A. Field of the Invention
This invention relates to power chip resistors. More specifically the invention relates to an improved power chip resistor with increased power dissipation in a small package.
B. Problems in the Art
Power resistors, chip resistors, and power chip resistors have numerous applications in electronic circuits including limiting current. The problem of limiting current or otherwise using a power chip resistor is sometimes in conflict with the amount of board space that can be allocated for the resistor. In order to increase the power dissipation of a chip resistor, the size of the resistor is increased. As electronic devices continue to decrease in size, board space and the need to reduce board space increases. Thus there is a problem in using a power chip resistor when there is limited board space.
Some attempts have been made at stacking chip resistors. A stacked chip resistor would reduce the amount of board space required as the size of the resistor would increase vertically. These attempts have created additional problems.
One such problem is that these attempts have used epoxy or other resins or polymers as an adhesive to physically connect each chip resistor in the stack. Epoxy is widely used as an adhesive in the art but has certain qualities that make it ineffective for stacking power chip resistors. In particular, long term use of epoxy or other polymers in a power chip resistor may result in an electrical instability effect over time due to the effects of resistive heating.
Another problem relates to the use of solder at the terminals of a stacked chip resistor. The magnitude of the resistive heating can be so great, particularly in high wattage power chip resistors, that when stacked, the solder melts. Because solder would melt, the power chip resistor would not be compatible with standard manufacturing practices and methods concerning population of components on a circuit board. In particular, standard flowing processes could not be used as the power chip resistor would not be flow solderable. Thus any accommodation of a power chip resistor into a circuit design would involve additional manufacturing costs.
It is therefore an objective of the present invention to provide an apparatus and method of making a power chip resistor that improves upon the state of the art.
It is a further objective of the present invention to provide a power chip resistor and method of making a power chip resistor that permits a power chip resistor to be made that requires reduced circuit board space.
It is a further objective of the present invention to provide a power chip resistor and method of making a power chip resistor that provide the capability of increased power dissipation.
It is a further objective of the present invention to provide a power chip resistor and method of making a power chip resistor that provide for stacking power chip resistors.
It is a further objective of the present invention to provide a power chip resistor and method of making a power chip resistor that provides for a resistor with a higher power rating.
It is a further objective of the present invention to provide a power chip resistor capable of use at high voltages.
It is a further objective of the present invention to provide a power chip resistor that may be surface mounted.
It is a further objective of the present invention to provide a power chip resistor that is stable over time.
It is a further objective of the present invention to provide a power chip resistor that does not melt a solder connection.
It is a further objective of the present invention to provide a power chip resistor that uses a thick film resistant element.
It is a further objective of the present invention to provide a power chip resistor that is flow solderable.
It is a further objective of the present invention to provide a power chip resistor that reduces manufacturing costs.
These and other objectives will become apparent from the following description.
The following disclosure describes a power chip resistor that is capable of requiring reduced board space and increased power dissipation. The invention provides for the stacking of a number of chip resistors in order to construct a power chip resistor with increased power dissipation while not needing to increase the amount of board space occupied by the resistor. The invention uses an inert encapsulant such as glass to separate power chip resistors and uses a plating on the ends of the power chip resistor such as nickel so that solder will not melt.
Each power chip resistor 10 also has electrical terminals or end caps 14. The terminals or end caps are of palladium silver or other conductor or metal or metal alloy that is known in the art.
Between each power chip resistor 10 is a layer of glass frit 16. The present invention contemplates that an encapsulant such as glass or other inert material may be used. The encapsulant provides the advantage of insulating the power chip resistor 10 without concern for long term instability such as may be caused by resistive heating.
Nickel is preferred due to its high specific heat capacity. The high specific heat capacity of the nickel plating allows additional heat to be absorbed by the stacked power chip resistor and leads to higher power ratings. The present invention contemplates that other conductors with high specific heat capacity could be used as suggested by the particular application and specifications for a particular use. The use of nickel instead of solder precludes melting of the plating and end caps at higher temperatures and higher power levels.
As shown in
When stacked, the size of the stacked power chip resistor need only change in thickness. Thus for example, in one standard size used in surface mount components, the length of the power chip resistor is 0.250 inches as measured from barrier to barrier. The width of the stacked power chip resistor is 0.056 inches and the thickness of the stacked power chip resistor is dependent upon the number of power chip resistors in the stack. Thus a double stack resistor would have a thickness of 0.056 inches, a triple stack would have a thickness of 0.085 inches, and a quadruple stack would have a thickness of 0.114 inches. These sizes are given by way of example only, to show that the amount of board space required is independent of whether the stacked power chip resistor is double stacked, triple stacked, or quadruple stacked. The present invention contemplates any size such as may be an international standard or that may be a custom size.
The present invention also contemplates operation over a wide range of resistance ranges, power ranges, and voltage ratings and is in no way limited by the particular choice of these specifications, as these specifications may be suggested by a particular environment or use.
Thus, an apparatus and method for a power chip resistor has been disclosed. It will be readily apparent to those skilled in the art that the present invention fully contemplates variations in the stacking of multiple power chip resistors, the choice of materials, and other modifications in the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3474305 | Szupillo | Oct 1969 | A |
3515958 | Claypoole et al. | Jun 1970 | A |
4174513 | Wellard | Nov 1979 | A |
4601382 | Roberts et al. | Jul 1986 | A |
5397916 | Normington | Mar 1995 | A |
5430429 | Nakamura et al. | Jul 1995 | A |
5757076 | Kambara | May 1998 | A |
5777541 | Vekeman | Jul 1998 | A |
5818107 | Pierson et al. | Oct 1998 | A |
5966067 | Murakami et al. | Oct 1999 | A |
6084502 | Ariga et al. | Jul 2000 | A |
6150920 | Hashimoto et al. | Nov 2000 | A |
6311390 | Abe et al. | Nov 2001 | B1 |
6348852 | Kojima et al. | Feb 2002 | B1 |
6362723 | Kawase | Mar 2002 | B1 |
6400251 | Abe et al. | Jun 2002 | B1 |
20020125982 | Swensen et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
40 30 479 A 1 | Apr 1992 | DE |
63296201 | Dec 1988 | JP |
2-270302 | Nov 1989 | JP |
4-214601 | Aug 1992 | JP |
6-283301 | Oct 1994 | JP |
11016703 | Jan 1999 | JP |
WO 9838652 | Mar 1998 | WO |
WO 9953505 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020130762 A1 | Sep 2002 | US |