Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods

Information

  • Patent Grant
  • 11296504
  • Patent Number
    11,296,504
  • Date Filed
    Friday, April 3, 2020
    4 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
Power distribution modules are configured to distribute power to a power-consuming component(s), such as a remote antenna unit(s) (RAU(s)). By “hot” connection and/or disconnection, the power distribution modules can be connected and/or disconnected from a power unit and/or a power-consuming component(s) while power is being provided to the power distribution modules. Power is not required to be disabled in the power unit before connection and/or disconnection of power distribution modules. The power distribution modules may be configured to protect against or reduce electrical arcing or electrical contact erosion that may otherwise result from “hot” connection and/or connection of the power distribution modules.
Description
RELATED APPLICATION

This application is related to U.S. patent application Ser. No. 12/466,514 filed on filed May 15, 2009 and entitled “Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,” now issued as U.S. Pat. No. 8,155,525, which is incorporated herein by reference in its entirety.


BACKGROUND
Field of the Disclosure

The technology of the disclosure relates to power units for providing power to remote antenna units in a distributed antenna system.


Technical Background

Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications or antenna systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.


One approach to deploying a distributed antenna system involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide distributed antenna system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include increased bandwidth.


One type of distributed antenna system for creating antenna coverage areas includes distribution of RF communications signals over an electrical conductor medium, such as coaxial cable or twisted pair wiring. Another type of distributed antenna system for creating antenna coverage areas, called “Radio-over-Fiber” or “RoF,” utilizes RF communications signals sent over optical fibers. Both types of systems can include head-end equipment coupled to a plurality of remote antenna units (RAUs) that each provides antenna coverage areas. The RAUs can each include RF transceivers coupled to an antenna to transmit RF communications signals wirelessly, wherein the RAUs are coupled to the head-end equipment via the communication medium. The RF transceivers in the remote antenna units are transparent to the RF communications signals. The antennas in the RAUs also receive RF signals (i.e., electromagnetic radiation) from clients in the antenna coverage area. The RF signals are then sent over the communication medium to the head-end equipment. In optical fiber or RoF distributed antenna systems, the RAUs convert incoming optical RF signals from an optical fiber downlink to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver. The RAUs also convert received electrical RF communications signals from clients via the antennas to optical RF communications signals via electrical-to-optical (E/O) converters. The optical RF signals are then sent over an optical fiber uplink to the head-end equipment.


The RAUs contain power-consuming components, such as the RF transceiver, to transmit and receive RF communications signals and thus require power to operate. In the situation of an optical fiber-based distributed antenna system, the RAUs may contain O/E and E/O converters that also require power to operate. As an example, the RAU may contain a housing that includes a power supply to provide power to the RAUs locally at the RAU. The power supply may be configured to be connected to a power source, such as an alternating current (AC) power source, and convert AC power into a direct current (DC) power signal. Alternatively, power may be provided to the RAUs from remote power supplies. The remote power suppliers may be configured to provide power to multiple RAUs. It may be desirable to provide these power supplies in modular units or devices that may be easily inserted or removed from a housing to provide power. Providing modular power distribution modules allows power to more easily be configured as needed for the distributed antenna system. For example, a remotely located power unit may be provided that contains a plurality of ports or slots to allow a plurality of power distribution modules to be inserted therein. The power unit may have ports that allow the power to be provided over an electrical conductor medium to the RAUs. Thus, when a power distribution module is inserted in the power unit in a port or slot that corresponds to a given RAU, power from the power distribution module is supplied to the RAU.


It may be desired to allow these power distribution modules to be inserted and removed from the power unit without deactivating other power distribution modules providing power to other RAUs. If power to the power unit were required to be deactivated, RF communications for all RAUs that receiver power from the power unit may be disabled, even if the power distribution module inserted and/or removed from the power unit is configured to supply power to only a subset of the RAUs receiving power from the power unit. However, inserting and removing power distribution modules in a power unit while power is active and being provided in the power unit may cause electrical arcing and electrical contact erosion that can damage the power distribution module or power-consuming components connected to the power distribution module.


Summary of the Detailed Description

Embodiments disclosed in the detailed description include power distribution modules capable of “hot” connection and/or disconnection in distributed antenna systems (DASs). Related power units, components, and methods are also disclosed. By “hot” connection and/or disconnection, it is meant that the power distribution modules can be connected and/or disconnected from a power unit and/or power-consuming components while power is being provided to the power distribution modules. In this regard, it is not required to disable providing power to the power distribution module before connection and/or disconnection of power distribution modules to a power unit and/or power-consuming components. As a non-limiting example, the power distribution modules may be configured to protect against or reduce electrical arcing or electrical contact erosion that may otherwise result from “hot” connection and/or disconnection.


In embodiments disclosed herein, the power distribution modules can be installed in and connected to a power unit for providing power to a power-consuming DAS component(s), such as a remote antenna unit(s) (RAU(s)) as a non-limiting example. Main power is provided to the power unit and distributed to power distribution modules installed and connected in the power unit. Power from the main power provided by the power unit is distributed by each of the power distribution modules to any power-consuming DAS components connected to the power distribution modules. The power distribution modules distribute power to the power-consuming DAS components to provide power for power-consuming components in the power-consuming DAS components.


In this regard in one embodiment, a power distribution module for distributing power in a distributed antenna system is provided. The power distribution module comprises an input power port configured to receive input power from an external power source. The power distribution module also comprises at least one output power port configured to receive output power and distribute the output power to at least one distributed antenna system (DAS) power-consuming device electrically coupled to the at least one output power port. The power distribution module also comprises at least one power controller configured to selectively distribute output power as the input power to the at least one output power port based on a power enable signal coupled to the enable input port. Other embodiments are also disclosed herein.


The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic diagram of an exemplary distributed antenna system;



FIG. 2 is a more detailed schematic diagram of exemplary head-end equipment and a remote antenna unit (RAU) that can be deployed in the distributed antenna system of FIG. 1;



FIG. 3A is a partially schematic cut-away diagram of an exemplary building infrastructure in which the distributed antenna system in FIG. 1 can be employed;



FIG. 3B is an alternative diagram of the distributed antenna system in FIG. 3A;



FIG. 4 is a schematic diagram of exemplary head-end equipment (HEE) to provide radio frequency (RF) communication services to RAUs or other remote communications devices in a distributed antenna system;



FIG. 5 is a schematic diagram of an exemplary distributed antenna system with alternative equipment to provide RF communication services and digital data services to RAUs or other remote communications devices in a distributed antenna system;



FIG. 6 is a schematic diagram of providing digital data services and RF communication services to RAUs or other remote communications devices in the distributed antenna system of FIG. 5;



FIG. 7 is a schematic diagram of an exemplary power distribution module that is supported by a power unit and is capable of “hot” connection and/or disconnection;



FIG. 8 is a schematic diagram of internal components of the power distribution module in FIG. 7 to allow “hot” connection and/or disconnection of the power distribution module from a power unit and remote antenna units (RAUs) in a distributed antenna system;



FIG. 9 is a side perspective view of an input power connector in the power distribution module of FIG. 7 configured to be inserted into an input power connector in a power unit to receive input power from the power unit, and an output power connector of a power cable configured to be inserted into an output power connector in the power distribution module of FIG. 7 to distribute output power from the power distribution module through the output power connector and power cable to at least one power-consuming DAS device;



FIG. 10A illustrates a front, side perspective view of an exemplary power distribution module with a cover installed;



FIG. 10B illustrates a front, side perspective view of the power distribution module in FIG. 10A with the cover removed;



FIG. 10C illustrates a rear, side perspective view of the power distribution module in FIG. 10A;



FIG. 11 is a schematic diagram of the power controller in the power distribution module in FIG. 8;



FIG. 12 is a side view of input power receptacles of the input power connector in the power distribution module in FIG. 8 aligned to be connected to input power ports in an input power connector of the power unit in FIG. 8;



FIG. 13 is a side view of output power pins of the output power connector of the power cable in FIG. 8 aligned to be connected to output power receptacles of the output power connector in the power distribution module in FIG. 8;



FIG. 14 is a schematic diagram of an exemplary power unit configured to support one or more power distribution modules to provide power to RAUs in a distributed antenna system; and



FIG. 15 is a schematic diagram of a generalized representation of an exemplary computer system that can be included in the power distribution modules disclosed herein, wherein the exemplary computer system is adapted to execute instructions from an exemplary computer-readable media.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Embodiments disclosed in the detailed description include power distribution modules capable of “hot” connection and/or disconnection in distributed antenna systems (DASs). Related components, power units, and methods are also disclosed. By “hot” connection and/or disconnection, it is meant that the power distribution modules can be connected and/or disconnected from a power unit and/or power-consuming components while power is being provided to the power distribution modules. In this regard, it is not required to disable providing power to the power distribution module before connection and/or disconnection of power distribution modules to a power unit and/or power-consuming components. As a non-limiting example, the power distribution modules may be configured to protect against or reduce electrical arcing or electrical contact erosion that may otherwise result from “hot” connection and/or disconnection.


In embodiments disclosed herein, the power distribution modules can be installed in and connected to a power unit for providing power to a power-consuming DAS component(s), such as a remote antenna unit(s) (RAU(s)) as a non-limiting example. Main power is provided to the power unit and distributed to power distribution modules installed and connected in the power unit. Power from the main power provided by the power unit is distributed by each of the power distribution modules to any power-consuming DAS components connected to the power distribution modules. The power distribution modules distribute power to the power-consuming DAS components to provide power for power-consuming components in the power-consuming DAS components.


Before discussing examples of power distribution modules capable of “hot” connection and/or disconnection in distributed antenna systems (DASs), exemplary distributed antenna systems capable of distributing RF communications signals to distributed or remote antenna units (RAUs) are first described with regard to FIGS. 1-6. The distributed antenna systems in FIGS. 1-6 can include power units located remotely from RAUs that provide power to the RAUs for operation. Embodiments of power distribution modules capable of “hot” connection and/or disconnection in distributed antenna systems, including the distributed antenna systems in FIGS. 1-6, begin with FIG. 7. The distributed antenna systems in FIGS. 1-6 discussed below include distribution of radio frequency (RF) communications signals; however, the distributed antenna systems are not limited to distribution of RF communications signals. Also note that while the distributed antenna systems in FIGS. 1-6 discussed below include distribution of communications signals over optical fiber, these distributed antenna systems are not limited to distribution over optical fiber. Distribution mediums could also include, but are not limited to, coaxial cable, twisted-pair conductors, wireless transmission and reception, and any combination thereof. Also, any combination can be employed that also involves optical fiber for portions of the distributed antenna system.


