The present invention relates to a mobile apparatus for the repair of potholes in asphalt paved surfaces and the method of manufacturing an asphalt patch material using recycled asphalt shingles or recycled asphalt or combinations thereof.
Methods and apparatus for the manufacturing of asphalt material for paving road surfaces are well known. It is also known to utilize waste roofing shingles for admixture with asphalt whereby large quantities of these shingles can be recycled. These waste shingles are usually discarded in dumps where it presents both an ecological and environmental problem. Designated dump areas are also provided wherein very large quantities of this material are buried in the soil. It is known to utilize asphaltic waste material for the use of molding other asphaltic products such as battery cases or waterproof containers, etc.
In the manufacture of asphalt, virgin aggregate material which is comprised of crushed rock, small rock and sand is heated and dried in a rotating drum. Asphalt oil is utilized with various penetration numbers and which is also heated usually in the range of 280 to 350° F. The heated aggregate is then mixed with the liquid asphalt in a proportion typically of 5 to 6 percent asphalt by weight. The paving composition is then hauled in large quantities in trucks to the job site and dumped into a paving vehicle. However, when repairing potholes only, the vehicle transporting the asphalt needs to be displaced at many locations to fill these potholes. Because the asphalt is not dispensed in large quantities from the trucks, the asphalt will cool down during the day and lose its elastic property and form large clumps. To overcome this problem, very small vehicles with small loads of asphalt are utilized for pothole filling but because the work is time consuming the asphalt still cools down. This necessitates the vehicle to effect a limited job and to go back to an asphaltic plant several times in a day to reload with hot asphalt to continue repairing potholes. This is an expensive time-consuming operation.
It is therefore a feature of the present invention to provide a mobile apparatus for the repair of potholes in an asphalt paved surface and a method of manufacturing an asphalt patch material containing recycled asphalt products such as shingles or recycled asphalt or combinations thereof and wherein the manufacturing is effected directly on the mobile apparatus to provide an asphalt patch material having a substantially constant controlled temperature and elasticity for patching potholes.
Another feature of the present invention is to provide a mobile apparatus and method for the repair of potholes in an asphalt paved surface and using an asphalt patch material which contains recycled asphalt products such as shingles or recycled asphalt or combinations thereof and wherein the mobile apparatus can operate continuously during long time periods without having to reload any recycled asphalt shingle particles and stone aggregate material as well as asphaltic oil and wherein the mixture is effected on the mobile vehicle which is self-sufficient.
According to the above features, from a broad aspect, the present invention provides a mobile apparatus for the repair of potholes on roadways. The apparatus comprising a motorized vehicle on which is mounted a first storage bin for the containment of recycled asphalt products in particle form, such as asphalt shingle particles of a predetermined size range or recycled asphalt. A first conveyor means is provided for conveying the particles or recycled asphalt or combinations thereof from the first storage bin to an inlet end of a heated transport mixing conveyor. A second storage bin is provided for the containment of stone aggregate of a predetermined size range. A second conveyor means is provided for conveying and pre-heating the stone aggregate for delivery to said inlet end of said heated transport mixing conveyor. An asphaltic oil reservoir having a pump at an outlet thereof for feeding a predetermined quantity of the asphaltic oil at the inlet end of the heated transport mixing conveyor. The heated transport mixing conveyor has conveying means for displacing, mixing and heating the stone aggregate, the recycled asphalt particles or recycled asphalt or combinations thereof and the asphaltic oil to produce an asphalt patch material and feeding same to a dispensing outlet of the mixing conveyor. The control means controls the operation of the first and the second conveyor means, the pump and the radiant heated transport chamber.
According to a further broad aspect of the present invention there is provided a method of manufacturing an asphalt patch material on a mobile vehicle and using recycled asphalt products in particle form, such as asphalt shingle particles or recycled asphalt for patching potholes on roadways, said method comprising the steps of: (i) storing in a first storage bin recycled asphalt particles of a predetermined size range or recycled asphalt or combinations thereof on said mobile vehicle, (ii) storing in a second storage bin a stone aggregate of a predetermined size range on said mobile vehicle, (iii) pre-heating said stone aggregate in said second storage bin, (iv) providing a heated transport mixing conveyor having an inlet end and a dispensing outlet, (v) conveying said recycled asphalt particles or recycled asphalt to said inlet end, (vi) conveying said pre-heated stone aggregate to said inlet end for discharge simultaneously with said recycled asphalt particles or recycled asphalt or combinations thereof in a predetermined ratio, (vii) simultaneously with steps (v) and vi) feeding an asphaltic oil from an oil reservoir on said mobile vehicle to said inlet end in a predetermined ratio, and (viii) operating said heated transport mixing conveyor to displace, mix and heat said stone aggregate with said recycled asphalt particles or recycled asphalt or combinations thereof and said asphaltic oil to produce said asphalt patch material and feeding same to said dispensing outlet.
