom. Unlabeled components are identical to those in FIG. 2 and as described above. The moving stage may move in the direction of both the X and Y axes of the moving stage, in addition to in rotation. This rotational movement is achieved by the addition of an additional actuator along either of the X or the Y axis of the moving stage, for a total of three actuators, 501a, 501b, and 501c. For example, as depicted in FIG. 5, actuator 501c provides movement in the direction of the X-axis. Actuators 501a and 501b are both disposed parallel to the Y-axis of the moving stage and provide both a high level of rotation accuracy and pure linear movement in the direction of the Y-axis. To obtain movement in the X direction, the deformable structure micro-positioner operates in the same manner as described in the two-degree of freedom embodiment above and depicted in FIG. 2. To obtain linear movement in the direction of the Y-axis, actuators 501a and 501b operate together with equal force. To obtain rotational movement, only one of actuators 501a or 501b may be operated. Or, actuators 501a and 501b may both be operated to produce unequal forces.
[0104] Actuator 501a is connected to lever 502a via flexure 503a and input block 550a. Actuator 501b is connected to lever 502b via flexure 503b and input block 550b. For example, to produce a rotation in a counterclockwise direction, actuator 501a may be operated alone. Conversely, to produce a rotation in a clockwise direction, actuator 501b may be operated alone.
[0105] Actuators 501a and 501b may be operated together to impart both an axial movement and a rotation movement to the deformable structure micro-positioner. To achieve this movement, unequal forces are applied to levers 502a and 502b from the respective actuators.
[0106] A fourth actuator may be added to the micro-positioner. FIG. 16 shows a three-degree of freedom positioner with four actuators, 1601a, 1601b, 1601c, 1601d. Unlabeled components are identical to those of FIG. 5 and as discussed above. Each axis of movement includes two actuators. This configuration allows a higher controllability of the deformable structure micro-positioner by adding the ability to control rotation on both sides of the moving stage. Additionally, the four-actuator design protects the components of the deformable structure micro-positioner. Rotation of the moving stage may strain the flexures, coupling and actuator on the side of the moving stage having only a single actuator. Four actuators maintain the symmetry of the deformable structure micro-positioner. Rotation of the moving stage will not introduce stresses into the device, as the rotation can be compensated by the quad actuator design.
[0107] For embodiments in which two actuators are included along a single Axis of movement, two sensors may be used to obtain precise measurements. Each sensor is placed, as with the single actuator/sensor configurations described above, along the line of force generated by the respective actuator. In FIG. 5, sensor 540a is aligned with actuator 501a. Sensor 540b is aligned with actuator 501b. Sensor 540c is aligned with actuator 501c. In FIG. 16, sensor 1640a is aligned with actuator 1601a. Sensor 1640b is aligned with actuator 1601b. Sensor 1640c is aligned with actuator 1601c. Sensor 1640d is aligned with actuator 1601d. Rotation of the moving stage is measured by taking the difference between the two measurements of the two sensors placed in a single direction of movement.
[0108] The sensors are connected to controller 530 and 1630. Output data from each sensor is input to the controller. This data may be processed by the controller, along with at least one input describing the desired movement of the moving stage, to control the force generated by each actuator to move the moving stage. It should be understood that the controller may be used with any of the embodiments described herein.
[0109] It should also be understood that the use of dual actuators to obtain rotational movement may be combined with the one-degree of freedom embodiment described above. This results in a moving stage movable along not only one axis, but also rotatable.
[0110] Four-Degrees of Freedom Embodiment:
[0111] A fourth degree of freedom may be added to a three-degree of freedom deformable structure micro-positioner by including an actuator placed on the moving stage. This actuator raises and lowers an object placed upon the deformable structure micro-positioner. FIG. 17 shows a three-degree of freedom positioner with actuator 1701 placed upon the moving stage 1702 to obtain the fourth degree of freedom. Upper stage 1703 is placed on top of actuator 1701. Unlabeled components are identical to those depicted in FIG. 16 and described above.