In this regard, FIG. 1 is a schematic diagram of an embodiment of a distributed antenna system. In this embodiment, the system is an optical fiber-based distributed antenna system 10. The distributed antenna system 10 is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the RF range of the antenna coverage areas. The distributed antenna system 10 provides RF communication services (e.g., cellular services). In this embodiment, the distributed antenna system 10 includes head-end equipment (HEE) 12 such as a head-end unit (HEU), one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEE 12 to the RAU 14. The RAU 14 is a type of remote communications unit. In general, a remote communications unit can support either wireless communications, wired communications, or both. The RAU 14 can support wireless communications and may also support wired communications. The HEE 12 is configured to receive communications over downlink electrical RF signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEE 12 is also configured to return communications received from the RAU 14, via uplink electrical RF signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEE 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEE 12.


One downlink optical fiber 16D and one uplink optical fiber 16U could be provided to support multiple channels each using wave-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are disclosed in U.S. patent application Ser. No. 12/892,424, any of which can be employed in any of the embodiments disclosed herein. Further, U.S. patent application Ser. No. 12/892,424 also discloses distributed digital data communications signals in a distributed antenna system which may also be distributed in the optical fiber-based distributed antenna system 10 either in conjunction with RF communications signals or not.


The optical fiber-based distributed antenna system 10 has an antenna coverage area 20 that can be disposed about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEE 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as RF identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communications signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.


With continuing reference to FIG. 1, to communicate the electrical RF signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEE 12 includes a radio interface in the form of an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22D back to electrical RF signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.


Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEE 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source. The HEE 12 in this embodiment is not able to distinguish the location of the client devices 24 in this embodiment. The client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14.



FIG. 2 is a more detailed schematic diagram of the exemplary distributed antenna system 10 of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEE 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing cellular signal distribution in the frequency range from 400 MegaHertz (MHz) to 2.7 GigaHertz (GHz). Any other electrical RF signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.


With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E/O converter 28 that receives the downlink electrical RF signals 18D from the service unit 37 and converts them to corresponding downlink optical RF signals 22D. In an exemplary embodiment, the E/O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).


With continuing reference to FIG. 2, the HEE 12 also includes the O/E converter 36, which is electrically coupled to the service unit 37. The O/E converter 36 receives the uplink optical RF signals 22U and converts them to corresponding uplink electrical RF signals 18U. In an example embodiment, the O/E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 28 and the O/E converter 36 constitute a “converter pair” 35, as illustrated in FIG. 2.


In accordance with an exemplary embodiment, the service unit 37 in the HEE 12 can include an RF signal conditioner unit 40 for conditioning the downlink electrical RF signals 18D and the uplink electrical RF signals 18U, respectively. The service unit 37 can include a digital signal processing unit (“digital signal processor”) 42 for providing to the RF signal conditioner unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF signal 18U by the RF signal conditioner unit 40. The HEE 12 can also include an optional central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.


With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O/E converter 30 and the E/O converter 34. The O/E converter 30 converts the received downlink optical RF signals 22D from the HEE 12 back into downlink electrical RF signals 50D. The E/O converter 34 converts uplink electrical RF signals 50U received from the client device 24 into the uplink optical RF signals 22U to be communicated to the HEE 12. The O/E converter 30 and the E/O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF signals 50D and the uplink electrical RF signals 50U, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include any type of antenna, including but not limited to one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “Centralized Optical Fiber-Based Wireless Picocellular Systems and Methods,” both of which are incorporated herein by reference in their entireties.


With continuing reference to FIG. 2, the optical fiber-based distributed antenna system 10 also includes a power unit 54 that includes a power supply and provides an electrical power signal 56. The power unit 54 is electrically coupled to the HEE 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEE 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a voltage, and are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O/E converter 30 and the E/O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power unit 54 to the RAU 14 rather than from or through the HEE 12. In another example embodiment, the electrical power line 58 includes more than two wires and may carry multiple voltages.


To provide further exemplary illustration of how a distributed antenna system can be deployed indoors, FIG. 3A is provided. FIG. 3A is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed antenna system. The system may be the optical fiber-based distributed antenna system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed antenna system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed antenna system 10 incorporates the HEE 12 to provide various types of communication services to coverage areas within the building infrastructure 70, as an example.


For example, as discussed in more detail below, the distributed antenna system 10 in this embodiment is configured to receive wireless RF signals and convert the RF signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed antenna system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, public safety, wireless building automations, and combinations thereof, as examples.


With continuing reference to FIG. 3A, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEE 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3A for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEE 12. The riser cable 84 may be routed through a power unit 85. The power unit 85 may be provided as part of or separate from the power unit 54 in FIG. 2. The power unit 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14. For example, as illustrated in the building infrastructure 70 in FIG. 3B, a tail cable 89 may extend from the power units 85 into an array cable 93. Downlink and uplink optical fibers in tether cables 95 of the array cables 93 are routed to each of the RAUs 14, as illustrated in FIG. 3B. The main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.


The main cable 82 enables multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second, and third floors 72, 74, and 76. In an example embodiment, the HEE 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment, the HEE 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEE 12, and can be co-located or located remotely from the HEE 12. A BTS is any station or signal source that provides an input signal to the HEE 12 and can receive a return signal from the HEE 12.


In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile client device enters the cell, the BTS communicates with the mobile client device. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. As another example, wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS. Alternatively, radio input could be provided by a repeater, picocell or femtocell as other examples.


The optical fiber-based distributed antenna system 10 in FIGS. 1-3B and described above provides point-to-point communications between the HEE 12 and the RAU 14. A multi-point architecture is also possible as well. With regard to FIGS. 1-3B, each RAU 14 communicates with the HEE 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed antenna system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEE 12. The downlink and uplink optical fibers 16D, 16U may be provided in a fiber optic cable. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable.


For example, with reference to FIG. 3A, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14. One downlink optical fiber 16D could be provided to support multiple channels each using wavelength-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are also disclosed in U.S. patent application Ser. No. 12/892,424, any of which can be employed in any of the embodiments disclosed herein.


The HEE 12 may be configured to support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink), EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).



FIG. 4 is a schematic diagram of exemplary HEE 90 that may be employed with any of the distributed antenna systems disclosed herein, including but not limited to the distributed antenna system 10 in FIGS. 1-3. The HEE 90 in this embodiment is configured to distribute RF communication services over optical fiber. In this embodiment as illustrated in FIG. 4, the HEE 90 includes a head-end controller (HEC) 91 that manages the functions of the HEE 90 components and communicates with external devices via interfaces, such as an RS-232 port 92, a Universal Serial Bus (USB) port 94, and an Ethernet port 96, as examples. The HEE 90 can be connected to a plurality of BTSs, transceivers 100(1)-100(T), and the like via BTS inputs 101(1)-101(T) and BTS outputs 102(1)-102(T). The notation “1-T” indicates that any number of BTS transceivers can be provided up to T number with corresponding BTS inputs and BTS outputs.


With continuing reference to FIG. 4, the BTS inputs 101(1)-101(T) are downlink connections and the BTS outputs 102(1)-102(T) are uplink connections. Each BTS input 101(1)-101(T) is connected to a downlink radio interface in the form of a downlink BTS interface card (BIC) 104 in this embodiment, which is located in the HEE 90, and each BTS output 102(1)-102(T) is connected to a radio interface in the form of an uplink BIC 106 also located in the HEE 90. The downlink BIC 104 is configured to receive incoming or downlink RF signals from the BTS inputs 101(1)-101(T) and split the downlink RF signals into copies to be communicated to the RAUs 14, as illustrated in FIG. 2. In this embodiment, thirty-six (36) RAUs 14(1)-14(36) are supported by the HEE 90, but any number of RAUs 14 may be supported by the HEE 90. The uplink BIC 106 is configured to receive the combined outgoing or uplink RF signals from the RAUs 14 and split the uplink RF signals into individual BTS outputs 102(1)-102(T) as a return communication path.


With continuing reference to FIG. 4, the downlink BIC 104 is connected to a midplane interface card 108 in this embodiment. The uplink BIC 106 is also connected to the midplane interface card 108. The downlink BIC 104 and uplink BIC 106 can be provided in printed circuit boards (PCBs) that include connectors that can plug directly into the midplane interface card 108. The midplane interface card 108 is in electrical communication with a plurality of optical interfaces provided in the form of optical interface cards (OICs) 110 in this embodiment, which provide an optical to electrical communication interface and vice versa between the RAUs 14 via the downlink and uplink optical fibers 16D, 16U and the downlink BIC 104 and uplink BIC 106. The OICs 110 include the E/O converter 28 like discussed with regard to FIG. 1 that converts electrical RF signals from the downlink BIC 104 to optical RF signals, which are then communicated over the downlink optical fibers 16D to the RAUs 14 and then to client devices. The OICs 110 also include the O/E converter 36 like in FIG. 1 that converts optical RF signals communicated from the RAUs 14 over the uplink optical fibers 16U to the HEE 90 and then to the BTS outputs 102(1)-102(T).


With continuing reference to FIG. 4, the OICs 110 in this embodiment support up to three (3) RAUs 14 each. The OICs 110 can also be provided in a PCB that includes a connector that can plug directly into the midplane interface card 108 to couple the links in the OICs 110 to the midplane interface card 108. The OICs 110 may consist of one or multiple optical interface modules (OIMs). In this manner, the HEE 90 is scalable to support up to thirty-six (36) RAUs 14 in this embodiment since the HEE 90 can support up to twelve (12) OICs 110. If less than thirty-six (36) RAUs 14 are to be supported by the HEE 90, less than twelve (12) OICs 110 can be included in the HEE 90 and plugged into the midplane interface card 108. One OIC 110 is provided for every three (3) RAUs 14 supported by the HEE 90 in this embodiment. OICs 110 can also be added to the HEE 90 and connected to the midplane interface card 108 if additional RAUs 14 are desired to be supported beyond an initial configuration. With continuing reference to FIG. 4, the HEU 91 can also be provided that is configured to be able to communicate with the downlink BIC 104, the uplink BIC 106, and the OICs 110 to provide various functions, including configurations of amplifiers and attenuators provided therein.



