This non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No. 2019-191782 filed in Japan on Oct. 21, 2019, the entire contents of which are hereby incorporated by reference.
This invention relates to a positive resist composition and a pattern forming process.
To meet the demand for higher integration density and operating speed of LSIs, the effort to reduce the pattern rule is in rapid progress. The logic devices used in smart phones or the like drive forward the miniaturization technology. Logic devices of 10-nm node are manufactured in a large scale using a multi-patterning lithography process based on ArF lithography.
In the application of lithography to next 7-nm or 5-nm node devices, the increased expense and overlay accuracy of multi-patterning lithography become tangible. The advent of EUV lithography capable of reducing the number of exposures is desired.
Since the wavelength (13.5 nm) of extreme ultraviolet (EUV) is shorter than 1/10 of the wavelength (193 nm) of ArF excimer laser, the EUV lithography achieves a high light contrast, from which a high resolution is expectable. Because of the short wavelength and high energy density of EUV, an acid generator is sensitive to a small dose of photons. It is believed that the number of photons available with EUV exposure is 1/14 of that of ArF exposure. In the EUV lithography, the phenomenon that the edge roughness (LER, LWR) of line patterns or the critical dimension uniformity (CDU) of hole patterns is degraded by a variation of photon number is considered a problem.
Aiming to reduce a photon number variation, an attempt was made to render the resist film more absorptive so that the number of photons absorbed in the resist film is increased. For example, among halogens, iodine is highly absorptive to EUV of wavelength 13.5 nm. Patent Documents 1 to 3 disclose to use iodized resins as the EUV resist material. On use of such iodized polymers, the increased absorption of EUV ensures that the number of photons absorbed in the resist film increases and at the same time, the amount of acid generated increases, from which an increase of sensitivity, a reduction of LWR, and an improvement in CDU are expectable. Actually, since the solubility of the iodized polymer in an alkaline aqueous solution as the developer is extremely low, the dissolution contrast lowers, and LWR and CDU are degraded. It is desired to develop a resist material having sufficient light absorption and a high dissolution contrast.
For the purpose of preventing image blur by acid diffusion, it is effective to control the diffusion of acid to unexposed region. For suppressing acid diffusion, Patent Document 4 discloses a resist composition comprising a polymer comprising recurring units having an imino group and a carbonyl group at one of the imino-adjoining sites and a carbonyl or thiocarbonyl group at the other site. The arrangement of these groups exerts an acid diffusion suppressing effect. However, because of rather low EUV absorption, the effect of improving LWR or CDU by photon absorption is not available.
An object of the present invention is to provide a positive resist composition which exhibits a higher sensitivity and resolution than conventional positive resist compositions, is reduced in edge roughness and size variation, and forms a pattern of good profile after exposure and development, and a patterning process using the resist composition.
Making extensive investigations in search for a positive resist material capable of meeting the current requirements including high resolution, reduced edge roughness and small size variation, the inventor has found the following. To meet the requirements, the acid diffusion distance should be minimized. There arises the problem that the resolution of a two-dimensional pattern such as hole pattern is reduced by a lowering of sensitivity and a drop of dissolution contrast. Unexpectedly, better results are obtained when a polymer comprising recurring units containing an imide group having an iodized aromatic ring bonded thereto is used as a base polymer. This promotes the absorption of exposure light to increase the efficiency of acid generation and at the same time, the distance of acid diffusion is minimized. Better results are thus obtainable using the polymer as a base polymer in a chemically amplified positive resist composition.
Further, for improving the dissolution contrast, recurring units having a carboxyl or phenolic hydroxyl group whose hydrogen is substituted by an acid labile group are incorporated into the base polymer. There is obtained a positive resist composition having a high sensitivity, a significantly increased contrast of alkali dissolution rate before and after exposure, a high resolution, a good pattern profile after exposure, reduced edge roughness, and small size variation. The composition is thus suitable as a fine pattern forming material for the manufacture of VLSIs and photomasks.
In one aspect, the invention provides a positive resist composition comprising a base polymer comprising recurring units (a) containing an imide group having an iodine-substituted aromatic group bonded thereto, and recurring units of at least one type selected from recurring units (b1) having a carboxyl group whose hydrogen is substituted by an acid labile group and recurring units (b2) having a phenolic hydroxyl group whose hydrogen is substituted by an acid labile group.
In a preferred embodiment, the recurring units (a) containing an imide group having an iodine-substituted aromatic group bonded thereto are represented by the formula (a).
Herein RA is hydrogen or methyl. X1 is a single bond, phenylene group, naphthylene group, or C1-C12 linking group containing an ester bond, ether bond or lactone ring. R1 is hydrogen or C1-C4 alkyl. R2 is a single bond or C1-C6 alkanediyl group. R3 is hydroxyl, an optionally halo-substituted C1-C6 saturated hydrocarbyl group, an optionally halo-substituted C1-C6 saturated hydrocarbyloxy group, an optionally halo-substituted C2-C6 saturated hydrocarbylcarbonyloxy group, an optionally halo-substituted C1-C4 saturated hydrocarbylsulfonyloxy group, fluorine, chlorine, bromine, amino, nitro, cyano, —NR1A—C(═O)—R1B, or —NR1A—C(═O)—O—R1B, wherein R1A is hydrogen or a C1-C6 saturated hydrocarbyl group, R1B is a C1-C6 saturated hydrocarbyl group or C2-C8 unsaturated aliphatic hydrocarbyl group; p is an integer of 0 to 5, q is an integer of 1 to 5, and 1≤p+q≤5.
In a preferred embodiment, the recurring units (b1) have the formula (b1) and the recurring units (b2) have the formula (b2).
Herein RA is each independently hydrogen or methyl, Y1 is a single bond, phenylene group, naphthylene group, or C1-C12 linking group containing an ester bond, ether bond or lactone ring, Y2 is a single bond, ester bond or amide bond, Y3 is a single bond, ether bond or ester bond, R11 and R12 each are an acid labile group, R13 is fluorine, trifluoromethyl, cyano or a C1-C6 saturated hydrocarbyl group, R14 is a single bond or a C1-C6 saturated hydrocarbylene group in which some carbon may be replaced by an ether bond or ester bond, a is 1 or 2, and b is an integer of 0 to 4.
The base polymer may further comprise recurring units (c) having an adhesive group selected from the group consisting of hydroxyl, carboxyl, lactone ring, carbonate, thiocarbonate, carbonyl, cyclic acetal, ether bond, ester bond, sulfonic acid ester bond, cyano, amide bond, —O—C(═O)—S—, and —O—C(═O)—NH—.
The base polymer may further comprise recurring units of at least one type selected from recurring units having the formulae (d1) to (d3).
Herein RA is each independently hydrogen or methyl. Z1 is a single bond, phenylene group, naphthylene group, —O—Z11—, —C(═O)—O—Z11— or —C(═O)—NH—Z11—, wherein Z11 is a C1-C6 aliphatic hydrocarbylene group, phenylene group, naphthylene group, or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond or hydroxyl moiety. Z2 is a single bond or ester bond. Z3 is a single bond, —Z31—C(═O)—O—, —Z31—O— or —Z31—O—C(═O)—, wherein Z31 is a C1-C12 hydrocarbylene group, phenylene group, or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond, iodine or bromine. Z4 is a single bond, methylene or 2,2,2-trifluoro-1,1-ethanediyl. Z5 is a single bond, methylene, ethylene, phenylene, fluorinated phenylene, —O—Z51—, —C(═O)—O—Z51—, or —C(═O)—NH—Z51—, wherein Z51 is a C1-C6 aliphatic hydrocarbylene group, phenylene group, or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond or hydroxyl moiety. Rf1 and Rf2 are each independently hydrogen, fluorine, or trifluoromethyl, at least one of RV and Rf2 being fluorine. R21 to R28 are each independently a C1-C20 hydrocarbyl group which may contain a heteroatom, R23 and R24, or R26 and R27 may bond together to form a ring with the sulfur atom to which they are attached. M− is a non-nucleophilic counter ion.
The resist composition may further comprise an acid generator, organic solvent, quencher, and/or surfactant.
In another aspect, the invention provides a process for forming a pattern comprising the steps of applying the positive resist composition defined above onto a substrate to form a resist film thereon, exposing the resist film to high-energy radiation, and developing the exposed resist film in a developer.
Preferably, the high-energy radiation is i-line, KrF excimer laser, ArF excimer laser, EB, or EUV of wavelength 3 to 15 nm.
The positive resist composition can enhance the decomposition efficiency of an acid generator, has a remarkable acid diffusion-suppressing effect, a high sensitivity, and a high resolution, and forms a pattern of good profile with improved edge roughness and size variation after exposure and development. By virtue of these properties, the resist composition is fully useful in commercial application and best suited as a micropatterning material for photomasks by EB lithography or for VLSIs by EB or EUV lithography. The resist composition may be used not only in the lithography for forming semiconductor circuits, but also in the formation of mask circuit patterns, micromachines, and thin-film magnetic head circuits.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that description includes instances where the event or circumstance occurs and instances where it does not. The notation (Cn-Cm) means a group containing from n to m carbon atoms per group. As used herein, the term “iodized” compound indicates a compound containing iodine or a compound substituted with iodine. In chemical formulae, the broken line designates a valence bond, Me stands for methyl, and Ac for acetyl.