[0112] Reduced Size Embodiment:
[0113] The size of the above deformable structure parallel cantilever biaxial micro-positioning stages may be reduced as much as 60 percent. FIG. 6 depicts a reduced size embodiment 600. Shown is a one-degree of freedom device for movement in the direction of the Y-axis of the moving stage 607. As should be understood, the design may be expanded to achieve movement along the X-axis and to impart desired rotation to the moving stage. Also, two actuators may be used on any axis of movement. Unlabeled components are identical to those in FIG. 1.
[0114] The reduced size design maintains the symmetry of the previously described embodiments. Instead of four levers connecting the moving stage to the support structure 601, nested levers are used. Each of the four levers of the one-degree of freedom micro-positioner described above is replaced with two levers. Actuator 602 moves both levers 603a and 603b. Lever 603a pivots about flexure 604a. Lever 603b pivots about flexure 604b. In turn, lever 603a moves lever 605a through flexure 608a. Lever 605a pivots about flexure 606a. Also, lever 603b moves lever 605b through flexure 608b. Lever 605b pivots about flexure 606b. And finally, levers 605a and 605b move the moving stage through flexures 609a and 609b.
[0115] As should be understood, the levers on the opposite side of the moving stage from the actuator mirror the configuration of the above described nested levers, for a total of eight levers. The symmetry of the above described embodiments is maintained in the reduced size design. Thus, pure linear motion is maintained with the reduced size design.
[0116] The eight levers are bi-axially symmetrical. Lever pair 605a and 605d is symmetrical to lever pair 605b and 605c with respect to the Y-axis of the moving stage. Lever pair 603a and 603d is also symmetrical to lever pair 603b and 603c with respect to this axis. Levers 603a and 603b are in-line. Levers 605a and 605b are also in-line. As well, levers 603d and 603c are also in-line. And, levers 605d and 605c are in-line.
[0117] Lever pair 603a and 603b is symmetrical to lever pair 603d and 603c with respect to the X-axis of the moving stage. Also, lever pair 605a and 605b is symmetrical to lever pair 605d and 605c with respect to this axis.
[0118] As described above in the one-degree of freedom embodiment, the attaching flexures of the reduced size embodiment are also bi-axially symmetrical. Flexure 606a is symmetrical to flexure 606d with respect to the X-axis of the moving stage. Flexure 606b is symmetrical to flexure 606c with respect to this axis. Flexures 608a and 608d are symmetric about the X-axis. Flexures 608b and 608c are symmetric about the X-axis. Flexures 609a and 609d, as well as flexures 609b and 609c, are symmetric about the X-axis of the moving stage. And, as should be understood, flexures 604a and 604d, as well as flexures 604b and 604c, are symmetric about this axis. Flexure pairs 606a and 606b, 608a and 608b, 609a and 609b, 604a and 604b, 606d and 606c, 608d and 608c, 609d and 609c, and 604d and 604c are symmetric with respect to the Y-axis of the moving stage.
[0119] Universal Perpendicular Flexure Hinge Joint Coupling:
[0120] Forces generated by the actuator are transmitted to the moving stage through a universal perpendicular flexure hinge joint coupling depicted in FIGS. 7 and 8. FIG. 8 shows the coupling rotated ninety degrees from the depiction in FIG. 7. The coupling is designed to ensure transmission of only axial loads and to allow un-axial motion to deflect the flexure elements. The flexure coupling allows only very small non-axial displacements and provides a 75% efficiency in transmission of axial displacements from the actuator. The flexure disengages motion other than axial motion from the moving stage.
[0121] The universal perpendicular flexure hinge joint coupling includes two flexure hinge elements located on the same plane and orthogonal to each other. The flexures may be manufactured using electric discharge machining (EDM) technology by boring two set of holes 701801 into a rod portion 704 of the coupling at a ninety degree angle from each other in a plane perpendicular to the axis of rotation of the coupling. The holes extend through the coupling perpendicular to the axis of rotation of the coupling.
[0122] A slot is cut at an angle away from and then up to the surface of the rod from each of the bored holes. The angle in each of the four slots reduces the length of the universal flexure joint along the length of the coupling. The two slots cut from holes 701 are mirror images of the two slots cut from holes 801. The result is two symmetric flexure hinges at right angles to each other created by the removed material. This allows a universal joint type operation and transmission of semi-pure axial loading for small mechanical displacements. The size of the bores and center placement of each bore from its paired bore can be optimized to achieve the required axial stiffness and lateral flexibility required for the coupling.