FIG. 5 is a schematic diagram of another exemplary optical fiber-based distributed antenna system 120 that may be employed according to the embodiments disclosed herein to provide RF communication services. In this embodiment, the optical fiber-based distributed antenna system 120 includes optical fiber for distributing RF communication services. The optical fiber-based distributed antenna system 120 in this embodiment is comprised of three (3) main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 122(1)-122(M) in this embodiment are provided in HEE 124 to receive and process downlink electrical RF communications signals 126D(1)-126D(R) prior to optical conversion into downlink optical RF communications signals. The RIMs 122(1)-122(M) provide both downlink and uplink interfaces. The processing of the downlink electrical RF communications signals 126D(1)-126D(R) can include any of the processing previously described above in the HEE 12 in FIGS. 1-4. The notations “1-R” and “1-M” indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. As will be described in more detail below, the HEE 124 is configured to accept a plurality of RIMs 122(1)-122(M) as modular components that can easily be installed and removed or replaced in the HEE 124. In one embodiment, the HEE 124 is configured to support up to eight (8) RIMs 122(1)-122(M).


Each RIM 122(1)-122(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEE 124 and the optical fiber-based distributed antenna system 120 to support the desired radio sources. For example, one RIM 122 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 122 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 122, the HEE 124 would be configured to support and distribute RF communications signals on both PCS and LTE 700 radio bands. RIMs 122 may be provided in the HEE 124 that support any frequency bands desired, including but not limited to the US Cellular band, Personal Communication Services (PCS) band, Advanced Wireless Services (AWS) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, and Universal Mobile Telecommunication System (UMTS). RIMs 122 may be provided in the HEE 124 that support any wireless technologies desired, including but not limited to Code Division Multiple Access (CDMA), CDMA200, 1×RTT, Evolution—Data Only (EV-DO), UMTS, High-speed Packet Access (HSPA), GSM, General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Time Division Multiple Access (TDMA), Long Term Evolution (LTE), iDEN, and Cellular Digital Packet Data (CDPD). RIMs 122 may be provided in the HEE 124 that support any frequencies desired referenced above as non-limiting examples.


The downlink electrical RF communications signals 126D(1)-126D(R) are provided to a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 128(1)-128(N) in this embodiment to convert the downlink electrical RF communications signals 126D(1)-126D(N) into downlink optical RF communications signals 130D(1)-130D(R). The notation “1-N” indicates that any number of the referenced component 1-N may be provided. The OIMs 128 may be configured to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs 128 support the radio bands that can be provided by the RIMs 122, including the examples previously described above. Thus, in this embodiment, the OIMs 128 may support a radio band range from 400 MHz to 2700 MHz, as an example, so providing different types or models of OIMs 128 for narrower radio bands to support possibilities for different radio band-supported RIMs 122 provided in the HEE 124 is not required. Further, as an example, the OIMs 128 may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400-700 MHz, 700 MHz-1 GHz, 1 GHz-1.6 GHz, and 1.6 GHz-2.7 GHz, as examples.


The OIMs 128(1)-128(N) each include E/O converters to convert the downlink electrical RF communications signals 126D(1)-126D(R) to downlink optical RF communications signals 130D(1)-130D(R). The downlink optical RF communications signals 130D(1)-130D(R) are communicated over downlink optical fiber(s) 133D to a plurality of RAUs 132(1)-132(P). The notation “1-P” indicates that any number of the referenced component 1-P may be provided. O/E converters provided in the RAUs 132(1)-132(P) convert the downlink optical RF communications signals 130D(1)-130D(R) back into downlink electrical RF communications signals 126D(1)-126D(R), which are provided over downlinks 134(1)-134(P) coupled to antennas 136(1)-136(P) in the RAUs 132(1)-132(P) to client devices in the reception range of the antennas 136(1)-136(P).


E/O converters are also provided in the RAUs 132(1)-132(P) to convert uplink electrical RF communications signals 126U(1)-126U(R) received from client devices through the antennas 136(1)-136(P) into uplink optical RF communications signals 138U(1)-138U(R) to be communicated over uplink optical fibers 133U to the OIMs 128(1)-128(N). The OIMs 128(1)-128(N) include O/E converters that convert the uplink optical RF communications signals 138U(1)-138U(R) into uplink electrical RF communications signals 140U(1)-140U(R) that are processed by the RIMs 122(1)-122(M) and provided as uplink electrical RF communications signals 142U(1)-142U(R). Downlink electrical digital signals 143D(1)-143D(P) communicated over downlink electrical medium or media (hereinafter “medium”) 145D(1)-145D(P) are provided to the RAUs 132(1)-132(P), separately from the RF communication services, as well as uplink electrical digital signals 143U(1)-143U(P) communicated over uplink electrical medium 145U(1)-145U(P), as also illustrated in FIG. 6. Common elements between FIG. 5 and FIG. 6 are illustrated in FIG. 6 with common element numbers. Power may be provided in the downlink and/or uplink electrical medium 145D(1)-145D(P) and/or 145U(1)-145U(P) to the RAUs 132(1)-132(P).


In one embodiment, up to thirty-six (36) RAUs 132 can be supported by the OIMs 128, three RAUs 132 per OIM 128 in the optical fiber-based distributed antenna system 120 in FIG. 5. The optical fiber-based distributed antenna system 120 is scalable to address larger deployments. In the illustrated optical fiber-based distributed antenna system 120, the HEE 124 is configured to support up to thirty six (36) RAUs 132 and fit in 6U rack space (U unit meaning 1.75 inches of height). The downlink operational input power level can be in the range of −15 dBm to 33 dBm. The adjustable uplink system gain range can be in the range of +15 dB to −15 dB. The RF input interface in the RIMs 122 can be duplexed and simplex, N-Type. The optical fiber-based distributed antenna system can include sectorization switches to be configurable for sectorization capability, as discussed in U.S. patent application Ser. No. 12/914,585 filed on Oct. 28, 2010, and entitled “Sectorization In Distributed Antenna Systems, and Related Components and Method,” which is incorporated herein by reference in its entirety.


In another embodiment, an exemplary RAU 132 may be configured to support up to four (4) different radio bands/carriers (e.g. ATT, VZW, TMobile, Metro PCS: 700LTE/850/1900/2100). Radio band upgrades can be supported by adding remote expansion units over the same optical fiber (or upgrade to MIMO on any single band), as will be described in more detail below starting with FIG. 7. The RAUs 132 and/or remote expansion units may be configured to provide external filter interface to mitigate potential strong interference at 700 MHz band (Public Safety, CH51,56); Single Antenna Port (N-type) provides DL output power per band (Low bands (<1 GHz): 14 dBm, High bands (>1 GHz): 15 dBm); and satisfies the UL System RF spec (UL Noise Figure: 12 dB, UL IIP3: −5 dBm, UL AGC: 25 dB range).



FIG. 6 is a schematic diagram of providing digital data services and RF communication services to RAUs and/or other remote communications units in the optical fiber-based distributed antenna system 120 of FIG. 6. Common components between FIGS. 5 and 6 and other figures provided have the same element numbers and thus will not be re-described. As illustrated in FIG. 6, a power supply module (PSM) 153 may be provided to provide power to the RIMs 122(1)-122(M) and radio distribution cards (RDCs) 147 that distribute the RF communications from the RIMs 122(1)-122(M) to the OIMs 128(1)-128(N) through RDCs 149. In one embodiment, the RDCs 147, 149 can support different sectorization needs. A PSM 155 may also be provided to provide power to the OIMs 128(1)-128(N). An interface 151, which may include web and network management system (NMS) interfaces, may also be provided to allow configuration and communication to the RIMs 122(1)-122(M) and other components of the optical fiber-based distributed antenna system 120. A microcontroller, microprocessor, or other control circuitry, called a head-end controller (HEC) 157 may be included in HEE 124 (FIG. 7) to provide control operations for the HEE 124.


RAUs, including the RAUs 14, 132 discussed above, contain power-consuming components for transmitting and receiving RF communications signals. In the situation of an optical fiber-based distributed antenna system, the RAUs may contain O/E and E/O converters that also require power to operate. As an example, a RAU may contain a power unit that includes a power supply to provide power to the RAUs locally at the RAU. Alternatively, power may be provided to the RAUs from power supplies provided in remote power units. In either scenario, it may be desirable to provide these power supplies in modular units or devices that may be easily inserted or removed from a power unit. Providing modular power distribution modules allows power to more easily be configured as needed for the distributed antenna system. It may be desired to allow these power distribution modules to be inserted and removed from the power unit without deactivating other power distribution modules providing power to other RAUs. If power to the entire power unit were required to be deactivated, RF communications for all RAUs that receive power from the power unit would be disabled even if the power distribution module inserted and/or removed from the power unit is configured to supply power to only a subset of the RAUs receiving power from the power unit.


In this regard, embodiments disclosed herein include power distribution modules capable of “hot” connection and/or disconnection in distributed antenna systems (DASs). Related components, power units, and methods are also disclosed. By “hot” connection and/or disconnection, it is meant that the power distribution modules can be connected and/or disconnected from a power unit and/or power-consuming components while power is being provided to the power distribution modules. In this regard, it is not required to disable providing power to the power distribution module before connection and/or disconnection of power distribution modules to a power unit and/or power-consuming components. As a non-limiting example, the power distribution modules may be configured to protect against or reduce electrical arching or electrical contact erosion that may otherwise result from “hot” connection and/or disconnection.


In this regard, FIG. 7 is a schematic diagram of an exemplary power distribution module 160 that can be employed to provide power to the RAUs 14, 132 or other power-consuming DAS components, including those described above. In this embodiment, the power distribution module 160 is disposed in a power unit 162. The power unit 162 may be the power unit 85 previously described above to remotely provide power to the RAUs 14, 132. The power unit 162 may be comprised of a chassis 164 or other housing that is configured to support power distribution modules 160. The power unit 162 provides support for receiving power from an external power source 166, which may be AC power, to the power unit 162 to then be distributed within the power unit 162 to the power distribution modules 160 disposed therein, as will be described in more detail below. The power unit 162 may be configured to support multiple power distribution modules 162. Each power distribution module 162 may be configured to provide power to multiple RAUs 14, 132.


