This application relates to scanning-beam systems for producing optical patterns in various applications.
Scanning beam systems can be used to project one or more scanned beams on a surface to produce optical patterns. Many laser printing systems use a scanning laser beam to print on a printing surface of a printing medium (e.g., paper). Some display systems use 2-dimensionally scanned light to produce images on a screen.
As an example, many display systems such as laser display systems use a polygon scanner with multiple reflective facets to provide horizontal scanning and a vertical scanning mirror such as a galvo-driven mirror to provide vertical scanning. In operation, one facet of the polygon scanner scans one horizontal line as the polygon scanner spins to change the orientation and position of the facet and the next facet scans the next horizontal line. The horizontal scanning and the vertical scanning are synchronized to each other to project images on the screen.
Some scanning-beam systems such as scanning-beam display systems use a pre-objective optical design where a scan lens is placed in the optical path downstream from the polygon scanner and the vertical scanner to focus a scanning beam onto a target surface, e.g., a screen. Because the scan lens is positioned downstream from the polygon scanner and the vertical scanner, the beam entering the scan lens is scanned along the vertical and horizontal directions. Therefore, the scan lens is designed to focus the 2-dimensionally scanned beam onto the target surface.
The specification of this application describes, among others, scanning beam systems, apparatus and techniques in optical post-objective designs with two beam scanners for display and other applications.
In one implementation, a scanning beam system includes a light source operable to produce a beam of light; a first beam scanner to scan the beam of light along a first direction; a second beam scanner to scan the beam of light received from the first beam scanner along a second direction different from the first direction; and a scan lens placed in an optical path of the beam of light between the first and the second beam scanners to direct the beam of light from the first beam scanner along a line on the second beam scanner and to focus the beam of light onto a surface away from the second beam scanner. The system may include a beam focusing element placed in an optical path of the beam of light to adjust a focus of the beam of light; and an actuator coupled to the beam focusing element to adjust a position of the beam focusing element, in response to a control signal, to adjust the focus in synchronization with scanning of the second beam scanner.
In another implementation, a scanning beam system includes an optical module operable to produce a scanning beam of excitation light having optical pulses that can be used to carry image information; and a fluorescent screen which absorbs the excitation light and emits visible fluorescent light to produce images carried by the scanning beam. The optical module includes a light source to produce the beam of excitation light; a horizontal polygon scanner to scan the beam of excitation light along a first direction; a vertical scanner to scan the beam of excitation light from the polygon along a second direction different from the first direction; and a 1-dimensional scan lens placed between the polygon scanner and the vertical scanner to direct the beam of excitation light from the polygon scanner along a line on the vertical scanner and to focus the beam of excitation light onto the screen.
In another implementation, a scanning beam system includes a light source to produce a beam of light having optical pulses that carry image information; a horizontal polygon scanner to scan the beam along a first direction at a first scanning rate; a vertical scanner to scan the beam from the polygon along a second direction different from the first direction at a second scanning rate less than the first scanning rate; a 1-dimension scan lens placed between the polygon scanner and the vertical scanner to direct the beam from the polygon scanner along a line on the vertical scanner and to focus the beam onto a reference surface; a beam focusing element placed between the light source and the horizontal polygon scanner to adjust a focus of the beam on the reference surface; and an actuator coupled to the beam focusing element to adjust a position of the beam focusing element, in response to a control signal, to adjust the focus in synchronization with a scanning position of the vertical scanner.
In yet another implementation, a method for scanning a beam along two directions on a target surface includes scanning the beam with a first scanner to scan the beam along a first direction at a first scanning rate; directing the beam out of the first scanner into a second scanner to scan the beam along a second direction different from the first direction at a second scanning rate less than the first scanning rate; using a 1-dimension scan lens placed between the first and the second scanners to focus the beam onto the target surface; and controlling a focus of the beam in synchronization with a scanning position of the second scanner to control focusing of the beam on the target surface.
In yet another implementation, a scanning beam display system is disclosed to include light source that produces a beam of light; a first beam scanner located in a plane to scan the beam of light along a first direction; a second beam scanner located in the plane to scan the beam of light received from the first beam scanner along a second direction different from the first direction; and a screen having a display surface that is substantially perpendicular to and is located entirely on one side of the plane in which the first and second beam scanners are located. The screen is positioned to have one edge close to the second beam scanner which scans the beam of light in beam directions that are not directed to the screen. An optical reflector is located on the side of the plane where the screen is located and is positioned away from the screen and the optical reflector is oriented to reflect the beam of light from the second beam scanner onto the screen along a folded optical path to scan the beam of light along the first and the second directions on the screen.