The abbreviations and acronyms have the following meaning.
EB: electron beam
EUV: extreme ultraviolet
Mw: weight average molecular weight
Mn: number average molecular weight
Mw/Mn: molecular weight dispersity
GPC: gel permeation chromatography
PEB: post-exposure bake
PAG: photoacid generator
LER: line edge roughness
LWR: line width roughness
CDU: critical dimension uniformity
Positive Resist Composition
One embodiment of the invention is a positive resist composition comprising a base polymer comprising recurring units (a) containing an imide group having an iodine-substituted aromatic group bonded thereto, and recurring units of at least one type selected from recurring units (b1) having a carboxyl group whose hydrogen is substituted by an acid labile group and recurring units (b2) having a phenolic hydroxyl group whose hydrogen is substituted by an acid labile group.
Preferably, the recurring units (a) have the formula (a).
In formula (a), RA is hydrogen or methyl. X1 is a single bond, phenylene group, naphthylene group, or C1-C12 linking group containing an ester bond, ether bond or lactone ring. R1 is hydrogen or a C1-C4 alkyl group. R2 is a single bond or a C1-C6 alkanediyl group. R3 is hydroxyl, an optionally halo-substituted C1-C6 saturated hydrocarbyl group, an optionally halo-substituted C1-C6 saturated hydrocarbyloxy group, an optionally halo-substituted C2-C6 saturated hydrocarbylcarbonyloxy group, an optionally halo-substituted C1-C4 saturated hydrocarbylsulfonyloxy group, fluorine, chlorine, bromine, amino, nitro, cyano, —NR1A—C(═O)—R1B, or —NR1AC(═O)—O—R1B. R1A is hydrogen or a C1-C6 saturated hydrocarbyl group. R1B is a C1-C6 saturated hydrocarbyl group or C2-C8 unsaturated aliphatic hydrocarbyl group. The subscript p is an integer of 0 to 5, q is an integer of 1 to 5, and 1≤p+q≤5.
Examples of the C1-C4 alkyl group represented by R1 include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl. R1 is preferably hydrogen, methyl or ethyl.
Examples of the C1-C6 alkanediyl group represented by R2 include methylene, ethane-1,1-diyl, ethane-1,2-diyl, propane-1,1-diyl, propane-1,2-diyl, propane-1,3-diyl, propane-2,2-diyl, butane-1,1-diyl, butane-1,2-diyl, butane-1,3-diyl, butane-1,4-diyl, butane-2,2-diyl, butane-2,3-diyl, pentane-1,5-diyl, and hexane-1,6-diyl. R2 is preferably a single bond or methylene.
The C1-C6 saturated hydrocarbyl group represented by R3 may be straight, branched or cyclic. Examples thereof include alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, and cyclic saturated hydrocarbyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Examples of the saturated hydrocarbyl moiety of the C1-C6 saturated hydrocarbyloxy group, C2-C6 saturated hydrocarbylcarbonyloxy group, and C1-C4 saturated hydrocarbylsulfonyloxy group are as exemplified just above for the saturated hydrocarbyl group.
Examples of the C1-C6 saturated hydrocarbyl group represented by R1A and R1B are as exemplified just above for the saturated hydrocarbyl group R3. The C2-C8 unsaturated aliphatic hydrocarbyl group represented by R1B may be straight, branched or cyclic and examples thereof include alkenyl groups such as vinyl, 1-propenyl, 2-propenyl, butenyl, and hexenyl, and cyclic unsaturated hydrocarbyl groups such as cyclohexenyl.
Examples of the monomer from which recurring units (a) are derived are shown below, but not limited thereto. RA is as defined above.
The recurring unit (a) containing an imide group having an iodized aromatic group bonded thereto has an acid diffusion controlling ability. Since the recurring unit (a) contains a highly absorptive iodine atom or atoms, it generates secondary electrons to promote decomposition of the acid generator during exposure, leading to a high sensitivity. As a result, a high sensitivity, high resolution, and low LWR or improved CDU are achieved at the same time.
The preferred recurring units (b1) and (b2) are recurring units having the formulae (b1) and (b2), respectively.
In formulae (b1) and (b2), RA is each independently hydrogen or methyl. Y1 is a single bond, phenylene group, naphthylene group, or C1-C12 linking group containing an ester bond, ether bond or lactone ring. Y2 is a single bond, ester bond or amide bond. Y3 is a single bond, ether bond or ester bond. R11 and R12 each are an acid labile group. R13 is fluorine, trifluoromethyl, cyano or a C1-C6 saturated hydrocarbyl group. R14 is a single bond or C1-C6 saturated hydrocarbylene group in which some carbon may be replaced by an ether bond or ester bond. The subscript “a” is 1 or 2, and b is an integer of 0 to 4.
Examples of the monomer from which recurring units (b1) are derived are shown below, but not limited thereto. Herein RA and R11 are as defined above.
Examples of the monomer from which recurring units (b2) are derived are shown below, but not limited thereto. Herein RA and R12 are as defined above.
The acid labile groups represented by R11 and R12 may be selected from a variety of such groups, for example, groups of the following formulae (AL-1) to (AL-3).
In formula (AL-1), RL1 is a C4-C20, preferably C4-C15 tertiary hydrocarbyl group, a trialkylsilyl group in which each alkyl moiety has 1 to 6 carbon atoms, a C4-C20 saturated hydrocarbyl group containing a carbonyl moiety, ether bond or ester bond, or a group of formula (AL-3). A1 is an integer of 0 to 6. Herein the tertiary hydrocarbyl group refers to a group obtained from a tertiary hydrocarbon by eliminating the hydrogen atom on the tertiary carbon atom.
The tertiary hydrocarbyl group RL1 may be branched or cyclic and examples thereof include tert-butyl, tert-pentyl, 1,1-diethylpropyl, 1-ethylcyclopentyl, 1-butylcyclopentyl, 1-ethylcyclohexyl, 1-butylcyclohexyl, 1-ethyl-2-cyclopentenyl, 1-ethyl-2-cyclohexenyl, and 2-methyl-2-adamantyl. Examples of the trialkylsilyl group include trimethylsilyl, triethylsilyl, and dimethyl-tert-butylsilyl. Examples of the saturated hydrocarbyl group containing a carbonyl moiety, ether bond or ester bond may be straight, branched or cyclic, preferably cyclic, and examples thereof include 3-oxocyclohexyl, 4-methyl-2-oxooxan-4-yl, 5-methyl-2-oxooxolan-5-yl, 2-tetrahydropyranyl, and 2-tetrahydrofuranyl.
Examples of the acid labile group having formula (AL-1) include tert-butoxycarbonyl, tert-butoxycarbonylmethyl, tert-pentyloxycarbonyl, tert-pentyloxycarbonylmethyl, 1,1-diethylpropyloxycarbonyl, 1,1-diethylpropyloxycarbonylmethyl, 1-ethylcyclopentyloxycarbonyl, 1-ethylcyclopentyloxycarbonylmethyl, 1-ethyl-2-cyclopentenyloxycarbonyl, 1-ethyl-2-cyclopentenyloxycarbonylmethyl, 1-ethoxyethoxycarbonylmethyl, 2-tetrahydropyranyloxycarbonylmethyl, and 2-tetrahydrofuranyloxycarbonylmethyl.
Other examples of the acid labile group having formula (AL-1) include groups having the formulae (AL-1)-1 to (AL-1)-10.
Herein A1 is as defined above. RL8 is each independently a C1-C10 saturated hydrocarbyl group or C6-C20 aryl group. RL9 is hydrogen or a C1-C10 saturated hydrocarbyl group. RL10 is a C2-C10 saturated hydrocarbyl group or C6-C20 aryl group. The saturated hydrocarbyl group may be straight, branched or cyclic.
In formula (AL-2), RL2 and RL3 are each independently hydrogen or a C1-C18, preferably C1-C10 saturated hydrocarbyl group. The saturated hydrocarbyl group may be straight, branched or cyclic and examples thereof include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, cyclopentyl, cyclohexyl, 2-ethylhexyl and n-octyl. RL4 is a C1-C18, preferably C1-C10 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Typical are C1-C18 saturated hydrocarbyl groups, in which some hydrogen may be substituted by hydroxyl, alkoxy, oxo, amino or alkylamino. Examples of the substituted saturated hydrocarbyl group are shown below.
A pair of RL2 and RL3, RL2 and RL4, or RL3 and RL4 may bond together to form a ring with the carbon atom or carbon and oxygen atoms to which they are attached. RL2 and RL3, RL2 and RL4, or RL3 and RL4 are each independently a C1-C18, preferably C1-C10 alkanediyl group when they form a ring. The ring thus formed is preferably of 3 to 10, more preferably 4 to 10 carbon atoms.
Of the acid labile groups having formula (AL-2), suitable straight or branched groups include those having formulae (AL-2)-1 to (AL-2)-69, but are not limited thereto.
Of the acid labile groups having formula (AL-2), suitable cyclic groups include tetrahydrofuran-2-yl, 2-methyltetrahydrofuran-2-yl, tetrahydropyran-2-yl, and 2-methyltetrahydropyran-2-yl.