A preferred embodiment of the present invention will now be described with reference to the accompanying drawings in which:
A preferred embodiment of the present invention will now be described with reference to
With reference to
A first conveyor, herein a screw conveyor 15, transports these recycled asphalt shingle particles 16 from a discharge opening 17 at the bottom of the first storage bin 14 to an inlet opening 18 of a radiant heated transport mixing conveyor 19. A second storage bin 20 is provided for the containment of stone aggregate of a predetermined size range. Typically this aggregate is comprised of crushed stone and sand particles having a size up to ¼ inch. The bottom part of the second storage bin 20 has radiant heating plates 51 secured thereto to heat the aggregate. This heated aggregate 21 is discharged at a lower end thereof into a second screw conveyor 22 which is heated. This heated aggregate is then discharged in the inlet opening 18′ of the radiant heated transport mixing conveyor 19, see
The apparatus also comprises an asphaltic oil reservoir 24 which is provided with a pump 25 at its outlet and which pump is controlled by a control circuit associated with control panel 33 to dispense a predetermined quantity of the asphaltic oil for admixture with the recycled asphalt shingle particles 16 and the heated aggregate 21 through an inlet 18″, as shown in
With further reference to
With reference to
With reference to
With further reference to
With reference to
With reference to
As shown in
It is also within the ambit of the present invention to provide an automatic asphalt dispensing and patching mechanism secured to the outlet of the mixing conveyor 19 and secured to the frame of the apparatus whereby to automatically fill and compact paddles. A camera would be utilized in such an installation to align the automatic asphalt filler and compacting mechanism of the type known in the art. Such can also be operated remotely through a GPS communication link. It is also pointed out that the vibration of the vehicle during its travel also causes the materials in the bins 14 and 20 to propagate towards the bottom discharged openings of the bins. The asphaltic patch material is discharged from the mixing conveyor 19 at a temperature of approximately 100° C.
It is further pointed out that in order to utilize the mobile apparatus during cold periods, a thermally insulated enclosure may be constructed around the radiant heated transport chamber, the aggregate material conveyor. The asphaltic oil reservoir and pump and other parts of the system requiring thermal insulation.
In summary, the mobile asphaltic patch material using recycled asphalt particles, such as shingle particles, comprises the essential steps of storing recycled asphalt shingle particles 16, of a predetermined size rage in a storage bin 14. Stone aggregate material 21 of predetermined size usually 0-¼ inch is stored in a further storage bin 20. A radiant heated mixing conveyor 19, provided with an inlet end 18 and a dispensing end 30, is mounted on the mobile vehicle. The recycled asphalt shingle particles 16 are heated and conveyed to the inlet end 18 of the radiant heated mixing conveyor 19. The stone aggregate material 21 is also pre-heated, conveyed and discharged at the inlet end 18 of mixing conveyor 19 simultaneously with the recycled asphalt shingle particles, in a predetermined ratio as determined by the speed of operation of the screw conveyors. Simultaneously with this mixture, heated asphaltic oil is fed therein from an oil reservoir on the mobile vehicle. The heated screw conveyor 22 and the radiant heated mixing conveyor 19 are heated by a hot liquid circulated in coils provided in plates or jackets. A gas burner water heater provides the heating of the circulated liquid. The radiant heated mixing conveyor 19 is operated to displace, mix and heat the stone aggregate with the recycled asphalt shingle particles and the asphaltic oil to produce at an outlet thereof an asphalt patch material at a predetermined temperature range for use in patching potholes.
A typical example of the mixture would comprise 50% by weight of recycled asphalt shingle particles, 25% by weight of aggregate and 25% by weight of asphaltic oil.
It is also pointed out that other examples of mixtures can be utilized depending on the specific properties of the materials. The recycled asphalt shingle particles may also comprise other asphalt roofing materials in admixture therewith. It is also pointed out that shingles manufactured subsequent to 1980 typically consist of 25% asphalt, 25% fiberglass and 50% granular/filler material.
In a further embodiment the shingle particles may be replaced by recycled asphalt.
It is within the ambit of the present invention to cover any obvious modifications of the preferred embodiment described herein, provides such modifications fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2793350 | Oct 2012 | CA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2013/050804 | 10/24/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/063252 | 5/1/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3217620 | Mindrum | Nov 1965 | A |
4196827 | Leafdale | Apr 1980 | A |
4874283 | Hurley, Jr. | Oct 1989 | A |
5069578 | Bense | Dec 1991 | A |
5333969 | Blaha | Aug 1994 | A |
5988935 | Dillingham | Nov 1999 | A |
6681761 | Dillingham | Jan 2004 | B2 |
7654772 | Zimmerman | Feb 2010 | B1 |
8016516 | Johnson | Sep 2011 | B2 |
8931975 | Warlow | Jan 2015 | B2 |
20040022119 | McIntosh | Feb 2004 | A1 |
20040240939 | Hays | Dec 2004 | A1 |
20060198701 | Hall | Sep 2006 | A1 |
20100040412 | Fickeisen | Feb 2010 | A1 |
20130058719 | Warlow | Mar 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150259864 A1 | Sep 2015 | US |