[0123] Traditional epoxy or screw couplings may introduce rotational cross talk error to movement of the deformable structure micro-positioner. When force is applied to the deformable structure micro-positioner which is not parallel to the intended axis of movement, the un-axial component of the force is transferred to the moving stage. This un-axial force may be generated by a misaligned actuator or uneven coupling. The universal flexure joint of the present invention absorbs these un-axial forces, and only transmits the axial forces.
[0124] Some actuators, like piezoelectric actuators, need to be protected from lateral load. This universal perpendicular flexure hinge joint coupling eliminates potential damage to the piezoelectric actuator by absorbing un-axial forces.
[0125]
FIG. 9 depicts a sectional view of the coupling mounted in the micro-positioner. The coupling is attached to an input block 901 formed in the deformable structure micro-positioner and to an actuator 980. The universal perpendicular flexure hinge joint coupling includes a circular rod extension 902. This extension fits into a V-groove cut into the input block. The extension rests in the V-groove along two lines of contact. A clamp 903 holds the extension in the V-groove, for a total of three lines of contact between the couplings and the input block and clamp, kinetically constraining the coupling. The clamp may be removablely secured to the input block by the use of two screws.
[0126]
FIG. 10 shows another view of the circular extension 1001 constrained in the V-groove 1002 cut into the input block 1005. Clamp 1003 is shown with two screws 1004a 1004b holding the circular extension in place.
[0127] This coupling includes a circular plate 702 with an outer raised edge 720 and threaded portion 703 for attachment to the actuator. The outer raised edge in combination with the threaded portion act together to provide a positive lock between the actuator and the coupling. The raised edge acts as a lock washer providing spring tension between the actuator and coupling. This configuration helps to eliminate backlash. The raised edge is also shown at 904.
[0128] Other advantages of this coupling compared to an epoxy or screw coupling is ease of assembly, reduction of lateral loads on an actuator, and a reduction in loss of force across the coupling. With flexure universal couplings in general, this mechanical configuration keeps the hinge points on the same plane with better strength. Other flexure universal couplings, like perpendicular plate hinges or spiral flexures, are weaker for the same level of axial loading performance.
[0129]
FIGS. 11
a
and 11b show performance measures of the universal perpendicular flexure joint coupling. To estimate actuator coupling efficiency, a least squares algorithm was written in MATLAB to fit the actual stage motions in the XY plane, as measured by capacitance gauges, to the expected stage motions. The expected stage motion is the actuator command displacement multiplied by the mechanical magnification factor designed into the flexural guiding mechanisms.
[0130] Providing performance measures and calibration methods for these coupling coefficients is of importance because open-loop performance of the stage is linked to the knowledge and stability of the actuator/payload mechanical linkages.
[0131] Actuator coupling linkages play a far more important role in predicting open-loop stage performance than the micro-positioner's mechanical leverage ratio. The couplings are subject to stress concentrations at the fasteners which will tend to relieve itself over time. The coupling should find a stable equilibrium, but only after a considerable number of thermal and vibration cycles are undertaken to relieve assembly stress.
[0132]
FIGS. 11
a
and 11b show two dimensional least-squares fit of stage coupling coefficient showing approximately seventy percent mechanical transmission from the actuator to the payload.
[0133] Six-Degree of Freedom:
[0134] The superior performance of the above described deformable structure micro-positioner design can be extended into six-degrees of freedom. FIG. 12a depicts a six-degree of freedom deformable structure micro-positioner. This micro-positioner can generate high accuracy, small displacement, and high resolution motion. The moving platform 1204 has the ability to move in translation and rotation about three orthogonal axes.
[0135] Three two-degree of freedom deformable structure micro-positioners, as described above, 1201a, 1201b, and 1201c are formed into a monolithic base plate 1202. Attached at the center of each of the three moving stages are two struts 1203, for a total of six struts. Each of the six struts is attached to the moving platform 1204.