These and other implementations are described in detail in the drawings, the detailed description and the claims.
Examples of post-objective scanning-beam systems described in this application use a vertical scanner with an optical reflector and a spinning horizontal polygon scanner with reflective facets to provide the 2-dimensional scanning of one or more scanning beams onto a target screen. A beam can be first directed to a first scanner of the vertical scanner and the polygon scanner to scan along a first direction and then directed through a scan lens located between the vertical scanner and the polygon scanner. After exiting the scan lens, the beam is scanned along the first direction and is directed to the second scanner of the vertical scanner and the polygon scanner to scan along a second, different direction (e.g., orthogonal to the first direction). The output of the second scanner is a scanning beam that is scanned along both the first and the second directions.
In this post-objective design, the scan lens 120 can be structured to have high optical performance in focusing the 1-D scanning beam 114 along the scanning direction of the first scanner 140 only. Hence, such a scan lens does need to exhibit high optical performance along the second scanning direction (i.e., the vertical direction in this example) because the beam 114 is not scanned along the second scanning direction at the position of the scan lens 120. Therefore, the scan lens 120 can be a 1-D scan lens, e.g., a 1-D f theta lens. High-cost and complex 2-D lenses can be avoided in implementing the system of
In another aspect, the vertical scanner 150 in
The target surface 101 in
The screen 102 can be passive screens and active screens. A passive screen does not emit light but makes light of the one or more scanning beams visible to a viewer by one or a combination of mechanisms, such as optical reflection, optical diffusion, optical scattering and optical diffraction. For example, a passive screen can reflect or scatter received scanning beam(s) to show images.
An active screen emits light by absorbing the one or more scanning beams and the emitted light forms part of or all of the light that forms the displayed images. Such an active screen may include one or more fluorescent materials to emit light under optical excitation of the one or more scanning beams received by the screen to produce images. The term “a fluorescent material” is used here to cover both fluorescent materials and phosphorescent materials. Screens with phosphor materials under excitation of one or more scanning excitation laser beams are described here as specific implementation examples of optically excited fluorescent or phosphorescent materials in various systems.
Various screen designs with fluorescent materials can be used. Screens with phosphor materials under excitation of one or more scanning excitation laser beams are described in detail and are used as specific implementation examples of optically excited fluorescent materials in various system and device examples in this application. In one implementation, for example, three different color phosphors that are optically excitable by the laser beam to respectively produce light in red, green, and blue colors suitable for forming color images can be formed on the screen as repetitive red, green and blue phosphor stripes in parallel. Various examples described in this application use screens with parallel color phosphor stripes for emitting light in red, green, and blue to illustrate various features of the laser-based displays. Phosphor materials are one type of fluorescent materials. Various described systems, devices and features in the examples that use phosphors as the fluorescent materials are applicable to displays with screens made of other optically excitable, light-emitting, non-phosphor fluorescent materials.
For example, quantum dot materials emit light under proper optical excitation and thus can be used as the fluorescent materials for systems and devices in this application. More specifically, semiconductor compounds such as, among others, CdSe and PbS, can be fabricated in form of particles with a diameter on the order of the exciton Bohr radius of the compounds as quantum dot materials to emit light. To produce light of different colors, different quantum dot materials with different energy band gap structures may be used to emit different colors under the same excitation light. Some quantum dots are between 2 and 10 nanometers in size and include approximately tens of atoms such between 10 to 50 atoms. Quantum dots may be dispersed and mixed in various materials to form liquid solutions, powders, jelly-like matrix materials and solids (e.g., solid solutions). Quantum dot films or film stripes may be formed on a substrate as a screen for a system or device in this application. In one implementation, for example, three different quantum dot materials can be designed and engineered to be optically excited by the scanning laser beam as the optical pump to produce light in red, green, and blue colors suitable for forming color images. Such quantum dots may be formed on the screen as pixel dots arranged in parallel lines (e.g., repetitive sequential red pixel dot line, green pixel dot line and blue pixel dot line).
Some implementations of post-objective scanning beam display systems described here use at least one scanning laser beam to excite color light-emitting materials deposited on a screen to produce color images. The scanning laser beam is modulated to carry images in red, green and blue colors or in other visible colors and is controlled in such a way that the laser beam excites the color light-emitting materials in red, green and blue colors with images in red, green and blue colors, respectively. Hence, the scanning laser beam carries the images but does not directly produce the visible light seen by a viewer. Instead, the color light-emitting fluorescent materials on the screen absorb the energy of the scanning laser beam and emit visible light in red, green and blue or other colors to generate actual color images seen by the viewer.