Also included are acid labile groups having the following formulae (AL-2a) and (AL-2b). The base polymer may be crosslinked within the molecule or between molecules with these acid labile groups.
In formulae (AL-2a) and (AL-2b), RL11 and RL12 are each independently hydrogen or a C1-C8 saturated hydrocarbyl group which may be straight, branched or cyclic. Also, RL11 and RL12 may bond together to form a ring with the carbon atom to which they are attached, and in this case, RL11 and RL12 are each independently a C1-C8 alkanediyl group. R1′ is each independently a C1-C10 saturated hydrocarbylene group which may be straight, branched or cyclic. B1 and D1 are each independently an integer of 0 to 10, preferably 0 to 5, and C1 is an integer of 1 to 7, preferably 1 to 3.
In formulae (AL-2a) and (AL-2b), LA is a (C1+1)-valent C1-C50 aliphatic or alicyclic saturated hydrocarbon group, aromatic hydrocarbon group or heterocyclic group. In these groups, some carbon may be replaced by a heteroatom-containing moiety, or some carbon-bonded hydrogen may be substituted by a hydroxyl, carboxyl, acyl moiety or fluorine. LA is preferably a C1-C20 saturated hydrocarbylene group, saturated hydrocarbon group (e.g., trivalent or tetravalent saturated hydrocarbon group), or C6-C30 arylene group. The saturated hydrocarbon group may be straight, branched or cyclic. LB is —CO—O—, —NHCO—O— or —NHCONH—.
Examples of the crosslinking acetal groups having formulae (AL-2a) and (AL-2b) include groups having the formulae (AL-2)-70 to (AL-2)-77.
In formula (AL-3), RL5, RL6, and RL7 are each independently a C1-C20 hydrocarbyl group which may contain a heteroatom such as oxygen, sulfur, nitrogen or fluorine. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include C1-C20 alkyl groups, C3-C20 cyclic saturated hydrocarbyl groups, C2-C20 alkenyl groups, C3-C20 cyclic unsaturated hydrocarbyl groups, and C6-C10 aryl groups. A pair of RL5 and RL6, RL5 and RL7, or RL6 and RL7 may bond together to form a C3-C20 aliphatic ring with the carbon atom to which they are attached.
Examples of the group having formula (AL-3) include tert-butyl, 1,1-diethylpropyl, 1-ethylnorbornyl, 1-methylcyclohexyl, 1-ethylcyclopentyl, 2-(2-methyl)adamantyl, 2-(2-ethyl)adamantyl, and tert-pentyl.
Examples of the group having formula (AL-3) also include groups having the formulae (AL-3)-1 to (AL-3)-19.
In formulae (AL-3)-1 to (AL-3)-19, RL14 is each independently a C1-C8 saturated hydrocarbyl group or C6-C20 aryl group. RL15 and RL17 are each independently hydrogen or a C1-C20 saturated hydrocarbyl group. RL16 is a C6-C20 aryl group. The saturated hydrocarbyl group may be straight, branched or cyclic. Typical of the aryl group is phenyl. RF is fluorine or trifluoromethyl, and g is an integer of 1 to 5.
Other examples of the group having formula (AL-3) include groups having the formulae (AL-3)-20 and (AL-3)-21. The base polymer may be crosslinked within the molecule or between molecules with these acid labile groups.
In formulae (AL-3)-20 and (AL-3)-21, RL14 is as defined above. RL18 is a C1-C20 (E1+1)-valent saturated hydrocarbylene group or C6-C20 (E1+1)-valent arylene group, which may contain a heteroatom such as oxygen, sulfur or nitrogen. The saturated hydrocarbylene group may be straight, branched or cyclic. E1 is 1, 2 or 3.
Examples of the monomer from which recurring units containing an acid labile group of formula (AL-3) are derived include (meth)acrylates having an exo-form structure represented by the formula (AL-3)-22.
In formula (AL-3)-22, RA is as defined above. RLc1 is a C1-C8 saturated hydrocarbyl group or an optionally substituted C6-C20 aryl group; the saturated hydrocarbyl group may be straight, branched or cyclic. RLc2 to RLc11 are each independently hydrogen or a C1-C15 hydrocarbyl group which may contain a heteroatom; oxygen is a typical heteroatom. Suitable hydrocarbyl groups include C1-C15 alkyl groups and C6-C15 aryl groups. Alternatively, a pair of RLc2 and RLc3, RLc4 and RLc6, RLc4 and RLc7, RLc5 and RLc7, RLc5 and RLc11, RLc6 and RLc10, RLc8 and RLc9, or RLc9 and RLc10, taken together, may form a ring with the carbon atom to which they are attached, and each ring-forming participant is a C1-C15 hydrocarbylene group which may contain a heteroatom. Also, a pair of RLc2 and RLc11, RLc8 and RLc11, or RLc4 and RLc6 which are attached to vicinal carbon atoms may bond together directly to form a double bond. The formula also represents an enantiomer.
Examples of the monomer from which recurring units having formula (AL-3)-22 are derived are described in U.S. Pat. No. 6,448,420 (JP-A 2000-327633). Illustrative non-limiting examples of suitable monomers are given below. RA is as defined above.
Examples of the monomer from which the recurring units having an acid labile group of formula (AL-3) are derived include (meth)acrylates having a furandiyl, tetrahydrofurandiyl or oxanorbornanediyl group as represented by the following formula (AL-3)-23.
In formula (AL-3)-23, RA is as defined above. RLc12 and RLc13 are each independently a C1-C10 hydrocarbyl group, or RLc12 and RLc13, taken together, may form an aliphatic ring with the carbon atom to which they are attached. RLc14 is furandiyl, tetrahydrofurandiyl or oxanorbomanediyl. RLc15 is hydrogen or a C1-C10 hydrocarbyl 11) group which may contain a heteroatom. The hydrocarbyl groups may be straight, branched or cyclic, and are typically C1-C10 saturated hydrocarbyl groups.
Examples of the monomer from which the recurring units having formula (AL-3)-23 are derived are shown below, but not limited thereto. Herein RA is as defined above.
The base polymer may further include recurring units (c) having an adhesive group which is selected from hydroxyl, carboxyl, lactone ring, carbonate, thiocarbonate, carbonyl, cyclic acetal, ether bond, ester bond, sulfonic acid ester bond, cyano, amide bond, —O—C(═O)—S— and —O—C(═O)—NH—.
Examples of the monomer from which recurring units (c) are derived are given below, but not limited thereto. Herein RA is as defined above.
The base polymer may further comprise recurring units (d) derived from an onium salt having a polymerizable unsaturated bond. Suitable units (d) are recurring units having the following formulae (d1), (d2) and (d3). These units are simply referred to as recurring units (d1), (d2) and (d3), which may be used alone or in combination of two or more types.
In formulae (d1) to (d3), RA is each independently hydrogen or methyl. Z1 is a single bond, phenylene, naphthylene, —C(═O)—O—Z11— or —C(═O)—NH—Z11—, wherein Z11 is a C1-C6 aliphatic hydrocarbylene group, phenylene group, naphthylene group or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond or hydroxyl moiety. Z2 is a single bond or ester bond. Z3 is a single bond, —Z31—C(═O)—O—, —Z31—O—, or —Z31—O—C(═O)—, wherein Z31 is a C1-C12 hydrocarbylene group, phenylene group, or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond, iodine or bromine. Z4 is a single bond, methylene, or 2,2,2-trifluoro-1,1-ethanediyl. Z5 is a single bond, methylene, ethylene, phenylene, fluorinated phenylene, —O—Z51—, —C(═O)—O—Z51— or —C(═O)—NH—Z51—, wherein Z51 is a C1-C6 aliphatic hydrocarbylene group, phenylene group, or a C7-C18 group obtained from combination thereof, which may contain a carbonyl moiety, ester bond, ether bond or hydroxyl moiety.
In formula (d2), Rf1 and Rf2 are each independently hydrogen, fluorine, or trifluoromethyl, at least one of Rf1 and Rf2 being fluorine. Most preferably both Rf1 and Rf2 are fluorine.
In formulae (d1) to (d3), R21 to R28 are each independently a C1-C20 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl groups may be straight, branched or cyclic. Examples thereof are as will be exemplified for R101 to R105 in formulae (1-1) and (1-2). A pair of R23 and R24, or R26 and R27 may bond together to form a ring with the sulfur atom to which they are attached. Examples of the ring are as will be exemplified later for the ring that R101 and R102 in formula (1-1), taken together, form with the sulfur atom to which they are attached.
In formula (d1), M− is a non-nucleophilic counter ion. Examples of the non-nucleophilic counter ion include halide ions such as chloride and bromide ions; fluoroalkylsulfonate ions such as triflate, 1,1,1-trifluoroethanesulfonate, and nonafluorobutanesulfonate; arylsulfonate ions such as tosylate, benzenesulfonate, 4-fluorobenzenesulfonate, and 1,2,3,4,5-pentafluorobenzenesulfonate; alkylsulfonate ions such as mesylate and butanesulfonate; imide ions such as bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide and bis(perfluorobutylsulfonyl)imide; methide ions such as tris(trifluoromethylsulfonyl)methide and tris(perfluoroethylsulfonyl)methide.