With continuing reference to FIG. 7, the distribution of power from the external power source 166 to the power distribution modules 160 and from the power distribution modules 160 to output power ports that can be electrically coupled to power-consuming DAS components will now described. In this embodiment, the power unit 162 contains an external input power port 168 disposed in the chassis 164. The external input power port 168 is configured to be electrically coupled to the external power source 166 to supply input power 170 to the external input power connector 168. For example, the external power source 166 may be AC power, and may be either 110 Volts (V) or 220 Volts (V). To distribute the power from the external power source 166 to the power distribution modules 160 disposed in the power unit 162, the power unit 162 contains a midplane interface connector 172. In this embodiment, the midplane interface connector 172 is comprised of an AC connector 172A to carry AC signals, and a DC connector 172B to carry DC signals. The power distribution module 160 contains a complementary connector 174 that can be connected to the midplane interface connector 172 to electrically connect the power distribution module 160 to the power unit 162. For example, the power unit 162 may contain a midplane interface bus that contains a plurality of midplane interface connectors 172 to allow a plurality of power distribution modules 160 to interface with the midplane interface bus.


With continuing reference to FIG. 7, the power distribution module 160 includes an input power port 176 that is configured to receive input power from the external power source 166. The input power port 176 is provided as part of the connector 174 to allow the external power source 166 to be electrically coupled to the input power port 176 and thus to the power distribution module 160. The power distribution module 160 in this embodiment contains an optional power converter 178 to convert the input power 170 from the external power source 166 to DC power 180. In this regard, the power converter 178 is electrically coupled to the input power port 176 to receive the input power 170 from the external power source 166. The power converter 178 converts the input power 170 from the external power source 166 to output power 180, which is DC power in this example. For example, the power converter 178 may convert the input power 170 to 56 VDC output power 180, as a non-limiting example. A secondary power converter 182 may receive the output power 180 and may convert the output power 180 to a second output power 184 at a different voltage, such as 12 VDC for example, to provide power to a cooling fan 186 in the power distribution module 160.


With continuing reference to FIG. 7, the power converter 178 may also distribute the output power 180 to a power controller 188. As will be described in more detail below, the power controller 188 controls whether the output power 180 is distributed to an output power port 190 to be distributed to power-consuming DAS devices electrically coupled to the output power port 190. The output power port 190 in this embodiment is electrically coupled to an output power connector 192 through the connectors 172, 174, as illustrated in FIG. 7. Thus, the output power 180 can be distributed to power-consuming DAS devices by electrical coupling to the output power connector 192 in the power distribution module 160. In this regard, the power controller 188 contains a power enable port 194. The power controller 188 is configured to selectively distribute the output power 180 to the output power port 190 based on a power enable signal 196 provided on a power enable line 198 coupled to the power enable port 194. In this regard, the power controller 188 is configured to distribute the output power 180 to the output power port 190 if the power enable signal 196 communicated on the power enable line 198 indicates to activate power. Activation of power means providing the output power 180 to the output power port 190 to be distributed to power-consuming DAS devices electrically coupled to the output power port 190. When output power 180 is activated and supplied to the output power connector 192, the output power 180 may also be coupled to a light, such as a light emitting diode (LED) 200, to signify that output power 180 is active at the output power connector 192. The power controller 188 is also configured to not distribute the output power 180 to the output power port 190 if the power enable signal 196 communicated on the power enable line 198 indicates to deactivate power. This power controller 188 and enable feature allows the “hot” connection and disconnection of the power distribution module 160 from the power unit 162 in this embodiment, as will be described in more detail below.


With continuing reference to FIG. 7, in this embodiment, one source of the power enable signal 196 is the power disable/enable feature 202. The power enable/disable feature 202 may be a conductor or pin on the power distribution module 160, as will be described in more detail below. The power enable/disable feature 202 may be provided by other means. The power enable/disable feature 202 in this embodiment is configured to close a circuit on the power enable line 198 when an output power connector 204 is connected to the output power connector 192 of the power distribution module 160. When connected, the output power connector 204 will then be electrically coupled to the connector 174 of the power distribution module 160 which is connected to the midplane interface connector 172 of the power unit 162 when the power distribution module 160 is installed. As will be discussed in more detail below, the power enable/disable feature 202 may only be configured to close the circuit on the power enable line 198 until all other conductors of the output power connector 204 coupled to the output power connector 192 are fully electrically coupled to the midplane interface connector 172 via the connector 174. In this manner, electrical arcing between the output power connector 204 and the output power connector 192 may be avoided, because the power controller 188 does not provide output power 180 to the output power port 190 and the output power connector 192 until complete electrical coupling is established between the output power connector 204 and the output power connector 192.


Electrical arcing is a luminous discharge of current that is formed when a strong current jumps a gap in a circuit or between two conductors. If output power 180 is being provided by the power controller 188 to the output power port 190 and output power connector 192 before complete electrical contact is made between the output power connector 204 and the output power connector 192, electrical arcing may occur. Electrical arcing can cause electrical conductor corrosion and/or damage to the power distribution module 160 and/or its components and any power-consuming DAS components connected to the output power connector 192 due to the high voltage and/or discharge.


With continuing reference to FIG. 7, if the output power 180 was being provided to the output power port 190 before a complete electrical connection was made between the output power connector 192 and the output power connector 204, electrical arcing and/or electrical conductor corrosion may occur. Electrical arcing may occur during disconnection of the output power connector 204 from the output power connector 192 due to the output power 180 being “hot” and being actively supplied to the output power connector 192. The power controller 188 herein allows an output power connector 204 to be disconnected from the output power connector 192 while the input power 170 is “hot” or active, because the power enable/disable feature 202 is configured to open the circuit to the power enable line 198 to cause the power controller 188 to not provide the output power 180 to the output power port 190 before the electrical contact is decoupled between the output power connector 204 and the output power connector 192. In a similar regard, the power controller 188 also allows the output power connector 204 to be connected to the output power connector 192 while the input power 170 is “hot” or active, because the power enable/disable feature 202 is configured to close the circuit to the power enable line 198 to enable the power controller 188 to provide the output power 180 to the output power port 190 once complete electrical contact is established between the output power connector 204 and the output power connector 192.


In a similar regard with continuing reference to FIG. 7, the power distribution module 160 is also configured to activate and deactivate providing output power 180 to the output power connector 192 upon installation (i.e., connection) or removal (i.e., disconnection) of the power distribution module 160 from the power unit 162. More specifically, the power enable/disable feature 202 is configured to only close the circuit on the power enable line 198 to enable the power controller 188 to provide output power 180 until all other conductors of the connector 174 of the power distribution module 160 are completely coupled to the midplane interface connector 172 during installation of the power distribution module 160 in the power unit 162. In this manner, electrical arcing between the output power connector 204 and the output power connector 192 may be avoided when the power distribution module 160 is installed in the power unit 162 when input power 170 is “hot.” This is because the power controller 188 does not provide output power 180 to the output power port 190 and the output power connector 204 until complete electrical coupling is established between the connector 174 of the power distribution module 160 and the midplane interface connector 172. This reduces or avoids the risk of electrical arcing if a load is placed on the output power connector 204 connected to the output power connector 192 when the power distribution module 160 is connected to and disconnected from the power unit 162 when input power 170 is active.


Also, the power enable/disable feature 202 is configured to open the circuit on the power enable line 198 to disable output power 180 from being provided by the output power port 190 during removal or disconnection of the power distribution module 160 from the power unit 162. The power enable/disable feature 202 is configured to open the circuit on the power enable line 198 to disable output power 180 before the connector 174 of the power distribution module 160 begins to decouple from the midplane interface connector 172. In this manner, electrical arcing between the output power connector 204 and the output power connector 192 may be avoided if the power distribution module 160 is removed while input power 170 is “hot.” This is because the power controller 188 disables output power 180 to the output power port 190 and the output power connector 204 before electrical decoupling starts to being between the connector 174 of the power distribution module 160 and the midplane interface connector 172 during removal of the power distribution module 160. This reduces or avoids the risk of electrical arcing if a load is placed on the output power connector 204 connected to the output power connector 192 when the power distribution module 160 is disconnected from the power unit 162 when input power 170 is active.


Also, with reference to FIG. 7, the fan 186 may be configured to provide diagnostic or other operational data 195 to the power controller 188. For example, the power controller 188 may be configured to disable providing output power 180 if a fault or other error condition is reported by the fan 186 to the power controller 188.



FIG. 8 is a schematic diagram of exemplary internal components of the power distribution module 160 in FIG. 7 and the power unit 162 to allow “hot” connection and/or disconnection of the power distribution module 160 from the power unit 162 and remote antenna units (RAUs) 14, 132 in a distributed antenna system. Common element numbers between FIG. 7 and FIG. 8 signify common elements and functionality. Only one power distribution module 160 is shown, but more than one power distribution modules 160 may be provided in the power unit 162. As shown in FIG. 8, there are two output power connectors 192A, 192B that allow two power cables 210A, 210B, via their output power connectors 204A, 204B, to be connected to the output power connectors 192A, 192B to provide power to two RAUs 14, 132. Alternatively, one RAU 14, 132 requiring higher power could be connected to both output power connectors 204A, 204B. The power distribution module 160 in this embodiment is configured to distribute power to multiple RAUs 14, 132. Output connectors 212A, 212B are disposed on opposite ends of the power cables 210A, 210B from output power connectors 204A, 204B. Output connectors 212A, 212B are configured to be connected to RAU power connectors 214A, 214B to provide power to the RAUs 14, 132. The power cables 210A, 210B are configured such that two conductors (pins 3 and 4 as illustrated) are shorted when the output connectors 212A, 212B are electrically connected to RAU power connectors 214A, 214B in the RAUs 14, 132. The conductors in the RAU power connectors 214A, 214B corresponding to pins 3 and 4 are shorted inside the RAU 14, 132.


In this regard, FIG. 9 is a side perspective view of an output power connector 204 being connected to the output power connector 192 of the power distribution module 160. FIG. 9 also shows the connector 174 of power distribution module 160 about to be inserted into the midplane interface connector 172 of the power unit 162 to couple input power 170 to the power distribution module 160 to be distributed through the output power connector 192 to the output power connector 204 to least one power-consuming DAS device. FIG. 10A illustrates a front, side perspective view of an exemplary power distribution module 160 with a cover installed. FIG. 10B illustrates a front, side perspective view of the power distribution module 160 in FIG. 10A with the cover removed. FIG. 10C illustrates a rear, side perspective view of the power distribution module 160 in FIG. 10A.