Laser excitation of the fluorescent materials using one or more laser beams with energy sufficient to cause the fluorescent materials to emit light or to luminesce is one of various forms of optical excitation. In other implementations, the optical excitation may be generated by a non-laser light source that is sufficiently energetic to excite the fluorescent materials used in the screen. Examples of non-laser excitation light sources include various light-emitting diodes (LEDs), light lamps and other light sources that produce light at a wavelength or a spectral band to excite a fluorescent material that converts the light of a higher energy into light of lower energy in the visible range. The excitation optical beam that excites a fluorescent material on the screen can be at a frequency or in a spectral range that is higher in frequency than the frequency of the emitted visible light by the fluorescent material. Accordingly, the excitation optical beam may be in the violet spectral range and the ultra violet (UV) spectral range, e.g., wavelengths under 420 nm. In the examples described below, UV light or a UV laser beam is used as an example of the excitation light for a phosphor material or other fluorescent material and may be light at other wavelength.
Alternatively,
The beam scanning is based on a two-scanner system in
Under this optical design of the horizontal and vertical scanning, the 1-D scan lens 120 is placed downstream from the polygon scanner 140 and upstream from the vertical scanner 150 to focus each horizontal scanned beam on the screen 501 and minimizes the horizontal bow distortion to displayed images on the screen 501 within an acceptable range, thus producing a visually “straight” horizontal scan line on the screen 501. Such a 1-D scan lens 120 capable of producing a straight horizontal scan line is relatively simpler and less expensive than a 2-D scan lens of similar performance. Downstream from the scan lens 120, the vertical scanner 150 is a flat reflector and simply reflects the beam to the screen 501 and scans vertically to place each horizontally scanned beam at different vertical positions on the screen 501 for scanning different horizontal lines. The dimension of the reflector on the vertical scanner 150 along the horizontal direction is sufficiently large to cover the spatial extent of each scanning beam coming from the polygon scanner 140 and the scan lens 120. The system in
This optical design eliminates the need for a complex and expensive 2-D scan lens 120 in pre-objective scanning beam displays where the scanning lens is located downstream from the two scanners 140 and 150 and focuses the a scanning excitation beam onto a screen. In such a pre-objective design, a scanning beam directed into the scan lens is scanned along two orthogonal directions. Therefore, the scan lens is designed to focus the scanning beam onto the screen along two orthogonal directions. In order to achieve the proper focusing in both orthogonal directions, the scan lens can be complex and, often, are made of multiples lens elements. In one implementation, for example, the scan lens can be a two-dimensional f-theta lens that is designed to have a linear relation between the location of the focal spot on the screen and the input scan angle (theta) when the input beam is scanned around each of two orthogonal axes perpendicular to the optic axis of the scan lens. In such a f-theta lens, the location of the focal spot on the screen is a proportional to the input scan angle (theta).
The two-dimensional scan lens such as a f-theta lens in the pre-objective configuration can exhibit optical distortions along the two orthogonal scanning directions which cause beam positions on the screen to trace a curved line. Hence, an intended straight horizontal scanning line on the screen becomes a curved line. The distortions caused by the 2-dimensional scan lens can be visible on the screen and thus degrade the displayed image quality. One way to mitigate the bow distortion problem is to design the scan lens with a complex lens configuration with multiple lens elements to reduce the bow distortions. The complex multiple lens elements can cause the final lens assembly to depart from desired f-theta conditions and thus can compromise the optical scanning performance. The number of lens elements in the assembly usually increases as the tolerance for the distortions decreases. However, such a scan lens with complex multiple lens elements can be expensive to fabricate.
To avoid the above distortion issues associated with a two-dimensional scan lens in a pre-objective scanning beam system, the following sections describe examples of a post-objective scanning beam display system, which can be implemented to replace the two-dimensional scan lens with a simpler, less expensive 1-dimensional scan lens 120 shown in
Notably, the distance from the scan lens to a location on the screen 501 for a particular beam varies with the vertical scanning position of the vertical scanner 150. Therefore, when the 1-D scan lens 120 is designed to have a fixed focal distance along the straight horizontal line across the center of the elongated 1-D scan lens, the focal properties of each beam must change with the vertical scanning position of the vertical scanner 150.