Also included are sulfonate ions having fluorine substituted at α-position as represented by the formula (d1-1) and sulfonate ions having fluorine substituted at α-position and trifluoromethyl at β-position as represented by the formula (d1-2).
In formula (d1-1), R31 is hydrogen or a C1-C20 hydrocarbyl group which may contain an ether bond, ester bond, carbonyl moiety, lactone ring, or fluorine atom. The hydrocarbyl group may be straight, branched or cyclic, and examples thereof are as will be exemplified later for the hydrocarbyl group R107 in formula (1A′).
In formula (d1-2), R32 is hydrogen, or a C1-C30 hydrocarbyl group or C2-C30 hydrocarbylcarbonyl group, which may contain an ether bond, ester bond, carbonyl moiety or lactone ring. The hydrocarbyl group and hydrocarbyl moiety of the hydrocarbylcarbonyl group may be saturated or unsaturated and straight, branched or cyclic, and examples thereof are as will be exemplified later for the hydrocarbyl group R107 in formula (1A′).
Examples of the cation in the monomer from which recurring unit (d1) is derived are shown below, but not limited thereto. RA is as defined above.
Examples of the cation in the monomer from which recurring unit (d2) or (d3) is derived are as will be exemplified later for the cation in a sulfonium salt having formula (1-1).
Examples of the anion in the monomer from which recurring unit (d2) is derived are shown below, but not limited thereto. RA is as defined above.
Examples of the anion in the monomer from which recurring unit (d3) is derived are shown below, but not limited thereto. RA is as defined above.
Recurring units (d1) to (d3) have the function of acid generator. The attachment of an acid generator to the polymer main chain is effective in restraining acid diffusion, thereby preventing a reduction of resolution due to blur by acid diffusion. Also LWR is improved since the acid generator is uniformly distributed. When a base polymer comprising recurring units (d) is used, an acid generator of addition type (to be described later) may be omitted.
The base polymer may further include recurring units (e) which contain iodine, but not amino group. Examples of the monomer from which recurring units (e) are derived are shown below, but not limited thereto. RA is as defined above.
Besides the recurring units described above, the base polymer may further comprise recurring units (f), which are derived from such monomers as styrene, acenaphthylene, indene, coumarin, and coumarone.
In the base polymer comprising recurring units (a), (b1), (b2), (c), (d1), (d2), (d3), (e), and (f), a fraction of these units is: preferably 0<a<1.0, 0≤b1≤0.9, 0≤b2≤0.9, 0<b1+b2≤0.9, 0≤c≤0.9, 0≤d1≤0.5, 0≤d2≤0.5, 0≤d3≤0.5, 0≤d1+d2+d3≤0.5, 0≤e≤0.5, and 0≤f≤0.5;
more preferably 0.001≤a≤0.8, 0≤b1≤0.8, 0≤b2≤0.8, 0<b1+b2≤0.8, 0≤c≤0.8, 0≤d1≤0.4, 0≤d2≤0.4, 0≤d3≤0.4, 0≤d1+d2+d3≤0.4, 0≤e≤0.4, and 0≤f≤0.4; and
even more preferably 0.02≤a≤0.7, 0≤b1≤0.7, 0≤b2≤0.7, 0<b1+b2≤0.7, 0≤c≤0.7, 0≤d1≤0.3, 0≤d2≤0.3, 0≤d3≤0.3, 0≤d1+d2+d3≤0.3, 0≤e≤0.3, and 0≤f≤0.3. Notably, a+b1+b2+c+d1+d2+d3+e+f=1.0.
The base polymer may be synthesized by any desired methods, for example, by dissolving monomers corresponding to the foregoing recurring units in an organic solvent, adding a radical polymerization initiator thereto, and heating for polymerization. Examples of the organic solvent which can be used for polymerization include toluene, benzene, tetrahydrofuran (THF), diethyl ether, and dioxane. Examples of the polymerization initiator used herein include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis(2,4-dimethylvaleronitrile), dimethyl 2,2-azobis(2-methylpropionate), benzoyl peroxide, and lauroyl peroxide. Preferably the reaction temperature is 50 to 80° C., and the reaction time is 2 to 100 hours, more preferably 5 to 20 hours.
In the case of a monomer having a hydroxyl group, the hydroxyl group may be replaced by an acetal group susceptible to deprotection with acid, typically ethoxyethoxy, prior to polymerization, and the polymerization be followed by deprotection with weak acid and water. Alternatively, the hydroxyl group may be replaced by an acetyl, formyl, pivaloyl or similar group prior to polymerization, and the polymerization be followed by alkaline hydrolysis.
When hydroxystyrene or hydroxyvinylnaphthalene is copolymerized, an alternative method is possible. Specifically, acetoxystyrene or acetoxyvinylnaphthalene is used instead of hydroxystyrene or hydroxyvinylnaphthalene, and after polymerization, the acetoxy group is deprotected by alkaline hydrolysis, for thereby converting the polymer product to hydroxystyrene or hydroxyvinylnaphthalene. For alkaline hydrolysis, a base such as aqueous ammonia or triethylamine may be used. Preferably the reaction temperature is −20° C. to 100° C., more preferably 0° C. to 60° C., and the reaction time is 0.2 to 100 hours, more preferably 0.5 to 20 hours.
The base polymer should preferably have a weight average molecular weight (Mw) in the range of 1,000 to 500,000, and more preferably 2,000 to 30,000, as measured by GPC versus polystyrene standards using THF solvent. With too low a Mw, the resist composition may become less heat resistant. A polymer with too high a Mw may lose alkaline solubility and give rise to a footing phenomenon after pattern formation.
If a base polymer has a wide molecular weight distribution or dispersity (Mw/Mn), which indicates the presence of lower and higher molecular weight polymer fractions, there is a possibility that foreign matter is left on the pattern or the pattern profile is degraded. The influences of Mw and Mw/Mn become stronger as the pattern rule becomes finer. Therefore, the base polymer should preferably have a narrow dispersity (Mw/Mn) of 1.0 to 2.0, especially 1.0 to 1.5, in order to provide a resist composition suitable for micropatterning to a small feature size.
The base polymer may be a blend of two or more polymers which differ in compositional ratio, Mw or Mw/Mn. It may also be a blend of a polymer containing recurring units (a) and a polymer not containing recurring units (a).
Acid Generator
The positive resist composition may contain an acid generator capable of generating a strong acid, also referred to as acid generator of addition type. As used herein, the “strong acid” is a compound having a sufficient acidity to induce deprotection reaction of acid labile groups on the base polymer. The acid generator is typically a compound (PAG) capable of generating an acid upon exposure to actinic ray or radiation. Although the PAG used herein may be any compound capable of generating an acid upon exposure to high-energy radiation, those compounds capable of generating a sulfonic acid, imidic acid (imide acid) or methide acid are preferred. Suitable PAGs include sulfonium salts, iodonium salts, sulfonyldiazomethane, N-sulfonyloxyimide, and oxime-O-sulfonate acid generators. Suitable PAGs are as exemplified in U.S. Pat. No. 7,537,880 (JP-A 2008-111103, paragraphs [0122]-[0142]).
Also sulfonium salts having the formula (1-1) and iodonium salts having the formula (1-2) are useful PAGs.
In formulae (1-1) and (1-2), R111 to R105 are each independently fluorine, chlorine, bromine, iodine or a C1-C20 hydrocarbyl group which may contain a heteroatom.
The hydrocarbyl groups R101 to R105 may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include C1-C20 alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-octyl, n-nonyl, n-decyl, undecyl, tridecyl, tetradecyl, pentadecyl, heptadecyl, octadecyl, nonadecyl, and icosyl; C3-C20 cyclic saturated hydrocarbyl groups such as cyclopropyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, 4-methylcyclohexyl, cyclohexylmethyl, norbornyl, and adamantyl; C2-C20 alkenyl groups such as vinyl, propenyl, butenyl, and hexenyl; C3-C20 cyclic unsaturated aliphatic hydrocarbyl groups such as cyclohexenyl and norbornenyl; C2-C20 alkynyl groups such as ethynyl, propynyl and butynyl; C6-C20 aryl groups such as phenyl, methylphenyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl, isobutylphenyl, sec-butylphenyl, tert-butylphenyl, naphthyl, methylnaphthyl, ethylnaphthyl, n-propylnaphthyl, isopropylnaphthyl, n-butylnaphthyl, isobutylnaphthyl, sec-butylnaphthyl, and tert-butylnaphthyl; and C7-C20 aralkyl groups such as benzyl and phenethyl. In these groups, some hydrogen may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, or some carbon may be replaced by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl, cyano, carbonyl, ether bond, ester bond, sulfonic acid ester bond, carbonate, lactone ring, sultone ring, carboxylic anhydride or haloalkyl moiety.
A pair of R101 and R102 may bond together to form a ring with the sulfur atom to which they are attached. Preferred examples of the ring are shown by the following structures.
Herein the broken line designates an attachment to R103.
Examples of the cation of the sulfonium salt having formula (1-1) are shown below, but not limited thereto.
Examples of the cation of the iodonium salt having formula (1-2) are shown below, but not limited thereto.
In formulae (1-1) and (1-2), X− is an anion selected from the formulae (1A) to (1D).