[0136] The coordinates of the attachment points of the struts to each of the three two-degree of freedom micro-positioners form the base of the device. FIG. 12a shows the six-degree of freedom micro-positioner in a baseline position. That is, none of the three two-degree of freedom micro-positioners are moved. Reference triangle 1205 is shown to facilitate understanding of movement of each of the three two-degree of freedom micro-positioners. In this baseline depiction, the center of each of the three two-degree of freedom micro-positioners is positioned at a respective one of the three points of the reference triangle. When the moving stage of each of the micro-positioners moves, the size and shape of the base changes, the struts deform and the position and orientation of the moving platform changes.
[0137] Using calibration and sensors, the position and orientation of the moving platform is controlled by commanding displacements of each of the three micro-positioners. A controller 1215 processes sensor measurements and input directions to control movement of the moving platform. Movement force generated off of the struts allows the struts to take on any length necessary.
[0138] Each of the six struts includes a coupling at either end 12201221, acting as universal joints to allow rotation and bending. The couplings may be flexures or any other coupling allowing the intended movement.
[0139]
FIG. 12B shows the six-degree of freedom micro-positioner moved in pure translation along the X-axis. Unlabeled components are the identical to those in FIG. 12A each of the three two-degree of freedom micro-positioners are moved in pure translation along the direction of the X-axis. The moving platform moves in pure translation in the direction of the X-axis as a result of movement of each of the two-degree of freedom micro-positioners. As shown, each of the three two-degree of freedom micro-positioners is the same distance from their respective point on the reference triangle in the direction of the X-axis.
[0140]
FIG. 12C shows the six-degree of freedom micro-positioner moved in pure translation along the Y-axis. Unlabeled components are the identical to those in FIG. 12A each of the three two-degree of freedom micro-positioners are moved in pure translation along the direction of the Y-axis. The moving platform moves in pure translation in the direction of the Y-axis as a result of movement of each of the two-degree of freedom micro-positioners. As shown, each of the three two-degree of freedom micro-positioners is the same distance from their respective point on the reference triangle in the direction of the Y-axis.
[0141]
FIG. 12D shows the six-degree of freedom micro-positioner moved in pure translation along the Z-axis. Unlabeled components are the identical to those in FIG. 12A each of the three two-degree of freedom micro-positioners are moved in pure translation along an imaginary line extending from the respective point of the reference triangle to the center of the reference triangle. The moving platform moves in pure translation in the direction of the Z-axis as a result of movement of each of the two-degree of freedom micro-positioners. As shown, each of the three two-degree of freedom micro-positioners is the same distance from their respective point on the reference triangle and along their respective imaginary line.
[0142]
FIG. 12E shows the six-degree of freedom micro-positioner moved in rotation about the Z-axis. Unlabeled components are identical to those in FIG. 12A. The moving platform rotates about the Z-axis as a result of movement of each of the two-degree of freedom micro-positioners. As shown in FIG. 12E, each of the centers of the three two-degree of freedom micro-positioners are the same distance from their respective point on the reference triangle and together rotated in a counter clockwise direction.
[0143]
FIGS. 12F and 12H show the six-degree of freedom micro-positioner moved in rotation about the X-axis located on the moving platform. Unlabeled components are identical to those in FIG. 12A. The moving platform rotates about the X-axis as a result of movement of each of the two-degree of freedom micro-positioners. FIG. 12H shows a side view of the six-degree of freedom micro-positioner rotated about the X-axis.
[0144]
FIGS. 12G and 12I show the six-degree of freedom micro-positioner moved in rotation about the Y-axis located on the moving platform. Unlabeled components are identical to those in FIG. 12A. The moving platform rotates about the Y-axis as a result of movement of each of the two-degree of freedom micro-positioners. FIG. 12H shows a side view of the six-degree of freedom micro-positioner rotated about the Y-axis.