Referring back to
A refocusing lens actuator 640 can be used to adjust the relative position between the lenses 620 and 630 in response to a control signal 650. In this particular example, the refocusing lens actuator 5410 is used to adjust the convergence of the beam directed into the 1-D scan lens 120 along the optical path from the polygon scanner 140 in synchronization with the vertical scanning of the vertical scanner 150. The actuator 640 is controlled to adjust the position of the lens 630 relative to an upstream focal point of the lens 620 to change the beam convergence at the entry of the 1-D scan lens 120. A control module can be provided to synchronize the actuator 640 and the vertical scanner 150 by sending a refocusing control signal 650 to control the operation the of actuator 640. For example, if the collimation lens 620 with a focal length of 8 mm is used, then the adjustment can be a distance of less than 10 microns at the lens 630 to provide sufficient refocusing for a screen of over 60″ in the diagonal dimension.
In addition to the beam size and the beam focus, the change of the distance from the scan lens 120 to a location on the screen 501 for a particular beam due to different vertical scanning positions of the vertical scanner 150 also creates a vertical bow distortion on the screen 501. Assuming the vertical scanner 150 directs a beam to the center of the screen 501 when the vertical angle of the vertical scanner 150 is at zero where the distance between the screen 501 and the vertical scanner 150 is the shortest. As the vertical scanner 150 changes its vertical orientation in either vertical scanning direction, the horizontal dimension of each horizontal line increases with the vertical scanning angle.
During a horizontal scan, the time delay in timing of a pulse can cause the corresponding position of the laser pulse on the screen to spatially shift downstream along the horizontal scan direction. Conversely, an advance in timing of a pulse can cause the corresponding position of the laser pulse on the screen to spatially shift upstream along the horizontal scan direction. A position of a laser pulse on the screen in the horizontal direction can be controlled electronically or digitally by controlling timing of optical pulses in the scanning beam. Therefore, the timing of the pulses in the scanning beam can be controlled to direct each optical pulse to a location that reduces or offsets the horizontal displacement of the beam caused by the vertical scanning of the vertical scanner 150. This can be achieved by obtaining the amounts of the horizontal position shift at each beam location caused by the vertical scanning in each of all horizontal scan lines at different vertical scanning positions on the screen. The timing of the laser pulses is then controlled during each horizontal scanning to offset the obtained amounts of the horizontal position shift at different beam locations and at different vertical scanner positions. Notably, this control of the timing of laser pulses is separate from, and can be simultaneously implemented with, the control of timing of laser pulses in aligning laser pulses to proper phosphor color stripes during a horizontal scan based on the servo feedback described in PCT patent application No. PCT/US2007/004004 entitled “Servo-Assisted Scanning Beam Display Systems Using Fluorescent Screens” and filed Feb. 15, 2007 and published as PCT publication No. WO/2007/095329 on Aug. 23, 2007, and PCT patent application No. PCT/US2006/11757 entitled “Display Systems and Devices Having Screens With Optical Fluorescent Materials” and filed Mar. 31, 2006 and published as PCT publication No. 2006/107720 on Oct. 12, 2006. Various servo mark designs on screens and servo feedback techniques described in the above two PCT applications can be applied to the post-objective scanning beam systems described in this application. The entire disclosures of the above two PCT applications are incorporated by reference as part of the specification of this application.
The post-objective designs described above can be used to reduce dimension of a rear-projection display system using a folded optical path design.
In this example, the screen 501 can be approximately perpendicular to the plane 600. A folding reflector 1010 is provided at the excitation side of the screen 501 to reflect light from the vertical scanner 150 to the screen 501. The reflector 1010 can be oriented at an angle with respect to the screen 501 and has one end 1011 to be close to or in contact with the upper side of the active display area of the screen 501 to reflect light to the upper side the active display area. The dimension and angle of the reflector 1010 are set to allow the other end 1012 of the reflector 1010 to reflect light from the vertical scanner 150 near the lower edge of the active area of the screen 501. The vertical scanner 150 can be placed as close to the inner side of the screen 501 as possible to minimize the depth D of the display.
In the above post-objective scanning designs, the 1-D scan lens is placed downstream from the polygon horizontal scanner 140 which provides a high-speed horizontal scan (e.g., 1080 successive scans per frame for a 1080-p display) and upstream from the vertical scanner 150 which provides a lower speed vertical scan (e.g., one scan per frame). Under this configuration, the refocusing control by the actuator 640 is synchronized with the lower-speed vertical scan of the vertical scanner 150 and thus allows for a slower actuator to be used as the actuator 640 for the refocusing. Accordingly, various issues associated with using a high-speed actuator for the refocusing mechanism, such as cost, feasibility, and refocusing speed and accuracy are avoided.
Referring to
Electromagnetic galvo mirrors can be used to implement the vertical scanner 150.
Notably, the various servo control techniques described in connection with the pre-objective display systems can be applied to the post-objective scanning beam displays.