In formula (1A), Rfa is fluorine or a C1-C40 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof are as will be exemplified later for R107 in formula (1A′).
Of the anions of formula (1A), a structure having formula (1A′) is preferred.
In formula (1A′), R106 is hydrogen or trifluoromethyl, preferably trifluoromethyl.
R107 is a C1-C38 hydrocarbyl group which may contain a heteroatom. Suitable heteroatoms include oxygen, nitrogen, sulfur and halogen, with oxygen being preferred. Of the hydrocarbyl groups, those of 6 to 30 carbon atoms are preferred because a high resolution is available in fine pattern formation. The hydrocarbyl group R107 may be saturated or unsaturated and straight, branched or cyclic. Suitable hydrocarbyl groups include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, 2-ethylhexyl, nonyl, undecyl, tridecyl, pentadecyl, heptadecyl, icosanyl; cyclic saturated hydrocarbyl groups such as cyclopentyl, cyclohexyl, 1-adamantyl, 2-adamantyl, 1-adamantylmethyl, norbornyl, norbornylmethyl, tricyclodecanyl, tetracyclododecanyl, tetracyclododecanylmethyl, dicyclohexylmethyl; unsaturated hydrocarbyl groups such as allyl and 3-cyclohexenyl; aryl groups such as phenyl, 1-naphthyl, 2-naphthyl; and aralkyl groups such as benzyl and diphenylmethyl. In these groups, some or all of the hydrogen atoms may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, or some carbon may be replaced by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl, cyano, carbonyl, ether bond, ester bond, sulfonic acid ester bond, carbonate, lactone ring, sultone ring, carboxylic anhydride or haloalkyl moiety. Examples of the heteroatom-containing hydrocarbyl group include tetrahydrofuryl, methoxymethyl, ethoxymethyl, methylthiomethyl, acetamidomethyl, trifluoroethyl, (2-methoxyethoxy)methyl, acetoxymethyl, 2-carboxy-1-cyclohexyl, 2-oxopropyl, 4-oxo-1-adamantyl, and 3-oxocyclohexyl.
With respect to the synthesis of the sulfonium salt having an anion of formula (1A′), reference is made to JP-A 2007-145797, JP-A 2008-106045, JP-A 2009-007327, and JP-A 2009-258695. Also useful are the sulfonium salts described in JP-A 2010-215608, JP-A 2012-041320, JP-A 2012-106986, and JP-A 2012-153644.
Examples of the anion having formula (1A) are shown below, but not limited thereto.
In formula (1B), Rfb1 and Rfb2 are each independently fluorine or a C1-C40 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Suitable hydrocarbyl groups are as exemplified above for R107 in formula (1A′). Preferably Rfb1 and Rfb2 each are fluorine or a straight C1-C4 fluorinated alkyl group. A pair of Rfb1 and Rfb2 may bond together to form a ring with the linkage (—CF2—SO2—N−—SO2—CF2—) to which they are attached, and the combination of Rfb1 and Rfb2 is preferably a fluorinated ethylene or fluorinated propylene group.
In formula (1C), Rfc1, Rfc2 and Rfc3 are each independently fluorine or a C1-C40 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Suitable hydrocarbyl groups are as exemplified above for R107 in formula (1A′). Preferably Rfc1, Rfc2 and Rfc3 each are fluorine or a straight C1-C4 fluorinated alkyl group. A pair of Rfc1 and Rfc2 may bond together to form a ring with the linkage (—CF2—SO2−C−—SO2—CF2—) to which they are attached, and the combination of Rfc1 and Rfc2 is preferably a fluorinated ethylene or fluorinated propylene group.
In formula (1D), Rfd is a C1-C40 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Suitable hydrocarbyl groups are as exemplified above for R107.
With respect to the synthesis of the sulfonium salt having an anion of formula (1D), reference is made to JP-A 2010-215608 and JP-A 2014-133723.
Examples of the anion having formula (1D) are shown below, but not limited thereto.
The compound having the anion of formula (1D) is free of fluorine at α-position of sulfo group, but has two trifluoromethyl groups at β-position, which ensures a sufficient acid strength to cleave acid labile groups in the base polymer. Thus the compound is a useful PAG.
Also compounds having the formula (2) are useful as the PAG.
In formula (2), R201 and R202 are each independently a C1-C30 hydrocarbyl group which may contain a heteroatom. R203 is a C1-C30 hydrocarbylene group which may contain a heteroatom. R201 and R202, or R201 and R203 may bond together to form a ring with the sulfur atom to which they are attached. Exemplary rings are the same as described above for the ring that R101 and R102 in formula (1-1), taken together, form with the sulfur atom to which they are attached.
The hydrocarbyl groups R201 and R202 may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include alkyl groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, tert-pentyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, and n-decyl; cyclic saturated hydrocarbyl groups such as cyclopentyl, cyclohexyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylbutyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylbutyl, norbornyl, tricyclo[5.2.1.02,6]decanyl, and adamantyl; and aryl groups such as phenyl, methylphenyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl, isobutylphenyl, sec-butylphenyl, tert-butylphenyl, naphthyl, methylnaphthyl, ethylnaphthyl, n-propylnaphthyl, isopropylnaphthyl, n-butylnaphthyl, isobutylnaphthyl, sec-butylnaphthyl, tert-butylnaphthyl and anthracenyl. In these groups, some hydrogen may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, or some carbon may be replaced by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl, cyano, carbonyl, ether bond, ester bond, sulfonic acid ester bond, carbonate moiety, lactone ring, sultone ring, carboxylic anhydride or haloalkyl moiety.
The hydrocarbylene group R203 may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include alkanediyl groups such as methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, nonane-1,9-diyl, decane-1,10-diyl, undecane-1,11-diyl, dodecane-1,12-diyl, tridecane-1,13-diyl, tetradecane-1,14-diyl, pentadecane-1,15-diyl, hexadecane-1,16-diyl, and heptadecane-1,17-diyl; cyclic saturated hydrocarbylene groups such as cyclopentanediyl, cyclohexanediyl, norbornanediyl and adamantanediyl; and arylene groups such as phenylene, methylphenylene, ethylphenylene, n-propylphenylene, isopropylphenylene, n-butylphenylene, isobutylphenylene, sec-butylphenylene, tert-butylphenylene, naphthylene, methylnaphthylene, ethylnaphthylene, n-propylnaphthylene, isopropylnaphthylene, n-butylnaphthylene, isobutylnaphthylene, sec-butylnaphthylene, and tert-butylnaphthylene. In these groups, some hydrogen may be substituted by an alkyl moiety such as methyl, ethyl, propyl, n-butyl or tert-butyl, some hydrogen may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, or some carbon may be replaced by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl, cyano, carbonyl, ether bond, ester bond, sulfonic acid ester bond, carbonate, lactone ring, sultone ring, carboxylic anhydride or haloalkyl moiety. Of the heteroatoms, oxygen is preferred.
In formula (2), LC is a single bond, ether bond or a C1-C20 hydrocarbylene group which may contain a heteroatom. The hydrocarbylene group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof are as exemplified above for R203.
In formula (2), XA, XB, XC and XD are each independently hydrogen, fluorine or trifluoromethyl, with the proviso that at least one of XA, XB, XC and XD is fluorine or trifluoromethyl, and k is an integer of 0 to 3.
Of the PAGs having formula (2), those having formula (2′) are preferred.
In formula (2′), LC is as defined above. RHF is hydrogen or trifluoromethyl, preferably trifluoromethyl. R301, R302 and R303 are each independently hydrogen or a C1-C20 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof are as exemplified above for R107 in formula (1A′). The subscripts x and y are each independently an integer of 0 to 5, and z is an integer of 0 to 4.
Examples of the PAG having formula (2) are as exemplified for the PAG having formula (2) in JP-A 2017-026980 (U.S. Pat. No. 9,720,324).
Of the foregoing PAGs, those having an anion of formula (1A′) or (1D) are especially preferred because of reduced acid diffusion and high solubility in the resist solvent. Also those having formula (2′) are especially preferred because of extremely reduced acid diffusion.
Also a sulfonium or iodonium salt having an anion containing an iodized or brominated aromatic ring may be used as the PAG. Suitable are sulfonium and iodonium salts having the formulae (3-1) and (3-2).
In formulae (3-1) and (3-2), r is an integer of 1 to 3, s is an integer of 1 to 5, and t is an integer of 0 to 3, and 1≤s+t≤5. Preferably, s is 1, 2 or 3, more preferably 2 or 3, and t is 0, 1 or 2.
In formulae (3-1) and (3-2), XBI is iodine or bromine, and may be the same or different when r and/or s is 2 or more.
L1 is a single bond, ether bond, ester bond, or a C1-C6 saturated hydrocarbylene group which may contain an ether bond or ester bond. The saturated hydrocarbylene group may be straight, branched or cyclic.
L2 is a single bond or a C1-C20 divalent linking group when r=1, and a C1-C20 (r+1)-valent linking group which may contain oxygen, sulfur or nitrogen when r=2 or 3.
