Post-epitaxial thermal oxidation for reducing microsteps on polished semiconductor wafers

Information

  • Patent Grant
  • 6599758
  • Patent Number
    6,599,758
  • Date Filed
    Friday, August 16, 2002
    22 years ago
  • Date Issued
    Tuesday, July 29, 2003
    21 years ago
Abstract
A method for reducing microsteps on an epitaxial layer deposited on a polished semiconductor wafer substrate by post-epitaxial thermal oxidation. The method produces very smooth semiconductor wafers by performing the steps of depositing an epitaxial layer on a wafer substrate, oxidizing a top portion of the expitaxial layer, and removing the oxidized top portion. As a result, the wafer's surface presents little or no microsteps thereon.
Description




TECHNICAL FIELD




This invention relates generally to semiconductor wafer production.




BACKGROUND OF THE INVENTION




In general, semiconductor wafers are prepared in several steps, including (1) growing a single crystal ingot out of molten silicon, (2) sawing the single crystal ingot into wafers, (3) shaping or lapping the wafers, (4) performing a rough polish, and (5) depositing an epilayer of silicon substrate. The epilayer is often deposited using chemical vapor, high temperature deposition to form a single crystal silicon layer on the surface of the wafer. Once the wafers have been prepared, they are provided to a fabrication facility (fab) for further processing.




As fabs are processing smaller and smaller line widths and devices are continually shrinking, the wafer surface affects the entire fab processing. Furthermore, a particle that was once “invisible” can now completely ruin a device. Also, the surface of an epitaxial wafer exhibits characteristics known as “microsteps.” Microsteps occur because the surface of the wafer is crystalline and when it is sawed, the surface is disoriented with respect to the crystallographic planes. Therefore, despite the wafers being sawn and polished, the resulting surface has these microsteps across its surface.




SUMMARY OF THE INVENTION




In response to the problems discussed above, described herein is a system and method for handling post-epitaxial thermal oxidation. In one embodiment, the method produces semiconductor wafers by performing the steps of forming a wafer substrate, depositing an epilayer on the substrate, oxidizing a top portion of the epilayer, and removing the oxidized top portion. As a result, the wafer includes an epi-surface that is very smooth, with little or no microsteps thereon.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1



a


,


1




b


are cross-sectional views of a wafer with an epitaxial layer deposited thereon.





FIG. 2

is a flowchart of a method to be performed on the wafer of FIG.


1


.





FIG. 3

is a cross-sectional view of the wafer of

FIGS. 1



a


,


1




b


with an oxide layer on a top surface thereof.





FIG. 4

is a cross-sectional view of the wafer of

FIG. 2

after the oxide layer has been removed.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIG. 1



a


, a semiconductor wafer substrate


10


has deposited on its top surface


12


an epitaxial layer


14


. Fabricating an epitaxial layer on a wafer is well known in the art and will not be further discussed. However, referring to

FIG. 1



b


, it becomes evident that small micro steps


16


are formed on a top surface


18


of epilayer


14


.




Referring to

FIGS. 2 and 3

, a method


50


is used to reduce the size of microsteps


16


(as well as remove any particles) from the top surface


18


of epilayer


14


. At step


52


, oxidation layer


60


is deposited or grown on epilayer


14


using thermal oxidation. During this step


52


, a portion of the epilayer (silicon) is consumed by the oxygen. As a result, the previous epi-surface


18


no longer exists and a new, smoother epi/oxide interface


62


is formed. At step


54


, oxide layer


60


, including the consumed silicon that previously existed between epi-surface


18


and epi/oxide interface


62


, is removed.




Referring to

FIG. 4

, as a result, a resultant epi-surface


64


is formed on the epilayer


14


. The epi-surface


64


is relatively smooth, as compared with the epi-surface


18


.



Claims
  • 1. A method for reducing the size of microsteps on an epitaxial layer deposited on a polished semiconductor wafer substrate, the method comprising:providing a semiconductor wafer; depositing an epitaxial layer on a surface of said semiconductor wafer, wherein during the deposition of the epitaxial layer microsteps are formed on an exposed surface of said epitaxial layer; oxidizing at least a portion of the epitaxial layer of said semiconductor to a subsurface depth below said microsteps on said exposed surface of said epitaxial layer; and removing said microsteps by substantially removing the oxidized portion of said epitaxial layer to the subsurface depth below said microsetps on said exposed surface of said epitaxial layer.
CROSS REFERENCES TO RELATED APPLICATIONS

The present application is a continuation of and claims priority from non-provisional application Ser. No. 10/114,899 filed Apr. 2, 2002 now U.S. Pat. No. 6,482,659 issued Nov. 19, 2002 which is a divisional of application Ser. No. 09/233,253 filed Jan. 19, 1999 now U.S. Pat. No. 6,372,521 issued Apr. 16, 2002 which claims benefit of provisional U.S. Patent Application No. 60/072,046 filed on Jan. 21, 1998.

US Referenced Citations (3)
Number Name Date Kind
4615762 Jastrzebski et al. Oct 1986 A
6240933 Bergman Jun 2001 B1
6312968 Shimabukuro et al. Nov 2001 B1
Provisional Applications (1)
Number Date Country
60/072046 Jan 1998 US
Continuations (1)
Number Date Country
Parent 10/114899 Apr 2002 US
Child 10/222112 US