The post-objective scanning beam systems based on the designs described in this application can be applied to display systems and other optical systems that use scanning beams to produce optical patterns. For example, laser printing systems can also use the above described post-objective scanning systems where the screen is replaced by a printing medium (e.g., paper, fabric, or a master printing plate. A post-object scanning design based on this application can yield high diagonal-to-depth ratios, e.g., 4:1 or greater, and achieve a thinner display systems to reduce the depth of the projection optical module.
The above examples of post-object scanning beam systems use a polygon scanner 140 for horizontal scanning as the first beam scanner placed upstream from the scan lens 120 and a vertical scanner 150 such as a galvo mirror as the second beam scanner for vertical scanning downstream from the scan lens 120. In other implementations, the first beam scanner located upstream from the scan lens 120 is a vertical scanner 150 for vertical scanning, such as a galvo mirror, and the second scanner downstream from the scan lens 120 is a polygon scanner 140 for horizontal scanning. This configuration can be designed to use a small glavo reflector and thus avoid a large downstream galvo reflector with a dimension along the horizontal scanning direction of the upstream polygon needed for the post-objective system in
In one implementation, the afocal optical relay module can include a first lens having a first focal length to receive and focus the laser beams from the lasers; a second lens having a second focal length shorter than the first focal length and spaced from the first lens by the first focal length to focus the laser beams from the first lens; and a third lens having a third focal length longer than the second focal length and spaced from the second lens by the third focal length to focus and direct the laser beams from the second lens to the scanning module. Examples for the afocal optical module 1510 and the optical relay module 530 are described in PCT application No. CT/US2006/041584 entitled “Optical Designs for Scanning Beam Display Systems Using Fluorescent Screens” and filed on Oct. 25, 2006 (PCT publication no. WO 2007/050662) and U.S. patent application Ser. No. 11/510,495 entitled “Optical Designs for Scanning Beam Display Systems Using Fluorescent Screens” and filed on Aug. 24, 2006 (U.S. publication no. US 2007-0206258 A1), which are incorporated by reference as part of the specification of this application.
In
Downstream from the scan lens 120, the polygon scanner 140 scans the converging beams from the scan lens 120 onto the screen 101. The foci of the converging beams can, in general, lie on a curved surface. A focus servo is used to refocus the beams dynamically on to a planar surface of the screen 101. In this example, the focus servo includes at least two lens elements 1520 and 1530 that are separated by an air gap as shown. One of the two lenses (e.g., lens 1520) has a positive focal length and the other (e.g., lens 1530) has a negative focal length. An actuator is provided to control the relative spacing between the two lenses 1520 and 1530. The beams entering and exiting the focus servo are nominally collimated when the lenses comprising the focus servo are separated by a prescribed distance (i.e., the neutral or nominal position). In the example shown in
In the above post-objective systems, the output 20-D scanning beam can have optical distortions.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination.
Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made.
This application is a national stage application of and claims the benefit of PCT Application No. PCT/US2008/059603, filed on Apr. 7, 2008, and published as WO 2008/124707, which claims priority to U.S. provisional application No. 60/910,644 entitled “POST-OBJECTIVE SCANNING BEAM SYSTEMS” and filed on Apr. 6, 2007, and U.S. patent application Ser. No. 11/742,014 entitled “POST-OBJECTIVE SCANNING BEAM SYSTEMS” and filed on Apr. 30, 2007. The disclosure of the prior applications is considered part of (and is incorporated by reference in) the disclosure of the this application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/059603 | 4/7/2008 | WO | 00 | 2/3/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/124707 | 10/16/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2439181 | Nicoll | May 1946 | A |
3025161 | Thaddeus | Mar 1962 | A |
3556637 | Palmquist | Jan 1971 | A |
3652956 | Pinnow et al. | Mar 1972 | A |
3691482 | Pinnow et al. | Sep 1972 | A |
3750189 | Fleischer | Jul 1973 | A |
4165154 | Takahashi | Aug 1979 | A |
4166233 | Stanley | Aug 1979 | A |
4307320 | Kotera et al. | Dec 1981 | A |
4401362 | Maeda | Aug 1983 | A |
4512911 | Kotera et al. | Apr 1985 | A |
4613201 | Shortle et al. | Sep 1986 | A |
4624528 | Brueggemann | Nov 1986 | A |
4661419 | Nakamura | Apr 1987 | A |
4707093 | Testa | Nov 1987 | A |
4737840 | Morishita | Apr 1988 | A |
4816920 | Paulsen | Mar 1989 | A |
4923262 | Clay | May 1990 | A |
4978202 | Yang | Dec 1990 | A |
4979030 | Murata | Dec 1990 | A |
5054866 | Tomita et al. | Oct 1991 | A |
5080467 | Kahn et al. | Jan 1992 | A |
5089907 | Yoshikawa et al. | Feb 1992 | A |
5094788 | Schrenk et al. | Mar 1992 | A |
5122905 | Wheatley et al. | Jun 1992 | A |
5136426 | Linden et al. | Aug 1992 | A |
5138441 | Tanaka | Aug 1992 | A |
5140604 | Alablanche et al. | Aug 1992 | A |
5146355 | Prince et al. | Sep 1992 | A |
5166944 | Conemac | Nov 1992 | A |
5175637 | Jones et al. | Dec 1992 | A |
5182659 | Clay et al. | Jan 1993 | A |
5198679 | Katoh et al. | Mar 1993 | A |
5255113 | Yoshikawa et al. | Oct 1993 | A |
5269995 | Ramanathan et al. | Dec 1993 | A |
5270842 | Clay et al. | Dec 1993 | A |
5296922 | Mitani et al. | Mar 1994 | A |
5365288 | Dewald et al. | Nov 1994 | A |
5389324 | Lewis et al. | Feb 1995 | A |
5414521 | Ansley | May 1995 | A |
5442254 | Jaskie | Aug 1995 | A |
5473396 | Okajima et al. | Dec 1995 | A |
5475524 | Harris | Dec 1995 | A |
5477285 | Riddle et al. | Dec 1995 | A |
5477330 | Dorr | Dec 1995 | A |
5491578 | Harris | Feb 1996 | A |
5526166 | Genovese | Jun 1996 | A |
5541731 | Freedenberg et al. | Jul 1996 | A |
5550667 | Krimmel et al. | Aug 1996 | A |
5587818 | Lee | Dec 1996 | A |
5594556 | Vronsky et al. | Jan 1997 | A |
5598292 | Yoshikawa et al. | Jan 1997 | A |
5602445 | Solanki et al. | Feb 1997 | A |
5614961 | Gibeau et al. | Mar 1997 | A |
5633736 | Griffith et al. | May 1997 | A |
5646766 | Conemac | Jul 1997 | A |
5648181 | Watanabe | Jul 1997 | A |
5666174 | Cupolo, III | Sep 1997 | A |
5668662 | Magocs et al. | Sep 1997 | A |
5670209 | Wyckoff | Sep 1997 | A |
5684552 | Miyamoto et al. | Nov 1997 | A |
5698857 | Lambert et al. | Dec 1997 | A |
5715021 | Gibeau et al. | Feb 1998 | A |
5716118 | Sato et al. | Feb 1998 | A |
5870224 | Saitoh et al. | Feb 1999 | A |
5882774 | Jonza et al. | Mar 1999 | A |
5907312 | Sato et al. | May 1999 | A |
5920361 | Gibeau et al. | Jul 1999 | A |
5959296 | Cyr et al. | Sep 1999 | A |
5973813 | Takeuchi | Oct 1999 | A |