R401 is a hydroxyl group, carboxyl group, fluorine, chlorine, bromine, amino group, or a C1-C20 saturated hydrocarbyl, C1-C20 saturated hydrocarbyloxy, C2-C10 saturated hydrocarbyloxycarbonyl, C2-C20 saturated hydrocarbylcarbonyloxy or C1-C20 saturated hydrocarbylsulfonyloxy group, which may contain fluorine, chlorine, bromine, hydroxyl, amino or ether bond, or —NR401A—C(═O)—R401B or —NR401A—C(═O)—O—R401B. R401A is hydrogen or a C1-C6 saturated hydrocarbyl group which may contain halogen, hydroxyl, C1-C6 alkoxy, C2-C6 saturated hydrocarbylcarbonyl or C2-C6 saturated hydrocarbylcarbonyloxy moiety. R401B is a C1-C16 aliphatic hydrocarbyl or C6-C12 aryl group, which may contain halogen, hydroxyl, C1-C6 saturated hydrocarbyloxy, C2-C6 saturated hydrocarbylcarbonyl or C2-C6 saturated hydrocarbylcarbonyloxy moiety. The aliphatic hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. The saturated hydrocarbyl, saturated hydrocarbyloxy, saturated hydrocarbyloxycarbonyl, saturated hydrocarbylcarbonyl, and saturated hydrocarbylcarbonyloxy groups may be straight, branched or cyclic. Groups R401 may be the same or different when r and/or t is 2 or more. Of these, R401 is preferably hydroxyl, —NR401A—C(═O)—R104B, —NR401A—C(═O)—O—R401B, fluorine, chlorine, bromine, methyl or methoxy.
In formulae (3-1) and (3-2), Rf11 to Rf14 are each independently hydrogen, fluorine or trifluoromethyl, at least one of Rf11 to Rf14 is fluorine or trifluoromethyl, or Rf11 and Rf12, taken together, may form a carbonyl group. Preferably, both Rf14 and Rf14 are fluorine.
R402, R403, R404, R405 and R406 are each independently a C1-C20 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include C1-C20 alkyl, C3-C20 cycloalkyl, C2-C20 alkenyl, C2-C20 alkynyl, C6-C20 aryl, and C7-C20 aralkyl groups. In these groups, some or all of the hydrogen atoms may be substituted by hydroxyl, carboxyl, halogen, cyano, nitro, mercapto, sultone, sulfone, or sulfonium salt-containing moieties, and some carbon may be replaced by an ether bond, ester bond, carbonyl moiety, amide bond, carbonate moiety or sulfonic acid ester bond. R402 and R403 may bond together to form a ring with the sulfur atom to which they are attached. Exemplary rings are the same as described above for the ring that r101 and R102 in formula (1-1), taken together, form with the sulfur atom to which they are attached.
Examples of the cation in the sulfonium salt having formula (3-1) include those exemplified above as the cation in the sulfonium salt having formula (1-1). Examples of the cation in the iodonium salt having formula (3-2) include those exemplified above as the cation in the iodonium salt having formula (1-2).
Examples of the anion in the onium salts having formulae (3-1) and (3-2) are shown below, but not limited thereto. Herein XBI is as defined above.
In the positive resist composition, the acid generator of addition type is preferably used in an amount of 0.1 to 50 parts, more preferably 1 to 40 parts by weight per 100 parts by weight of the base polymer. When the base polymer contains recurring units (d1) to (d3) and/or the acid generator of addition type is added, the positive resist composition functions as a chemically amplified positive resist composition.
Organic Solvent
The positive resist composition may contain an organic solvent. The organic solvent is not particularly limited as long as the foregoing components and other components are dissolvable therein. Examples of the organic solvent used herein are described in U.S. Pat. No. 7,537,880 (JP-A 2008-111103, paragraphs [0144]-[0145]). Exemplary solvents include ketones such as cyclohexanone, cyclopentanone, methyl-2-n-pentyl ketone, and 2-heptanone; alcohols such as 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and diacetone alcohol (DAA); ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, and diethylene glycol dimethyl ether; esters such as propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, tert-butyl acetate, tert-butyl propionate, and propylene glycol mono-tert-butyl ether acetate; and lactones such as γ-butyrolactone, and mixtures thereof.
The organic solvent is preferably added in an amount of 100 to 10,000 parts, and more preferably 200 to 8,000 parts by weight per 100 parts by weight of the base polymer.
Quencher
In the resist composition, a quencher may be blended. The quencher is typically selected from conventional basic compounds. Conventional basic compounds include primary, secondary, and tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds with carboxyl group, nitrogen-containing compounds with sulfonyl group, nitrogen-containing compounds with hydroxyl group, nitrogen-containing compounds with hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide derivatives, imide derivatives, and carbamate derivatives. Also included are primary, secondary, and tertiary amine compounds, specifically amine compounds having a hydroxyl, ether, ester, lactone ring, cyano, or sulfonic acid ester group as described in JP-A 2008-111103, paragraphs [0146]-[0164], and compounds having a carbamate group as described in JP 3790649. Addition of a basic compound may be effective for further suppressing the diffusion rate of acid in the resist film or correcting the pattern profile.
Onium salts such as sulfonium salts, iodonium salts and ammonium salts of sulfonic acids which are not fluorinated at α-position as described in U.S. Pat. No. 8,795,942 (JP-A 2008-158339) and similar onium salts of carboxylic acid may also be used as the quencher. While an α-fluorinated sulfonic acid, imide acid, and methide acid are necessary to deprotect the acid labile group of carboxylic acid ester, an α-non-fluorinated sulfonic acid or carboxylic acid is released by salt exchange with an α-non-fluorinated onium salt. An α-non-fluorinated sulfonic acid and a carboxylic acid function as a quencher because they do not induce deprotection reaction.
Examples of the quencher include a compound (onium salt of α-non-fluorinated to sulfonic acid) having the formula (4) and a compound (onium salt of carboxylic acid) having the formula (5).
R501—SO3−Mq+ (4)
R502—CO2−Mq+ (5)
In formula (4), R501 is hydrogen or a C1-C40 hydrocarbyl group which may contain a heteroatom, exclusive of the hydrocarbyl group in which the hydrogen bonded to the carbon atom at α-position of the sulfone group is substituted by fluorine or fluoroalkyl group.
The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include alkyl groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, tert-pentyl, n-pentyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl; cyclic saturated hydrocarbyl groups such as cyclopentyl, cyclohexyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylbutyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylbutyl, norbornyl, tricyclo[5.2.1.02,6]decanyl, adamantyl, and adamantylmethyl; cyclic unsaturated aliphatic hydrocarbyl groups such as cyclohexenyl; aryl groups such as phenyl, naphthyl, alkylphenyl groups (e.g., 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-ethylphenyl, 4-tert-butylphenyl, 4-n-butylphenyl), dialkylphenyl groups (e.g., 2,4-dimethylphenyl and 2,4,6-triisopropylphenyl), alkylnaphthyl groups (e.g., methylnaphthyl and ethylnaphthyl), dialkylnaphthyl groups (e.g., dimethylnaphthyl and diethylnaphthyl); heteroaryl groups such as thienyl; aralkyl groups include benzyl, 1-phenylethyl and 2-phenylethyl.
In these groups, some hydrogen may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, and some carbon may be replaced by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl moiety, cyano moiety, carbonyl moiety, ether bond, ester bond, sulfonic acid ester bond, carbonate bond, lactone ring, sultone ring, carboxylic anhydride, or haloalkyl moiety. Suitable heteroatom-containing hydrocarbyl groups include alkoxyphenyl groups such as 4-hydroxyphenyl, 4-methoxyphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 4-ethoxyphenyl, 4-tert-butoxyphenyl, 3-tert-butoxyphenyl; alkoxynaphthyl groups such as methoxynaphthyl, ethoxynaphthyl, n-propoxynaphthyl and n-butoxynaphthyl; dialkoxynaphthyl groups such as dimethoxynaphthyl and diethoxynaphthyl; and aryloxoalkyl groups, typically 2-aryl-2-oxoethyl groups such as 2-phenyl-2-oxoethyl, 2-(1-naphthyl)-2-oxoethyl and 2-(2-naphthyl)-2-oxoethyl.
In formula (5), R502 is a C1-C40 hydrocarbyl group which may contain a heteroatom. Examples of the hydrocarbul group R502 are as exemplified above for the hydrocarbyl group R501. Also included are fluorinated alkyl groups such as trifluoromethyl, trifluoroethyl, 2,2,2-trifluoro-1-methyl-1-hydroxyethyl, 2,2,2-trifluoro-1-(trifluoromethyl)-1-hydroxyethyl, and fluorinated aryl groups such as pentafluorophenyl and 4-trifluoromethylphenyl.
A sulfonium salt of iodized benzene ring-containing carboxylic acid having the formula (6) is also useful as the quencher.
In formula (6), R601 is hydroxyl, fluorine, chlorine, bromine, amino, nitro, cyano, or a C1-C6 saturated hydrocarbyl, C1-C6 saturated hydrocarbyloxy, C2-C6 saturated hydrocarbylcarbonyloxy or C1-C4 saturated hydrocarbylsulfonyloxy group, in which some or all hydrogen may be substituted by halogen, or —NR601A—C(═O)—R601B, or —NR601A—C(═O)—O—R601B. R60A or is hydrogen or a C1-C6 saturated hydrocarbyl group. R601B is a C1-C6 saturated hydrocarbyl or C2-C8 unsaturated aliphatic hydrocarbyl group.