With continuing reference to FIG. 8, when the output power connectors 204A, 204B are electrically connected to the power cables 210A, 210B, the short created between pins 3 and 4 in the RAU power connectors 214A, 214B cause pins 3 and 4 to be shorted in the output power connectors 204A, 204B coupled to the midplane interface connector 172 and the connector 174 of the power distribution module 160, and the output power connectors 192A, 192B. This is a power enable/disable feature 202A. In this regard, the power enable ports 194A, 194B via power enable lines 198A, 198B are activated, thereby activating the power controllers 188A, 188B to provide output power 180 to the connector 174 through midplane interface connector 172 and to the RAUs 14, 132 via the power cables 210A, 210B. When the output power connectors 204A, 204B or output connectors 212A, 212B are disconnected, pins 3 and 4 on the output power connectors 192A, 192B are not short circuited. This causes the power enable ports 194A, 194B via power enable lines 198A, 198B to be deactivated, thereby causing the power controllers 188A, 188B to deactivate output power 180 to the connector 174 through midplane interface connector 172 and the output power connectors 192A, 192B, which may be electrically connected to the power cables 210A, 210B. In this regard, connection and disconnection of the RAUs 14, 132 to the output power connectors 192A, 192B causes the power controllers 188A, 188B to activate and deactivate output power 180, respectively.


With continuing reference to FIG. 8, an alternative circuit configuration 220 may be provided. Instead of pins 3 and 4 being shorted together in the power cables 210A, 210B, pins 3 and 4 may be shorted in the RAU power connectors 214A, 214B of the RAUs 14, 132. This will cause a short circuit between pins 3 and 4 in the power cables 210A, 210B when the output connectors 212A, 212B of the power cables 210A, 210B are connected to the RAU power connectors 214A, 214B of the RAUs 114, 132. The alternative circuit configuration 220 provides extra conductors in the power cables 210A, 210B that can increase cost in the power cable 210A, 210B. When connected, the power enable ports 194A, 194B via power enable lines 198A, 198B are activated, thereby activating the power controllers 188A, 188B to provide output power 180 to the connector 174 through midplane interface connector 172 and to the RAUs 14, 132 via the power cables 210A, 210B. When the output power connectors 204A, 204B or output connectors 212A, 212B are disconnected, pins 3 and 4 on the output power connectors 192A, 192B are not short circuited. This causes the power enable ports 194A, 194B via power enable lines 198A, 198B to be deactivated, thereby causing the power controllers 188A, 188B to deactivate output power 180 to the connector 174 through midplane interface connector 172 and the output power connectors 192A, 192B, which may be electrically connected to the power cables 210A, 210B. In this regard, connection and disconnection of the RAUs 14, 132 to the output power connectors 192A, 192B causes the power controllers 188A, 188B to activate and deactivate output power 180, respectively.


With continuing reference to FIG. 8, output power 180A, 180B is enabled by the power controllers 188A, 188B when the power distribution module 160 connector 174 is connected to midplane interface connector 172 in the power unit 162. In this regard, a short is created between pins 11 and 12 in the midplane interface connector 172 when the power distribution module 160 connector 174 is connected to the midplane interface connector 172 through the power enable/disable feature 202B. The power enable ports 194A, 194B via power enable lines 198A, 198B are activated, thereby activating the power controllers 188A, 188B to provide output power 180 to the connector 174 through midplane interface connector 172 and to the RAUs 14, 132 via the power cables 210A, 210B. Similarly, output power 180A, 180B is disabled by the power controllers 188A, 188B when the power distribution module 160 connector 174 is disconnected from midplane interface connector 172 in the power unit 162. In this regard, pins 11 and 12 are no longer shorted. This causes the power enable ports 194A, 194B via power enable lines 198A, 198B to be deactivated, thereby causing the power controllers 188A, 188B to deactivate output power 180 to the connector 174 through midplane interface connector 172 and the output power connectors 192A, 192B, which may be electrically connected to the power cables 210A, 210B. In this regard, connection and disconnection of the power distribution module 160 to the power unit 162 causes the power controllers 188A, 188B to activate and deactivate output power 180, respectively.


The power converter 178 can be provided to produce any voltage level of DC power desired. In one embodiment, the power converter 178 can produce relatively low voltage DC current. A low voltage may be desired that is power-limited and Safety Extra Low Voltage (SELV) compliant, although such is not required. For example, according to Underwriters Laboratories (UL) Publication No. 60950, SELV-compliant circuits produce voltages that are safe to touch both under normal operating conditions and after faults. In this embodiment, two power controllers 188A, 188B are provided so no more than 100 Watts (W) in this example are provided over output power ports 190A, 190B to stay within the Underwriters Laboratories (UL) Publication No. 60950, and provide a SELV-compliant circuit. The 100 VA limit discussed therein is for a Class 2 DC power source, as shown in Table 11(B) in NFPA 70, Article 725. Providing a SELV compliant power converter 178 and power unit 162 may be desired or necessary for fire protection and to meet fire protection and other safety regulations and/or standards. The power converter 178 is configured to provide up to 150 W of power in this example. The 150 W is split among the output power ports 190A, 190B.



FIG. 11 is a schematic diagram of an exemplary power controller 188 that may be provided in the power distribution module 160 in FIG. 7. Common element numbers between FIG. 11 and FIG. 7 indicate common elements and thus will not be re-described. As illustrated in FIG. 11, an integrated circuit (IC) chip 230 is provided to control wherein output power 180 from the power converter 178 will be provided to the connector 174 of the power distribution module 160 configured to be connected to the midplane interface connector 172 of the power unit 162.


To provide for “hot” connection of the power distribution module 160 to the power unit 162, and more particularly the connector 174 to the midplane interface connector 172, the power controller 188 should not enable output power 180 until complete electrical contact is made between the conductors of the connector 174 and the midplane interface connector 172. Otherwise, electrical arcing may occur. To provide for “hot” disconnection of the power distribution module 160 to the power unit 162, the power controller 188 should disable output power 180 before complete electrical contact is decoupled between the conductors of the connector 174 and the midplane interface connector 172. Similarly, to provide for “hot” connection of power-consuming DAS devices to the output power connector 192 of a power distribution module 160, it is important that the power controller 188 not enable output power 180 until complete electrical contact is made between the output power connector 192 and the output power connector 204. Otherwise, electrical arcing may occur. To provide for “hot” disconnection of the power distribution module 160 to the power unit 162, the power controller 188 should disable output power 180 before complete electrical contact is decoupled between the conductors of the output power connector 192 and the output power connector 204.


In this regard, short conductor pins are provided in the midplane interface connector 172 and the output power connector 204 that are configured to be coupled to the power enable line 198 when contact is established. This is illustrated in FIGS. 12 and 13. FIG. 12 is a side view of the midplane interface connector 172 that includes a short conductor pin 202A, which is the power enable/disable feature 202 in this embodiment. FIG. 13 is a side view of output power pins of the output power connector 204 of the power cable 210 aligned to be connected to the output power connector 192 of the power distribution module 160.


With reference to FIG. 12, the interface connector 174 includes other conductors 225 that are longer than the short conductor pin 202A. Thus, when the midplane interface connector 172 is connected to the connector 174, electrical contact is fully established to the other conductors 225 before the short conductor pin 202A enables the power enable line 198 to enable the power controller 188 to distribute the output power 180. Thus, electrical arcing can be avoided when “hot” connection is made between the midplane interface connector 172 and the connector 174 of the power distribution module 160. Similarly, to provide for “hot” disconnection, the short conductor pin 202A will electrically decouple from the connector 174 first before electrical decoupling occurs to the other conductors 225. Thus, the power controller 188 will disable output power 180 before electrical contact is decoupled between the other conductors 225 and the connector 174. Thus, electrical arcing can be avoided when “hot” disconnection is made between the midplane interface connector 172 and the connector 174 of the power distribution module 160. The short conductor pin 202A could be reversed and disposed in the connector 174 of the power distribution module 160 output power connector 192 as opposed to the midplane interface connector 172.


With reference to FIG. 13, a similar arrangement is provided. Therein the output power connector 204 includes other conductors 227 that are longer than the short conductor pin 202B. Thus, when the output power connector 204 is connected to the output power connector 192, electrical contact is fully established to the other conductors 227 before the short conductor pin 202B enables the power enable line 198 to enable the power controller 188 to distribute the output power 180. Thus, electrical arcing can be avoided when “hot” connection is made between the output power connector 204 and the output power connector 192 of the power distribution module 160. Similarly, to provide for “hot” disconnection, the short conductor pin 202B will electrically decouple from the output power connector 192 first before electrical decoupling occurs to the other conductors 227. Thus, the power controller 188 will disable output power 180 before electrical contact is decoupled between the other conductors 227 and the output power connector 192. Thus, electrical arcing can be avoided when “hot” disconnection is made between the output power connector 204 and the output power connector 192 of the power distribution module 160. The short conductor pin 202B could be reversed and disposed in the output power connector 192 as opposed to the output power connector 204.



FIG. 14 is a schematic diagram of an exemplary power unit 162 configured to support one or more power distribution modules 160 to provide power to RAUs 14, 132 in a distributed antenna system. In this regard, FIG. 14 is a schematic top cutaway view of a power unit 162 that may be employed in the exemplary RoF distributed communication system. The power unit 162 provides power to remote units, and connectivity to a first central unit, in a manner similar to the power unit 85 illustrated in FIG. 3. The power unit 162, however, may also provide connectivity between RAUs 14, 132 and a second central unit 244 (not illustrated). The second central unit 244 can be, for example, a unit providing Ethernet service to the remote units. For the purpose of this embodiment, the first central unit will be referred to as the HEU 91, and the second central unit will be referred to as a central Ethernet unit, or CEU 244. The CEU 244 can be collocated with the power unit 162, as for example, in an electrical closet, or the CEU 244 can be located with or within the HEU 91.


According to one embodiment, if Ethernet or some other additional service (e.g. a second cellular communication provider) is to be provided over the system 10, four optical fibers (two uplink/downlink fiber pairs) may be routed to each remote unit location. In this case, two fibers are for uplink/downlink from the HEU 91 to the remote unit, and two fibers are for uplink/downlink from the CEU 244. One or more of the remote units may be equipped with additional hardware, or a separate, add-on module designed for Ethernet transmission to which the second fiber pair connects. A third fiber pair could also be provided at each remote unit location to provide additional services.