5976424 | Weber et al. | Nov 1999 | A |
5978142 | Blackham et al. | Nov 1999 | A |
5994722 | Averbeck et al. | Nov 1999 | A |
5998918 | Do et al. | Dec 1999 | A |
5998925 | Shimizu et al. | Dec 1999 | A |
6002505 | Kraenert et al. | Dec 1999 | A |
6008925 | Conemac | Dec 1999 | A |
6010751 | Shaw et al. | Jan 2000 | A |
6057953 | Ang | May 2000 | A |
6064417 | Harrigan et al. | May 2000 | A |
6066861 | Hohn et al. | May 2000 | A |
6069599 | Py et al. | May 2000 | A |
6080467 | Weber et al. | Jun 2000 | A |
6088163 | Gilbert et al. | Jul 2000 | A |
6101032 | Wortman et al. | Aug 2000 | A |
6117530 | Jonza et al. | Sep 2000 | A |
6118516 | Irie et al. | Sep 2000 | A |
6128131 | Tang | Oct 2000 | A |
6134050 | Conemac | Oct 2000 | A |
6154259 | Hargis et al. | Nov 2000 | A |
6157490 | Wheatley et al. | Dec 2000 | A |
6172810 | Fleming et al. | Jan 2001 | B1 |
6175440 | Conemac | Jan 2001 | B1 |
6219168 | Wang | Apr 2001 | B1 |
6224216 | Parker | May 2001 | B1 |
6226126 | Conemac | May 2001 | B1 |
6252254 | Soules et al. | Jun 2001 | B1 |
6276802 | Naito | Aug 2001 | B1 |
6288817 | Rowe | Sep 2001 | B2 |
6329966 | Someya et al. | Dec 2001 | B1 |
6333724 | Taira et al. | Dec 2001 | B1 |
6417019 | Mueller et al. | Jul 2002 | B1 |
6429583 | Levinson et al. | Aug 2002 | B1 |
6429584 | Kubota | Aug 2002 | B2 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6531230 | Weber et al. | Mar 2003 | B1 |
6576156 | Ratna et al. | Jun 2003 | B1 |
6621593 | Wang et al. | Sep 2003 | B1 |
6621609 | Conemac | Sep 2003 | B1 |
6627060 | Yum et al. | Sep 2003 | B1 |
6628248 | Masumoto et al. | Sep 2003 | B2 |
6678081 | Nishihata et al. | Jan 2004 | B2 |
6717704 | Nakai | Apr 2004 | B2 |
6765237 | Doxsee et al. | Jul 2004 | B1 |
6777861 | Russ et al. | Aug 2004 | B2 |
6809347 | Tasch et al. | Oct 2004 | B2 |
6809781 | Setlur et al. | Oct 2004 | B2 |
6839042 | Conemac et al. | Jan 2005 | B2 |
6853131 | Srivastava et al. | Feb 2005 | B2 |
6900916 | Okazaki et al. | May 2005 | B2 |
6905220 | Wortman et al. | Jun 2005 | B2 |
6937221 | Lippert et al. | Aug 2005 | B2 |
6937383 | Morikawa et al. | Aug 2005 | B2 |
6947198 | Morikawa et al. | Sep 2005 | B2 |
6986581 | Sun et al. | Jan 2006 | B2 |
6987610 | Piehl | Jan 2006 | B2 |
7068406 | Shimomura | Jun 2006 | B2 |
7088335 | Hunter et al. | Aug 2006 | B2 |
7090355 | Liu et al. | Aug 2006 | B2 |
7147802 | Sugimoto et al. | Dec 2006 | B2 |
7181417 | Langseth et al. | Feb 2007 | B1 |
7213923 | Liu et al. | May 2007 | B2 |
7230767 | Walck et al. | Jun 2007 | B2 |
7239436 | Oettinger et al. | Jul 2007 | B2 |
7283301 | Peeters et al. | Oct 2007 | B2 |
7302174 | Tan et al. | Nov 2007 | B2 |
7474286 | Hajjar et al. | Jan 2009 | B2 |
7692836 | Yamazaki | Apr 2010 | B2 |
20010019240 | Takahashi | Sep 2001 | A1 |
20010024086 | Fox et al. | Sep 2001 | A1 |
20010050371 | Odaki et al. | Dec 2001 | A1 |
20020003233 | Mueller-Mach et al. | Jan 2002 | A1 |
20020008854 | Leigh Travis et al. | Jan 2002 | A1 |
20020024495 | Lippert et al. | Feb 2002 | A1 |
20020050963 | Conemac et al. | May 2002 | A1 |
20020122260 | Okazaki et al. | Sep 2002 | A1 |
20020124250 | Proehl et al. | Sep 2002 | A1 |
20020145685 | Mueller-Mach et al. | Oct 2002 | A1 |
20020163702 | Hori et al. | Nov 2002 | A1 |
20020185965 | Collins et al. | Dec 2002 | A1 |
20030015692 | Teng et al. | Jan 2003 | A1 |
20030094893 | Ellens et al. | May 2003 | A1 |
20030184209 | Russ et al. | Oct 2003 | A1 |
20030184531 | Morikawa et al. | Oct 2003 | A1 |
20030184613 | Nakamura et al. | Oct 2003 | A1 |
20030184842 | Morikawa et al. | Oct 2003 | A1 |