In formula (6), x′ is an integer of 1 to 5, y′ is an integer of 0 to 3, and z′ is an integer of 1 to 3. LD is a single bond, or a C1-C20 (z′+1)-valent linking group which may contain at least one moiety selected from ether bond, carbonyl moiety, ester bond, amide bond, sultone ring, lactam ring, carbonate moiety, halogen, hydroxyl moiety, and carboxyl moiety. The saturated hydrocarbyl, saturated hydrocarbyloxy, saturated hydrocarbylcarbonyloxy, and saturated hydrocarbylsulfonyloxy groups may be straight, branched or cyclic. Groups R601 may be the same or different when y′ and/or z′ is 2 or 3.
In formula (6), R602, R603 and R604 are each independently fluorine, chlorine, bromine, iodine, or a C1-C12 hydrocarbyl group which may contain a heteroatom. The hydrocarbyl group may be saturated or unsaturated and straight, branched or cyclic. Examples thereof include C1-C20 alkyl, C2-C20 alkenyl, C6-C20 aryl, and C7-C20 aralkyl groups. In these groups, some or all hydrogen may be substituted by hydroxyl, carboxyl, halogen, oxo, cyano, nitro, sultone, sulfone, or sulfonium salt-containing moiety, or some carbon may be replaced by an ether bond, ester bond, carbonyl moiety, amide bond, carbonate moiety or sulfonic acid ester bond. Also R602 and R603 may bond together to form a ring with the sulfur atom to which they are attached.
Examples of the compound having formula (6) include those described in U.S. Pat. No. 10,295,904 (JP-A 2017-219836). Since iodine is highly absorptive to EUV of wavelength 13.5 nm, it generates secondary electrons during exposure, with the energy of secondary electrons being transferred to the acid generator. This promotes the decomposition of the quencher, contributing to a higher sensitivity.
Also useful are quenchers of polymer type as described in U.S. Pat. No. 7,598,016 (JP-A 2008-239918). The polymeric quencher segregates at the resist surface after coating and thus enhances the rectangularity of resist pattern. When a protective film is applied as is often the case in the immersion lithography, the polymeric quencher is also effective for preventing a film thickness loss of resist pattern or rounding of pattern top.
The quencher is preferably added in an amount of 0 to 5 parts, more preferably 0 to 4 parts by weight per 100 parts by weight of the base polymer. The quencher may be used alone or in admixture.
Other Components
In addition to the foregoing components, other components such as surfactant and dissolution inhibitor may be blended in any desired combination to formulate a positive resist composition. This positive resist composition has a very high sensitivity in that the dissolution rate in developer of the base polymer in exposed areas is accelerated by catalytic reaction. In addition, the resist film has a high dissolution contrast, resolution, exposure latitude, and process adaptability, and provides a good pattern profile after exposure, and minimal proximity bias because of restrained acid diffusion. By virtue of these advantages, the composition is fully useful in commercial application and suited as a pattern-forming material for the fabrication of VLSIs.
Exemplary surfactants are described in JP-A 2008-111103, paragraphs [0165]-[0166]. Inclusion of a surfactant may improve or control the coating characteristics of the resist composition. The surfactant is preferably added in an amount of 0.0001 to 10 parts by weight per 100 parts by weight of the base polymer. The surfactant may be used alone or in admixture.
The inclusion of a dissolution inhibitor may lead to an increased difference in dissolution rate between exposed and unexposed areas and a further improvement in resolution. The dissolution inhibitor which can be used herein is a compound having at least two phenolic hydroxyl groups on the molecule, in which an average of from 0 to 100 mol % of all the hydrogen atoms on the phenolic hydroxyl groups are replaced by acid labile groups or a compound having at least one carboxyl group on the molecule, in which an average of 50 to 100 mol % of all the hydrogen atoms on the carboxyl groups are replaced by acid labile groups, both the compounds having a molecular weight of 100 to 1,000, and preferably 150 to 800. Typical are bisphenol A, trisphenol, phenolphthalein, cresol novolac, naphthalenecarboxylic acid, adamantanecarboxylic acid, and cholic acid derivatives in which the hydrogen atom on the hydroxyl or carboxyl group is replaced by an acid labile group, as described in U.S. Pat. No. 7,771,914 (JP-A 2008-122932, paragraphs [0155]-[0178]). The dissolution inhibitor is preferably added in an amount of 0 to 50 parts, more preferably 5 to 40 parts by weight per 100 parts by weight of the base polymer.
To the resist composition, a water repellency improver may also be added for improving the water repellency on surface of a resist film. The water repellency improver may be used in the topcoatless immersion lithography. Suitable water repellency improvers include polymers having a fluoroalkyl group and polymers having a specific structure with a 1,1,1,3,3,3-hexafluoro-2-propanol residue and are described in JP-A 2007-297590 and JP-A 2008-111103, for example. The water repellency improver to be added to the resist composition should be soluble in the alkaline developer and organic solvent developer. The water repellency improver of specific structure with a 1,1,1,3,3,3-hexafluoro-2-propanol residue is well soluble in the developer. A polymer having an amino group or amine salt copolymerized as recurring units may serve as the water repellent additive and is effective for preventing evaporation of acid during PEB, thus preventing any hole pattern opening failure after development. An appropriate amount of the water repellency improver is 0 to 20 parts, preferably 0.5 to 10 parts by weight per 100 parts by weight of the base polymer.
Also, an acetylene alcohol may be blended in the resist composition. Suitable acetylene alcohols are described in JP-A 2008-122932, paragraphs [0179]-[0182]. An appropriate amount of the acetylene alcohol blended is 0 to 5 parts by weight per 100 parts by weight of the base polymer.
Process
The positive resist composition is used in the fabrication of various integrated circuits. Pattern formation using the resist composition may be performed by well-known lithography processes. The process generally involves coating, exposure, and development. If necessary, any additional steps may be added.
For example, the positive resist composition is first applied onto a substrate on which an integrated circuit is to be formed (e.g., Si, SiO2, SiN, SiON, TiN, WSi, BPSG, SOG, or organic antireflective coating) or a substrate on which a mask circuit is to be formed (e.g., Cr, CrO, CrON, MoSi2, or SiO2) by a suitable coating technique such as spin coating, roll coating, flow coating, dipping, spraying or doctor coating. The coating is prebaked on a hotplate at a temperature of 60 to 150° C. for 10 seconds to 30 minutes, preferably at 80 to 120° C. for 30 seconds to 20 minutes. The resulting resist film is generally 0.01 to 2 μm thick.
The resist film is then exposed to a desired pattern of high-energy radiation such as UV, deep-UV, EB, EUV of wavelength 3 to 15 nm, x-ray, soft x-ray, excimer laser light, γ-ray or synchrotron radiation. When UV, deep-UV, EUV, x-ray, soft x-ray, excimer laser light, γ-ray or synchrotron radiation is used as the high-energy radiation, the resist film is exposed thereto through a mask having a desired pattern in a dose of preferably about 1 to 200 mJ/cm2, more preferably about 10 to 100 mJ/cm2. When EB is used as the high-energy radiation, the resist film is exposed thereto through a mask having a desired pattern or directly in a dose of preferably about 0.1 to 100 K/cm2, more preferably about 0.5 to 50 μC/cm2. It is appreciated that the inventive resist composition is suited in micropatterning using i-line of wavelength 365 nm, KrF excimer laser, ArF excimer laser, EB, EUV, x-ray, soft x-ray, γ-ray or synchrotron radiation, especially in micropatterning using EB or EUV.
After the exposure, the resist film may be baked (PEB) on a hotplate or in an oven preferably at 50 to 150° C. for 10 seconds to 30 minutes, more preferably at 60 to 120° C. for 30 seconds to 20 minutes.
After the exposure or PEB, the resist film is developed in a developer in the form of an aqueous base solution for 3 seconds to 3 minutes, preferably 5 seconds to 2 minutes by conventional techniques such as dip, puddle and spray techniques. A typical developer is a 0.1 to 10 wt %, preferably 2 to 5 wt % aqueous solution of tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), or tetrabutylammonium hydroxide (TBAH). The resist film in the exposed area is dissolved in the developer whereas the resist film in the unexposed area is not dissolved. In this way, the desired positive pattern is formed on the substrate.
In an alternative embodiment using the positive resist composition, a negative pattern may be formed via organic solvent development. The developer used herein is preferably selected from among 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, methylacetophenone, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, butenyl acetate, isopentyl acetate, propyl formate, butyl formate, isobutyl formate, pentyl formate, isopentyl formate, methyl valerate, methyl pentenoate, methyl crotonate, ethyl crotonate, methyl propionate, ethyl propionate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobutyl lactate, pentyl lactate, isopentyl lactate, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, methyl benzoate, ethyl benzoate, phenyl acetate, benzyl acetate, methyl phenylacetate, benzyl formate, phenylethyl formate, methyl 3-phenylpropionate, benzyl propionate, ethyl phenylacetate, and 2-phenylethyl acetate, and mixtures thereof.