As illustrated in FIG. 14, the power unit 162 may be provided in an enclosure 250. The enclosure 250 may be generally similar in function to the wall mount enclosure, except that one or more sets of furcations in the power unit 162 can be internal to the enclosure 250. One or more power units 162 can be located on a floor of an office building, a multiple dwelling unit, etc. to provide power and connectivity to remote units on that floor. The exemplary power unit 162 is intended as a 1U rack mount configuration, although the power unit 162 may also be configured as a 3U version, for example, to accommodate additional remote units.


A furcation 260, located inside the enclosure 250, of the riser cable 84 (e.g., FIG. 3A) breaks pairs of optical fibers from the riser cable 84 that are connected at an uplink end to the HEU 91, to provide optical communication input links to the HEU 91. The furcation 260 can be a Size 2 Edge™ Plug furcation, Part 02-013966-001 available from Corning Cable Systems LLC of Hickory N.C. If the CEU 244 is located with the HEU 91, optical fibers connecting the CEU 244 to the power unit 162 can be included in the riser cable 84. A furcation 270 breaks fiber pairs from the CEU 244 to provide optical communication input links to the CEU 244. The furcation 270 can be a Size 2 Edge™ Plug furcation, Part 02-013966-001 available from Corning Cable Systems LLC.


The optical communication input links from the HEU 91 and the CEU 244 are downlink and uplink optical fiber pairs to be connected to the remote units. In this embodiment, the furcated leg contains eight (8) optical fiber pairs to provide connections from the CEU 244 and HEU 91 to up to four (4) remote units, although any number of fibers and remote units can be used. The legs are connected to the power unit 162 at furcations 280, which can be arranged as two rows of four 2-fiber connectors on one face of the enclosure 250. The illustrated furcations 280 are internally mounted in the enclosure 250. In an alternative embodiment, the furcations 280 can be mounted on a tray 286 that is mounted to an exterior of the enclosure 250.


For communication between the HEU 91 and the remote units, the furcated leg 262 from the furcation 260 can be pre-connectorized with a fiber-optic connector to facilitate easy connection to a first adapter module 290 within the power unit 162. The first adapter module 290 includes a multi-fiber connector 292 that receives the connector of the furcated leg 262. The connector 292 can be, for example, a 12-fiber MTP connector. A series of six 2-fiber connectors 294, for example, at the other side of the first adapter module 290, connects to fiber pairs 282 from each furcation 280. Each fiber pair 282 can be connectorized with a 2-fiber connector that connects to one of six connectors 294 of the first adapter module 290. In this arrangement, the first adapter module 290 has the capacity to receive twelve fibers at the connector 292, and six separate connectorized fiber pairs 282. This exemplary arrangement allows for optical communication between six remote units and the HEU 91, although only four such connections are shown in the illustrated embodiment. The first adapter module 290 can be, for example, a 12/F LC EDGE™ Module/07-016841 for riser connection available from Corning Cable Systems LLC.


For communication between the CEU 244 and the remote units, or an add-on module of a remote unit, etc., the furcated leg 272 from the furcation 270 can be pre-connectorized with a fiber-optic connector to facilitate easy connection to a second adapter module 300 within the power unit 162. In the illustrated embodiment, the second adapter module 300 is directly beneath the first adapter module 290, and thus is not visible in FIG. 14. The second adapter module 300 includes a multi-fiber connector 293 that receives the connector of the leg 272. The connector 293 can be, for example, a 12-fiber MTP connector. A series of six 2-fiber connectors, for example, at the other side of the second adapter module 300, connects to fiber pairs 284 from each furcation 280. Each fiber pair 284 can be connectorized with a 2-fiber connector that connects to one of six connectors of the second adapter module 300. In this arrangement, the second adapter module 300 has the capacity to receive twelve fibers at the connector 293, and six separate connectorized fiber pairs 284. This arrangement allows for optical communication between, for example, six Ethernet modules that are collocated or within respective remote units, and the CEU 244, although only four such connections are shown in the illustrated embodiment. The second adapter module 300 can be, for example, a 12/F LC EDGE™ Module/07-016841 for riser connection available from Corning Cable Systems LLC.


One or more power distribution modules 160 can be included in the enclosure 250. According to one embodiment, one power distribution module 160 can be connected to each remote unit by a pair of electrical conductors. Electrical conductors include, for example, coaxial cable, twisted copper conductor pairs, etc. Each power distribution module 160 is shown connected to a twisted pair of conductors 324. The power distribution modules 160 plug into a back plane and the conductors that power the remote units connect to the back plane with a separate electrical connector from the optical fibers, although hybrid optical/electrical connectors could be used. Each cable extending to remote units can include two fibers and two twisted copper conductor pairs, although additional fibers and electrical conductors could be included.


The power distribution modules 160 are aligned side-by-side in the enclosure 250. One power distribution module 160 can be assigned to each remote unit, based upon power requirements. If an add-on module, such as an Ethernet module, is included at a remote unit, a second power distribution module 160 can be assigned to power the add-on module. If the remote unit and add-on module power budgets are low, a single power distribution module 160 may suffice to power that location. The allocation of power and optical connectivity is accordingly adaptable depending upon the number and power requirements of remote units, additional modules, and hardware, etc. The power distribution modules 160 can be connected to a power bus that receives local power at the power unit 162 location.


As previously discussed, the power distribution modules 160 may include a fan 186 that is powered by the module 160. Each power distribution module 160 can have two output plugs, to allow for powering of high or low power remote units. In FIG. 14, unused twisted conductor pairs 326 are parked at location 328. The conductor pairs 326 could be used to power Power-over-Ethernet applications, etc., although that might require fewer remote units to be used, or additional power distribution modules 160.


The illustrated power distribution modules 160 can have a power output of 93-95 W. The power distribution modules can operate without fans, but the power ratings may drop, or a larger enclosure space may be required to ensure proper cooling. If no fan is used, the power ratings can drop from, for example, 100 W to 60-70 W. UL requirements can be followed that limit the power distribution to 100VA per remote unit array. In an alternate 1U module configuration, the power unit 162 could have six power distribution modules 160 and no adapter modules. The modules could supply, for example, remote units with greater than 80 W loads. In an alternate 3U module configuration, the power unit 162 could have twelve power distribution modules 160 and can support twelve remote units.


The power unit 162 discussed herein can encompass any type of fiber-optic equipment and any type of optical connections and receive any number of fiber-optic cables or single or multi-fiber cables or connections. The power unit 162 may include fiber-optic components such as adapters or connectors to facilitate optical connections. These components can include, but are not limited to the fiber-optic component types of LC, SC, ST, LCAPC, SCAPC, MTRJ, and FC. The power unit 162 may be configured to connect to any number of remote units. One or more power supplies either contained within the power unit 162 or associated with the power unit 162 may provide power to the power distribution module in the power unit 162. The power distribution module can be configured to distribute power to remote units with or without voltage and current protections and/or sensing. The power distribution module contained in the power unit 162 may be modular where it can be removed and services or permanently installed in the power unit 162.



FIG. 15 is a schematic diagram representation of additional detail regarding an exemplary computer system 340 that may be included in the power distribution module 160 and provided in the power controller 188. The computer system 340 is adapted to execute instructions from an exemplary computer-readable medium to perform power management functions. In this regard, the computer system 400 may include a set of instructions for causing the power controller 188 to enable and disable coupling of power to the output power port 190, as previously described. The power controller 188 may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The power controller 188 may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single device is illustrated, the term “device” shall also be taken to include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The power controller 188 may be a circuit or circuits included in an electronic board card, such as a printed circuit board (PCB) as an example, a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer.


The exemplary computer system 340 of the power controller 188 in this embodiment includes a processing device or processor 344, a main memory 356 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 348 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via the data bus 350. Alternatively, the processing device 344 may be connected to the main memory 356 and/or static memory 348 directly or via some other connectivity means. The processing device 344 may be a controller, and the main memory 356 or static memory 348 may be any type of memory, each of which can be included in the power controller 188.


The processing device 344 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 344 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 344 is configured to execute processing logic in instructions 346 for performing the operations and steps discussed herein.


The computer system 340 may further include a network interface device 352. The computer system 340 also may or may not include an input 354 to receive input and selections to be communicated to the computer system 340 when executing instructions. The computer system 340 also may or may not include an output 364, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 340 may or may not include a data storage device that includes instructions 358 stored in a computer-readable medium 360. The instructions 358 may also reside, completely or at least partially, within the main memory 356 and/or within the processing device 344 during execution thereof by the computer system 340, the main memory 356 and the processing device 344 also constituting computer-readable medium. The instructions 358 may further be transmitted or received over a network 362 via the network interface device 352.


Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.


Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, the distributed antenna systems could include any type or number of communications mediums, including but not limited to electrical conductors, optical fiber, and air (i.e., wireless transmission). The distributed antenna systems may distribute any type of communications signals, including but not limited to RF communications signals and digital data communications signals, examples of which are described in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Multiplexing, such as WDM and/or FDM, may be employed in any of the distributed antenna systems described herein, such as according to the examples provided in U.S. patent application Ser. No. 12/892,424.


Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.