20040027465 | Smith et al. | Feb 2004 | A1 |
20040070551 | Walck et al. | Apr 2004 | A1 |
20040141220 | Hama et al. | Jul 2004 | A1 |
20040145312 | Ouderkirk et al. | Jul 2004 | A1 |
20040156079 | Marshall et al. | Aug 2004 | A1 |
20040160516 | Ford | Aug 2004 | A1 |
20040165642 | Lamont | Aug 2004 | A1 |
20040184123 | Moikawa et al. | Sep 2004 | A1 |
20040223100 | Kotchick et al. | Nov 2004 | A1 |
20040227465 | Menkara et al. | Nov 2004 | A1 |
20040263074 | Baroky et al. | Dec 2004 | A1 |
20050001225 | Yoshimura et al. | Jan 2005 | A1 |
20050012446 | Jermann et al. | Jan 2005 | A1 |
20050023962 | Menkara et al. | Feb 2005 | A1 |
20050023963 | Menkara et al. | Feb 2005 | A1 |
20050051790 | Ueda | Mar 2005 | A1 |
20050093818 | Hatam-Tabrizi et al. | May 2005 | A1 |
20050094266 | Liu et al. | May 2005 | A1 |
20060050015 | Kusunoki et al. | Mar 2006 | A1 |
20060066508 | Walck et al. | Mar 2006 | A1 |
20060081793 | Nestorovic et al. | Apr 2006 | A1 |
20060082873 | Allen et al. | Apr 2006 | A1 |
20060088951 | Hayashi et al. | Apr 2006 | A1 |
20060132021 | Naberhuis et al. | Jun 2006 | A1 |
20060139580 | Conner | Jun 2006 | A1 |
20060197922 | Liu et al. | Sep 2006 | A1 |
20060221021 | Hajjar et al. | Oct 2006 | A1 |
20060221022 | Hajjar | Oct 2006 | A1 |
20060227087 | Hajjar et al. | Oct 2006 | A1 |
20060262243 | Lester et al. | Nov 2006 | A1 |
20060266958 | Shimizu et al. | Nov 2006 | A1 |
20060290898 | Liu et al. | Dec 2006 | A1 |
20070014318 | Hajjar et al. | Jan 2007 | A1 |
20070183466 | Son et al. | Aug 2007 | A1 |
20070187580 | Kykta et al. | Aug 2007 | A1 |
20070187616 | Burroughs et al. | Aug 2007 | A1 |
20070188417 | Hajjar et al. | Aug 2007 | A1 |
20070206258 | Malyak et al. | Sep 2007 | A1 |
20070228927 | Kindler et al. | Oct 2007 | A1 |
20070229946 | Okada et al. | Oct 2007 | A1 |
20080018558 | Kykta et al. | Jan 2008 | A1 |
20080066107 | Moonka et al. | Mar 2008 | A1 |
20080068295 | Hajjar | Mar 2008 | A1 |
20080235749 | Jain et al. | Sep 2008 | A1 |
20080291140 | Kent et al. | Nov 2008 | A1 |
20090001272 | Hajjar | Jan 2009 | A1 |
20090116107 | Kindler et al. | May 2009 | A1 |
20090153582 | Hajjar et al. | Jun 2009 | A1 |
20090174632 | Hajjar et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
10044603 | Apr 2001 | DE |
0196862 | Oct 1986 | EP |
0271650 | Jun 1988 | EP |
1150361 | Oct 2001 | EP |
56164826 | Dec 1981 | JP |
59-155826 | Sep 1984 | JP |
02-157790 | Jun 1990 | JP |
2-199975 | Aug 1990 | JP |
5232583 | Sep 1993 | JP |
6-46461 | Feb 1994 | JP |
2000-49380 | Feb 2000 | JP |
2001-210122 | Aug 2001 | JP |
2001-316664 | Nov 2001 | JP |
2002-83549 | Mar 2002 | JP |
2006-323391 | Nov 2006 | JP |
10-2001-0097415 | Nov 2001 | KR |
2002-0024425 | Mar 2002 | KR |
2003-0068589 | Aug 2003 | KR |
WO 9012387 | Oct 1990 | WO |
WO 9222109 | Dec 1992 | WO |
WO 0020912 | Apr 2000 | WO |
WO 0033389 | Jun 2000 | WO |
WO 0124429 | Apr 2001 | WO |
WO 0188609 | Nov 2001 | WO |
WO 0211173 | Feb 2002 | WO |
WO 0223962 | Mar 2002 | WO |
WO 0233970 | Apr 2002 | WO |
WO 02057838 | Jul 2002 | WO |
WO 02071148 | Sep 2002 | WO |
WO 2005119797 | Dec 2005 | WO |
WO 2006097876 | Sep 2006 | WO |
WO 2006107720 | Oct 2006 | WO |
WO 2007050662 | May 2007 | WO |
WO 2007095329 | Aug 2007 | WO |
WO 2007114918 | Oct 2007 | WO |
WO 2007131195 | Nov 2007 | WO |
WO 2007134329 | Nov 2007 | WO |
WO 2008116123 | Sep 2008 | WO |
WO 2008124707 | Oct 2008 | WO |
WO 2008144673 | Nov 2008 | WO |
WO 2009003192 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100142021 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
60910644 | Apr 2007 | US |