At the end of development, the resist film is rinsed. As the rinsing liquid, a solvent which is miscible with the developer and does not dissolve the resist film is preferred. Suitable solvents include alcohols of 3 to 10 carbon atoms, ether compounds of 8 to 12 carbon atoms, alkanes, alkenes, and alkynes of 6 to 12 carbon atoms, and aromatic solvents. Specifically, suitable alcohols of 3 to 10 carbon atoms include n-propyl alcohol, isopropyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, tert-pentyl alcohol, neopentyl alcohol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol, cyclohexanol, and 1-octanol. Suitable ether compounds of 8 to 12 carbon atoms include di-n-butyl ether, diisobutyl ether, di-sec-butyl ether, di-n-pentyl ether, diisopentyl ether, di-sec-pentyl ether, di-tert-pentyl ether, and di-n-hexyl ether. Suitable alkanes of 6 to 12 carbon atoms include hexane, heptane, octane, nonane, decane, undecane, dodecane, methylcyclopentane, dimethylcyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, cycloheptane, cyclooctane, and cyclononane. Suitable alkenes of 6 to 12 carbon atoms include hexene, heptene, octene, cyclohexene, methylcyclohexene, dimethylcyclohexene, cycloheptene, and cyclooctene. Suitable alkynes of 6 to 12 carbon atoms include hexyne, heptyne, and octyne. Suitable aromatic solvents include toluene, xylene, ethylbenzene, isopropylbenzene, tert-butylbenzene and mesitylene.
Rinsing is effective for minimizing the risks of resist pattern collapse and defect formation. However, rinsing is not essential. If rinsing is omitted, the amount of solvent used may be reduced.
A hole or trench pattern after development may be shrunk by the thermal flow, RELACS® or DSA process. A hole pattern is shrunk by coating a shrink agent thereto, and baking such that the shrink agent may undergo crosslinking at the resist surface as a result of the acid catalyst diffusing from the resist layer during bake, and the shrink agent may attach to the sidewall of the hole pattern. The bake is preferably at a temperature of 70 to 180° C., more preferably 80 to 170° C., for a time of 10 to 300 seconds. The extra shrink agent is stripped and the hole pattern is shrunk.
Examples of the invention are given below by way of illustration and not by way of limitation. All parts are by weight (pbw). Mw and Mw/Mn are determined by GPC versus polystyrene standards using THF solvent.
Synthesis of Monomer 1
Monomer 1 was prepared by reacting 4-iodobenzoic chloride with methacrylamide.
Synthesis of Monomers 2 to 4
Monomers 2 to 4 were prepared by the same reaction as above aside from using 2-hydroxy-3,5-diiodobenzoic chloride, 2-hydroxy-5-iodobenzoic chloride and 4-hydroxy-2-iodobenzoic chloride instead of 4-iodobenzoic chloride.
PAG Monomers 1 to 3 and ALG Monomers 1 to 9 identified below were used in the synthesis of polymers.
Synthesis of Polymer 1
A 2-L flask was charged with 3.2 g of Monomer 1, 9.8 g of 1-isopropyl-1-cyclopentyl methacrylate, 4.8 g of 4-hydroxystyrene, and 40 g of tetrahydrofuran (THF) as solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of azobisisobutyronitrile (AIBN) was added as polymerization initiator. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of isopropyl alcohol (IPA) for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 1. Polymer 1 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 2
A 2-L flask was charged with 4.6 g of Monomer 2, 7.8 g of 1-isopropyl-1-cyclopentyl methacrylate, 4.2 g of 4-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 2. Polymer 2 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 3
A 2-L flask was charged with 5.0 g of Monomer 3, 8.4 g of 1-methyl-1-cyclopentyl methacrylate, 2.4 g of 3-hydroxystyrene, 11.4 g of PAG Monomer 1, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 3. Polymer 3 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 4
A 2-L flask was charged with 6.6 g of Monomer 4, 8.4 g of 1-methyl-1-cyclopentyl methacrylate, 2.4 g of 3-hydroxystyrene, 8.0 g of PAG Monomer 3, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 4. Polymer 4 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 5
A 2-L flask was charged with 3.3 g of Monomer 3, 8.2 g of ALG Monomer 1, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 5. Polymer 5 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 6
A 2-L flask was charged with 3.3 g of Monomer 2, 4.6 g of ALG Monomer 2, 4.0 g of ALG Monomer 3, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 6. Polymer 6 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 7
A 2-L flask was charged with 3.3 g of Monomer 3, 6.6 g of ALG Monomer 4, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 7. Polymer 7 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 8
A 2-L flask was charged with 3.3 g of Monomer 3, 7.2 g of ALG Monomer 5, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 8. Polymer 8 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 9
A 2-L flask was charged with 3.3 g of Monomer 3, 7.1 g of ALG Monomer 6, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 9. Polymer 9 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 10
A 2-L flask was charged with 3.3 g of Monomer 3, 7.2 g of ALG Monomer 7, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 10. Polymer 10 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 11
A 2-L flask was charged with 3.3 g of Monomer 3, 8.8 g of ALG Monomer 8, 4.2 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 11. Polymer 11 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Synthesis of Polymer 12
A 2-L flask was charged with 3.3 g of Monomer 3, 11.0 g of ALG Monomer 9, 3.0 g of 3-hydroxystyrene, 11.0 g of PAG Monomer 2, and 40 g of THF solvent. The reactor was cooled at −70° C. in nitrogen atmosphere, after which vacuum pumping and nitrogen blow were repeated three times. The reactor was warmed up to room temperature, whereupon 1.2 g of AIBN initiator was added. The reactor was heated at 60° C., whereupon reaction ran for 15 hours. The reaction solution was poured into 1 L of IPA for precipitation. The precipitated white solid was collected by filtration and vacuum dried at 60° C., yielding Polymer 12. Polymer 12 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Comparative Polymer 1 was obtained by the same procedure as in Synthesis Example 2-1 except that Monomer 1 was omitted. Comparative Polymer 1 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Comparative Polymer 2 was obtained by the same procedure as in Synthesis Example 2-1 aside from using 2-(dimethylamino)ethyl methacrylate instead of Monomer 1. Comparative Polymer 2 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
Comparative Polymer 3 was obtained by the same procedure as in Synthesis Example 2-2 except that Monomer 2 was omitted. Comparative Polymer 3 was analyzed for composition by 13C- and 1H-NMR and for Mw and Mw/Mn by GPC.
(1) Preparation of Positive Resist Composition
Positive resist compositions were prepared by dissolving components in a solvent in accordance with the recipe shown in Table 1, and filtering the solution through a filter having a pore size of 0.2 μm. The solvent contained 100 ppm of surfactant Polyfox PF636 (Omnova Solutions).
The components in Table 1 are as identified below.
Organic Solvents:
PGMEA (propylene glycol monomethyl ether acetate)
DAA (diacetone alcohol)
Acid generator: PAG-1 of the following structural formula
Quenchers: Q-1 and Q-2 of the following structural formulae
(2) EUV Lithography Test
Each of the resist compositions in Table 1 was spin coated on a silicon substrate having a 20-nm coating of silicon-containing spin-on hard mask SHB-A940 (Shin-Etsu Chemical Co., Ltd., Si content 43 wt %) and prebaked on a hotplate at 100° C. for 60 seconds to form a resist film of 50 nm thick. Using an EUV scanner NXE3300 (ASML, NA 0.33, σ 0.9/0.6, quadrupole illumination), the resist film was exposed to EUV through a mask bearing a hole pattern at a pitch 46 nm (on-wafer size) and +20% bias. The resist film was baked (PEB) on a hotplate at the temperature shown in Table 1 for 60 seconds and developed in a 2.38 wt % TMAH aqueous solution for 30 seconds to form a hole pattern having a size of 23 nm.
The resist pattern was observed under CD-SEM (CG-5000, Hitachi High-Technologies Corp.). The exposure dose that provides a hole pattern having a size of 23 nm is reported as sensitivity. The size of 50 holes was measured, from which a size variation (36) was computed and reported as CDU.
The resist composition is shown in Table 1 together with the sensitivity and CDU of EUV lithography.
It is demonstrated in Table 1 that positive resist compositions comprising a base polymer comprising recurring units containing an imide group having an iodized aromatic group bonded thereto offer a high sensitivity and improved CDU.
Japanese Patent Application No. 2019-191782 is incorporated herein by reference.
Although some preferred embodiments have been described, many modifications and variations may be made thereto in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2019-191782 | Oct 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8507175 | Hatakeyama | Aug 2013 | B2 |
8685620 | Takaki | Apr 2014 | B2 |
9052592 | Nakamura | Jun 2015 | B2 |
10303056 | Hatakeyama et al. | May 2019 | B2 |
20130115554 | Takaki et al. | May 2013 | A1 |
20150147697 | Hatakeyama | May 2015 | A1 |
20160376233 | Yamazaki | Dec 2016 | A1 |
20190113846 | Hatakeyama et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2015-161823 | Sep 2015 | JP |
2016-84350 | May 2016 | JP |
2018-4812 | Jan 2018 | JP |
201335697 | Sep 2013 | TW |
201922693 | Jun 2019 | TW |
2013024777 | Feb 2013 | WO |
Entry |
---|
Office Action dated May 14, 2021, issued in counterpart TW Application No. 109136053. (26 pages). |
Number | Date | Country | |
---|---|---|---|
20210116808 A1 | Apr 2021 | US |