Claims
  • 1. A wireless communication system configured to receive downlink electrical radio frequency (RF) communications signals and to receive and communicate uplink RF communications signals, comprising: a central unit;a plurality of remote units communicatively coupled to the central unit by an optical fiber link comprising a plurality of optical fibers, the plurality of remote units configured to provide communications to a corresponding coverage area of one or more coverage areas and comprising one or more optical-to-electrical (O/E) converters and one or more electrical-to-optical (E/O) converters, wherein: the one or more O/E converters in one or more of the plurality of remote units are configured to convert downlink optical RF communications signals received from one or more of the plurality of optical fibers to electrical RF communications signals to be provided to one or more client devices in the one or more coverage areas of the plurality of remote units; andthe one or more E/O converters in one or more of the plurality of remote units are configured to convert electrical RF communications signals received from the one or more client devices to optical RF communications signals to be provided over one or more of the plurality of optical fibers to the central unit; andat least one power distribution module comprising: an input power port configured to receive input power from an external power source;at least one output power port configured to receive output power and distribute the output power to one or more of the plurality of remote units electrically coupled to the at least one output power port; andat least one power controller comprising a power enable port, the at least one power controller configured to selectively distribute the output power based on the input power to the at least one output power port based on a power enable signal coupled to the power enable port;wherein the at least one power distribution module is configured to be disposed in a power unit, the power unit configured to receive the input power from the external power source, wherein the at least one power distribution module is electrically coupled to one or more of the plurality of remote units by a pair of electrical conductors and is configured to provide the output power to at least one of the plurality of remote units, and wherein the at least one power distribution module, by using the at least one power controller, is configured to be connected and/or disconnected to and/or from the power unit and/or the at least one of the plurality of remote units while the output power is being provided to the power unit.
  • 2. The wireless communication system of claim 1, wherein the plurality of remote units is distributed over multiple floors of a building infrastructure and each remote unit includes at least one antenna.
  • 3. The wireless communication system of claim 1, further comprising an external input power connector configured to be electrically coupled to the external power source to supply power to the external input power connector: wherein the input power port is configured to receive input power from the external input power connector; andwherein the external input power connector comprises at least one external input power conductor configured to be electrically coupled to the input power port and at least one external input power enable conductor configured to be electrically coupled to the power enable port.
  • 4. The wireless communication system of claim 3, further comprising at least one power converter electrically coupled to the input power port, the at least one power converter configured to: receive the input power from the external power source when the external input power connector is electrically coupled to the input power port;convert the input power to the output power; anddistribute the output power to the at least one power controller.
  • 5. The wireless communication system of claim 3, wherein the at least one external input power conductor is comprised of at least one external input power connector pin, and the at least one external input power enable conductor is comprised of at least one external input power enable pin.
  • 6. The wireless communication system of claim 5, wherein the at least one external input power enable pin is shorter in length than the at least one external input power connector pin, such that when the at least one external input power conductor is electrically coupled to the external power source, an electrical connection is established to the at least one external input power connector pin before an electrical connection is established to the at least one external input power enable pin.
  • 7. The wireless communication system of claim 1, wherein the at least one power distribution module further comprises a plurality of output power connectors and wherein: the input power port is part of a connector;the power enable port is coupled to a power enable line; anda source of the power enable signal is configured to close a circuit on the power enable line only when each conductor of a plurality of output power connectors of the at least one power distribution module is electrically coupled to a midplane interface connector of the power unit via the connector.
  • 8. A wireless communication system configured to receive downlink electrical radio frequency (RF) communications signals and to receive and communicate uplink electrical RF communications signals, comprising: a central unit;a plurality of remote units communicatively coupled to the central unit by an optical fiber link comprising a plurality of optical fibers, the plurality of remote units configured to provide communications to a corresponding coverage area of one or more coverage areas and comprising one or more optical-to-electrical (O/E) converters and one or more electrical-to-optical (E/O) converters, wherein: the one or more O/E converters in one or more of the plurality of remote units are configured to convert downlink optical RF communications signals received from one or more of the plurality of optical fibers to electrical RF communications signals to be provided to one or more client devices in the one or more coverage areas of the plurality of remote units; andthe one or more E/O converters in one or more of the plurality of remote units are configured to convert electrical RF communications signals received from the one or more client devices to optical RF communications signals to be provided over one or more of the plurality of optical fibers to the central unit; andat least one power distribution module configured to be disposed in a power unit, the power unit configured to receive power from an external power source, wherein the at least one power distribution module is electrically coupled to one or more of the plurality of remote units by a pair of electrical conductors and is configured to provide power to at least one of the plurality of remote units; andwherein the at least one power distribution module comprises: an input power port configured to receive input power from the external power source;at least one output power port configured to receive output power and distribute the output power to one or more of the plurality of remote units electrically coupled to the at least one output power port; andat least one power controller comprising a power enable port, the at least one power controller configured to selectively distribute the output power based on the input power to the at least one output power port based on a power enable signal coupled to the power enable port.
  • 9. The wireless communication system of claim 8, wherein the at least one power controller is configured to distribute the output power to the at least one output power port if the power enable signal coupled to the power enable port indicates to activate power, and is configured to not distribute the output power to the at least one output power port if the power enable signal coupled to the power enable port indicates to deactivate power.
  • 10. The wireless communication system of claim 8, wherein the input power port comprises at least one input power conductor configured to receive the input power and at least one input power enable conductor electrically coupled to the power enable port.
  • 11. The wireless communication system of claim 8, wherein the at least one output power port comprises at least one output power conductor configured to receive the input power and at least one output power enable conductor electrically coupled to the power enable port.
  • 12. The wireless communication system of claim 8, wherein the plurality of remote units is distributed over multiple floors of a building infrastructure and each remote unit includes at least one antenna.
  • 13. A wireless communication system configured to receive downlink electrical radio frequency (RF) communications signals and to receive and communicate uplink electrical RF communications signals, comprising: a central unit;a plurality of remote units communicatively coupled to the central unit by an optical fiber link comprising a plurality of optical fibers, the plurality of remote units configured to provide communications to a corresponding coverage area of one or more coverage areas and comprising one or more optical-to-electrical (O/E) converters and one or more electrical-to-optical (E/O) converters, wherein: the one or more O/E converters in one or more of the plurality of remote units are configured to convert downlink optical RF communications signals received from one or more of the plurality of optical fibers to electrical RF communication signals to be provided to one or more client devices in the one or more coverage areas of the plurality of remote units; andthe one or more E/O converters in one or more of the plurality of remote units are configured to convert electrical RF communications signals received from the one or more client devices to optical RF communications signals to be provided over one or more of the plurality of optical fibers to the central unit; andat least one power distribution module configured to be disposed in a power unit, the power unit configured to receive power from an external power source, wherein the at least one power distribution module is electrically coupled to one or more of the plurality of remote units by a pair of electrical conductors and is configured to provide power to at least one of the plurality of remote units; andwherein the at least one power distribution module comprises: at least one power controller comprising a power enable port, the at least one power controller configured to receive input power and selectively distribute output power to at least one output power port based on a power enable signal coupled to the power enable port;at least one input power conductor configured to receive the input power from the external power source;at least one input power enable conductor electrically coupled to the power enable port;at least one output power conductor configured to receive the input power from the at least one power controller; andat least one output power enable conductor electrically coupled to the power enable port.
  • 14. The wireless communication system of claim 13, wherein the at least one output power enable conductor is configured to receive the power enable signal, and wherein the at least one output power conductor is configured to receive the output power from the at least one power controller when the external power source is coupled to the at least one power distribution module and the power enable port receives the power enable signal indicating to distribute power.
  • 15. The wireless communication system of claim 13, wherein the at least one power distribution module further comprises an input power port configured to receive the input power from the external power source, at least one output power port configured to receive the output power and distribute the output power to one or more of the plurality of remote units electrically coupled to the at least one output power port, and a plurality of output power connectors.
  • 16. The wireless communication system of claim 15, wherein: the input power port is part of a connector;the power enable port is coupled to a power enable line; anda source of the power enable signal is configured to close a circuit on the power enable line only when each conductor of the plurality of output power connectors of the at least one power distribution module is electrically coupled to a midplane interface connector of the power unit via the connector.
  • 17. The wireless communication system of claim 13, wherein the plurality of remote units is distributed over multiple floors of a building infrastructure and each remote unit includes at least one antenna.
PRIORITY APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/601,704, filed Oct. 15, 2019, which is a continuation of U.S. patent application Ser. No. 15/614,124, filed Jun. 5, 2017, now U.S. Pat. No. 10,454,270, which is a continuation of U.S. patent application Ser. No. 13/899,118, filed May 21, 2013, now U.S. Pat. No. 9,685,782, which is a continuation of International Application No. PCT/US11/61761 filed Nov. 22, 2011, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/416,780 filed on Nov. 24, 2010, all of these applications being incorporated herein by reference.