[0145]
FIG. 13 shows a side view of another aspect of the six-degree of freedom micro-positioner. Extending from the base plate 1305 up toward and underneath the moving platform 1306 is extension 1303. On top of the extension at least one sensor 1301 may be placed. The sensor may monitor, among other characteristics of the six-degree of freedom micro-positioner, translation and rotation of the moving platform. Each sensor may communicate with controller 1215
[0146] The extension also may have at least one extrusion 1302 to limit displacement of the moving platform. The extrusion or extrusions can prevent the moving plate from tilting beyond a predetermined angle.
[0147] It will also be recognized by those skilled in the art that, while the invention has been described above in terms of one or more preferred embodiments, it is not limited thereto. Various features and aspects of the above-described invention may be used individually or jointly. Further, although the invention has been described in the context of its implementation in a particular environment and for particular purposes, e.g. micro-positioning, those skilled in the art will recognize that its usefulness is not limited thereto and that the present invention can be beneficially utilized in any number of environments and implementations. Accordingly, the claims set forth below should be construed in view of the full breath and spirit of the invention as disclosed herein.
Claims
- 1. A method for moving a positioning stage, comprising the steps of:
applying a first force at a first location on a positioning stage; and applying a second force at a second location on the positioning stage, the first and the second locations symmetrical about a first axis of the positioning stage; wherein application of the first and the second forces moves the positioning stage in a first direction.
- 2. The method of claim 1, further comprising the steps of:
operating a single actuator disposed along the first axis of the positioning stage to generate the first force and the second force; and sensing movement of the positioning stage along the first axis of the positioning stage.
- 3. The method of claim 1, further comprising the steps of:
operating a first actuator disposed parallel with the first axis of the positioning stage to generate the first force; operating a second actuator disposed parallel with the first axis of the positioning stage and symmetrical with the first actuator about the first axis to generate the second force; sensing movement of the positioning stage along an axis of actuation of each of the first and the second actuators.
- 4. The method of claim 3, further comprising the step of:
operating the first actuator and the second actuator with a selected one of a first mode, a second mode, and a third mode; wherein the first mode is operating the first and the second actuators to simultaneously generate equal forces; the second mode is operating the first actuator to generate a first force simultaneous with operating the second actuator to generate a second force unequal to the first force; and the third mode is operating one of the first and the second actuators to generate a force without operating the other one of the first and second actuators.
- 5. The method of claim 1, further comprising the steps of:
applying a third force at a third location on the positioning stage; and applying a fourth force at a fourth location on the positioning stage, the third and the fourth locations symmetric about a second axis of the positioning stage, the second axis perpendicular to the first axis:
wherein application of the third and the fourth forces moves the positioning stage in a second direction different than the first direction.
- 6. The method of claim 5, further comprising the steps of:
operating a first actuator disposed along the first axis of the positioning stage to generate the first force and the second force; and operating a second actuator disposed along the second axis of the positioning stage to generate the third force and the fourth force.
- 7. The method of claim 5, further comprising the steps of:
sensing movement of the positioning stage along the first axis of the positioning stage; and sensing movement of the positioning stage along the second axis of the positioning stage.
- 8. The method of claim 5, further comprising the steps of:
operating a first actuator disposed along the first axis of the positioning stage to generate the first force and the second force and operating a second actuator disposed parallel with the second axis of the positioning stage to generate the third force; operating a third actuator disposed symmetric with the second actuator about the second axis of the positioning stage to generate the fourth force; sensing movement of the positioning stage along the first axis of the positioning stage; and sensing movement of the positioning stage along an axis of actuation of each of the second and the third actuators.
- 9. The method of claim 5, further comprising the steps of:
operating a first actuator disposed parallel with the first axis of the positioning stage to generate the first force; operating a second actuator disposed symmetric with the first actuator about the first axis of the positioning stage to generate the second force; operating a third actuator disposed parallel with the second axis of the positioning stage to generate the third force; operating a fourth actuator disposed symmetric with the third actuator about the second axis of the positioning stage to generate the fourth force; and sensing movement of the positioning stage along an axis of actuation of each of the first, the second, the third and the fourth actuators.
- 10. A positioning device, comprising:
a positioning stage; at least one actuator disposed so as to apply a force along a force line parallel to a line of movement of the positioning stage and operable to generate an input force to move the positioning stage; and a sensor disposed along the force line of each of the at least one actuators and configured to sense movement of the positioning stage.
- 11. The positioning device of claim 10, wherein the at least one actuator is one actuator disposed along the line of movement of the positioning stage.
- 12. The positioning device of claim 10, wherein the at least one actuator is two actuators disposed symmetrical about the line of movement of the positioning stage.
- 13. The positioning device of claim 10, wherein:
the line of movement is a first line of movement; the at least one actuator is a first actuator, a second actuator and a third actuator; the first actuator is disposed along the first line of movement of the positioning stage; and the second and the third actuators are disposed symmetric about a second line of movement of the positioning stage, the second line of movement of the positioning stage being perpendicular to the first line of movement of the positioning stage.
- 14. The positioning device of claim 10, wherein:
the line of movement is a first line of movement; the at least one actuator is a first actuator, a second actuator, a third actuator and a fourth actuator; the first and the second actuators are disposed symmetric about the first line of movement of the positioning stage; and the third and the fourth actuators are disposed symmetric about a second line of movement of the positioning stage, the second line of movement of the positioning stage being perpendicular to the first line of movement of the positioning stage.
- 15. The positioning device of claim 10, further comprising:
at least one coupling configured to transmit force generated by each of the at least one actuators to the positioning stage, each of the at least one couplings including:
a circular member having a first and a second side, with a raised edge formed along the outermost circumference of the first side; a threaded rod portion extending axially from the first side of the circular member; a smooth rod portion extending axially from the second side of the circular member; and a flexure hinge formed within the smooth rod portion; wherein the flexure hinge includes:
a first pair of holes extending through the smooth rod and a second pair of holes extending through the smooth rod, the first and second pairs of holes being disposed perpendicular to each other and located in a plane perpendicular to the axis of rotation of the smooth rod; a first slot extending from each of the first pair of holes in a plane non-perpendicular to the axis of rotation of the smooth rod; a second slot extending from the first slot up to and through an outer surface of the smooth rod in a plane perpendicular to the axis of rotation of the smooth rod; a third slot extending from each of the second pair of holes in a plane non-perpendicular to the axis of rotation of the smooth rod; and a fourth slot extending from the third slot up to and through the outer surface of the smooth rod in a plane perpendicular to the axis of rotation of the smooth rod.
- 16. The positioning device of claim 10, wherein the positioning device is a micro-positioning device.
- 17. The positioning device of claim 10, wherein the positioning stage is a first positioning stage and each of the at least one actuators are horizontal actuators disposed along a first horizontal plane, and further comprising:
at least one vertical actuator disposed on the surface of the first positioning stage and supporting a second positioning stage disposed parallel to the first positioning stage; wherein the vertical actuator is configured to move the second positioning stage in a direction perpendicular to a direction in which each of the at least one horizontal actuators moves the first positioning stage.
- 18. A coupling, comprising:
a circular member having a first and a second side, with a raised edge formed along an outermost circumference of the first side; a threaded rod portion extending axially from the first side of the circular member; a smooth rod portion extending axially from the second side of the circular member; and a flexure hinge formed within the smooth rod portion.
- 19. The coupling of claim 18, wherein the flexure hinge includes:
a first pair of holes extending through the smooth rod and a second pair of holes extending through the smooth rod, the first and second pairs of holes being disposed perpendicular to each other and located in a plane perpendicular to the axis of rotation of the smooth rod; a first slot extending from each of the first pair of holes in a plane non-perpendicular to the axis of rotation of the smooth rod; a second slot extending from the first slot up to and through an outer surface of the smooth rod in a plane perpendicular to the axis of rotation of the smooth rod; a third slot extending from each of the second pair of holes in a plane non-perpendicular to the axis of rotation of the smooth rod; and a fourth slot extending from the third slot up to and through the outer surface of the smooth rod in a plane perpendicular to the axis of rotation of the smooth rod.
Provisional Applications (3)
|
Number |
Date |
Country |
|
60140066 |
Jun 1999 |
US |
|
60161963 |
Oct 1999 |
US |
|
60180966 |
Feb 2000 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09597241 |
Jun 2000 |
US |
Child |
10267598 |
Oct 2002 |
US |