US Referenced Citations (518)
Number Name Date Kind
4449246 Seiler et al. May 1984 A
4665560 Lange May 1987 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5056109 Gilhousen et al. Oct 1991 A
5138679 Edwards et al. Aug 1992 A
5187803 Sohner et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5329604 Baldwin et al. Jul 1994 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5432838 Purchase et al. Jul 1995 A
5436827 Gunn et al. Jul 1995 A
5519830 Opoczynski May 1996 A
5534854 Bradbury et al. Jul 1996 A
5559831 Keith Sep 1996 A
5598314 Hall Jan 1997 A
5606725 Hart Feb 1997 A
5668562 Cutrer et al. Sep 1997 A
5682256 Motley et al. Oct 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5774316 McGary et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5818883 Smith et al. Oct 1998 A
5839052 Dean et al. Nov 1998 A
5862460 Rich Jan 1999 A
5867763 Dean et al. Feb 1999 A
5889469 Mykytiuk et al. Mar 1999 A
5953670 Newson Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
6006069 Langston Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6037898 Parish et al. Mar 2000 A
6060879 Mussenden May 2000 A
6069721 Oh et al. May 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6125048 Loughran et al. Sep 2000 A
6128477 Freed Oct 2000 A
6157810 Georges et al. Dec 2000 A
6163266 Fasullo et al. Dec 2000 A
6188876 Kim Feb 2001 B1
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212274 Ninh Apr 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6236863 Waldroup et al. May 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6295451 Mimura Sep 2001 B1
6307869 Pawelski Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6366774 Ketonen et al. Apr 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby Jul 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6496290 Lee Dec 2002 B1
6519449 Zhang et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6551065 Lee Apr 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6584197 Boudreaux, Jr. et al. Jun 2003 B1
6587514 Wright et al. Jul 2003 B1
6588943 Howard Jul 2003 B1
6598009 Yang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6678509 Skarman et al. Jan 2004 B2
6704298 Matsumiya et al. Mar 2004 B1
6745013 Porter et al. Jun 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6785558 Stratford et al. Aug 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6850510 Kubler Feb 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6882311 Walker et al. Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6919858 Rofougaran Jul 2005 B2
6931659 Kinemura Aug 2005 B1
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6937878 Kim et al. Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6977502 Hertz Dec 2005 B1
6984073 Cox Jan 2006 B2
7015826 Chan et al. Mar 2006 B1
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7050017 King et al. May 2006 B2
7053648 Devey May 2006 B2
7053838 Judd May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7073953 Roth et al. Jul 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7142125 Larson et al. Nov 2006 B2
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7144255 Seymour Dec 2006 B2
7171244 Bauman Jan 2007 B2
7177728 Gardner Feb 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7202646 Vinciarelli Apr 2007 B2
7269311 Kim et al. Sep 2007 B2
7315735 Graham Jan 2008 B2
7359647 Faria et al. Apr 2008 B1
7359674 Markki et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7412224 Kotola et al. Aug 2008 B2
7417443 Admon et al. Aug 2008 B2
7450853 Kim et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454171 Palin et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7483711 Burchfiel Jan 2009 B2
7486782 Roos Feb 2009 B1
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7515526 Elkayam et al. Apr 2009 B2
7526303 Chary Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7545055 Barrass Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7567579 Korcharz et al. Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7585119 Sasaki Sep 2009 B2
7586861 Kubler et al. Sep 2009 B2
7587559 Brittain et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7619535 Chen et al. Nov 2009 B2
7627250 George et al. Dec 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7650519 Hobbs et al. Jan 2010 B1
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761718 Yasuo et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7852228 Teng et al. Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7899395 Martch et al. Mar 2011 B2
7904115 Hageman et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7970428 Lin et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8001397 Hansalia Aug 2011 B2
8018901 Shimobayashi Sep 2011 B2
8018907 Kubler et al. Sep 2011 B2
8036157 Hanabusa et al. Oct 2011 B2
8036308 Rofougaran Oct 2011 B2
8068937 Eaves Nov 2011 B2
8078894 Ogami Dec 2011 B1
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8111998 George Feb 2012 B2
8155525 Cox Apr 2012 B2
8270838 Cox Sep 2012 B2
8270990 Zhao Sep 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8328145 Smith Dec 2012 B2
8406941 Smith Mar 2013 B2
8417979 Maroney Apr 2013 B2
8457562 Zavadsky et al. Jun 2013 B2
8514092 Cao et al. Aug 2013 B2
8532492 Palanisamy et al. Sep 2013 B2
8548330 Berlin et al. Oct 2013 B2
8588614 Larsen Nov 2013 B2
8605394 Crookham et al. Dec 2013 B2
8620375 Kim et al. Dec 2013 B2
8622632 Isenhour et al. Jan 2014 B2
8649684 Casterline et al. Feb 2014 B2
8744390 Stratford Jun 2014 B2
8781637 Eaves Jul 2014 B2
8830035 Lindley et al. Sep 2014 B2
8831428 Kobyakov et al. Sep 2014 B2
8831593 Melester et al. Sep 2014 B2
8855832 Rees Oct 2014 B2
8930736 James Jan 2015 B2
8971903 Hossain et al. Mar 2015 B2
8994276 Recker et al. Mar 2015 B2
9026036 Saban et al. May 2015 B2
9160449 Heidler et al. Oct 2015 B2
9166690 Brower et al. Oct 2015 B2
9184795 Eaves Nov 2015 B2
9223336 Petersen et al. Dec 2015 B2
9240835 Berlin et al. Jan 2016 B2
9252874 Heidler et al. Feb 2016 B2
9343797 Shoemaker et al. May 2016 B2
9419436 Eaves et al. Aug 2016 B2
9532329 Sauer Dec 2016 B2
9673904 Palanisamy et al. Jun 2017 B2
9699723 Heidler et al. Jul 2017 B2
9853689 Eaves Dec 2017 B2
10020885 Mizrahi et al. Jul 2018 B2
10404099 Bonja et al. Sep 2019 B1
10405356 Hazani et al. Sep 2019 B2
20010036199 Terry Nov 2001 A1
20020051434 Ozluturk et al. May 2002 A1
20020097031 Cook et al. Jul 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020180554 Clark et al. Dec 2002 A1
20030111909 Liu et al. Jun 2003 A1
20030146765 Darshan et al. Aug 2003 A1
20030147353 Clarkson et al. Aug 2003 A1
20030178979 Cohen Sep 2003 A1
20040095907 Agee et al. May 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040230846 Mancey et al. Nov 2004 A1
20050047030 Lee Mar 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050197094 Darshan et al. Sep 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050262364 Diab et al. Nov 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060053324 Giat et al. Mar 2006 A1
20060084379 O'Neill Apr 2006 A1
20060192434 Vrla et al. Aug 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070004467 Chary Jan 2007 A1
20070058332 Canterbury et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070166050 Horio et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070286599 Sauer et al. Dec 2007 A1
20070291732 Todd et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002614 Hanabusa et al. Jan 2008 A1
20080043714 Pernu Feb 2008 A1
20080044186 George et al. Feb 2008 A1
20080045271 Azuma Feb 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080164890 Admon et al. Jul 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080167931 Gerstemeier et al. Jul 2008 A1
20080186143 George et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080251071 Armitstead et al. Oct 2008 A1
20080252307 Schindler Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080272725 Bojrup et al. Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20090007192 Singh Jan 2009 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090040027 Nakao Feb 2009 A1
20090055672 Burkland et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090100275 Chang et al. Apr 2009 A1
20090121548 Schindler et al. May 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090280854 Khan et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090304387 Farries et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100054746 Logan Mar 2010 A1
20100056184 Vakil et al. Mar 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100106985 Panguluri et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100240302 Buczkiewicz et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100290787 Cox Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100322206 Hole et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110055861 Covell et al. Mar 2011 A1
20110065450 Kazmi Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110105110 Carmon et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110172841 Forbes, Jr. Jul 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110241425 Hunter, Jr. et al. Oct 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110249715 Choi et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110260939 Korva et al. Oct 2011 A1
20110266999 Yodfat et al. Nov 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268446 Cune et al. Nov 2011 A1
20110268449 Berlin et al. Nov 2011 A1
20110268452 Beamon et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120009926 Hevizi et al. Jan 2012 A1
20120033676 Mundra et al. Feb 2012 A1
20120063377 Osterling et al. Mar 2012 A1
20120099448 Matsuo et al. Apr 2012 A1
20120106442 Xiao May 2012 A1
20120120995 Wurth May 2012 A1
20120122405 Gerber et al. May 2012 A1
20120163829 Cox Jun 2012 A1
20120196611 Venkatraman et al. Aug 2012 A1
20120214538 Kim et al. Aug 2012 A1
20120289224 Hallberg et al. Nov 2012 A1
20120293390 Shoemaker et al. Nov 2012 A1
20120307876 Trachewsky et al. Dec 2012 A1
20120317426 Hunter, Jr. et al. Dec 2012 A1
20120319916 Gears et al. Dec 2012 A1
20130017863 Kummetz et al. Jan 2013 A1
20130035047 Chen et al. Feb 2013 A1
20130040676 Kang et al. Feb 2013 A1
20130046415 Curtis Feb 2013 A1
20130049469 Huff et al. Feb 2013 A1
20130094425 Soriaga et al. Apr 2013 A1
20130102309 Chande et al. Apr 2013 A1
20130128929 Clevorn et al. May 2013 A1
20130132683 Ajanovic et al. May 2013 A1
20130137411 Marin May 2013 A1
20130188959 Cune et al. Jul 2013 A1
20130225182 Singh et al. Aug 2013 A1
20130225183 Meshkati et al. Aug 2013 A1
20130235726 Frederiksen et al. Sep 2013 A1
20130249292 Blackwell, Jr. et al. Sep 2013 A1
20130260706 Singh Oct 2013 A1
20130295980 Reuven et al. Nov 2013 A1
20130330086 Berlin et al. Dec 2013 A1
20130337750 Ko Dec 2013 A1
20140024402 Singh Jan 2014 A1
20140037294 Cox et al. Feb 2014 A1
20140050482 Berlin et al. Feb 2014 A1
20140075217 Wong et al. Mar 2014 A1
20140087742 Brower et al. Mar 2014 A1
20140089688 Man et al. Mar 2014 A1
20140089697 Kim et al. Mar 2014 A1
20140097846 Lemaire et al. Apr 2014 A1
20140146692 Hazani et al. May 2014 A1
20140148214 Sasson May 2014 A1
20140153919 Casterline et al. Jun 2014 A1
20140158781 Kates Jun 2014 A1
20140169246 Chui et al. Jun 2014 A1
20140233442 Atias et al. Aug 2014 A1
20140243033 Wala et al. Aug 2014 A1
20140293894 Saban et al. Oct 2014 A1
20140308043 Heidler et al. Oct 2014 A1
20140308044 Heidler et al. Oct 2014 A1
20150072632 Pourkhaatoun et al. Mar 2015 A1
20150098350 Mini et al. Apr 2015 A1
20150126251 Hunter, Jr. et al. May 2015 A1
20150147066 Benjamin et al. May 2015 A1
20150207318 Lowe et al. Jul 2015 A1
20150215001 Eaves Jul 2015 A1
20150249513 Schwab et al. Sep 2015 A1
20150380928 Saig et al. Dec 2015 A1
20160173291 Hazani et al. Jun 2016 A1
20160294568 Chawgo et al. Oct 2016 A1
20160352393 Berlin et al. Dec 2016 A1
20170054496 Hazani Feb 2017 A1
20170055207 Hagage et al. Feb 2017 A1
20170070975 Ranson et al. Mar 2017 A1
20170214236 Eaves Jul 2017 A1
20170229886 Eaves Aug 2017 A1
20180314311 Tanaka et al. Nov 2018 A1
20180351633 Birkmeir et al. Dec 2018 A1
20190097457 Hazani Mar 2019 A1
20200044445 Blackwell, Jr. Feb 2020 A1
Foreign Referenced Citations (37)
Number Date Country
1764123 Apr 2006 CN
101030162 Sep 2007 CN
101232179 Jul 2008 CN
101803246 Aug 2010 CN
101876962 Nov 2010 CN
101299517 Dec 2011 CN
0851618 Jul 1998 EP
0924881 Jun 1999 EP
1227605 Jul 2002 EP
1347584 Sep 2003 EP
1347607 Sep 2003 EP
1954019 Aug 2008 EP
2275834 Sep 1994 GB
58055770 Apr 1983 JP
2002353813 Dec 2002 JP
20040053467 Jun 2004 KR
1031619 Apr 2011 KR
9603823 Feb 1996 WO
0072475 Nov 2000 WO
0184760 Nov 2001 WO
03024027 Mar 2003 WO
2005117337 Dec 2005 WO
2006077569 Jul 2006 WO
2006077570 Jul 2006 WO
2008083317 Jul 2008 WO
2009014710 Jan 2009 WO
2009145789 Dec 2009 WO
2010090999 Aug 2010 WO
2010132292 Nov 2010 WO
2011123314 Oct 2011 WO
2012051227 Apr 2012 WO
2012051230 Apr 2012 WO
2012064333 May 2012 WO
2012071367 May 2012 WO
2012103822 Aug 2012 WO
2012115843 Aug 2012 WO
2015049671 Apr 2015 WO
Non-Patent Literature Citations (112)
Entry
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Author Unknown, “INT6400/INT1400: HomePlug AV Chip Set,” Product Brief, Atheros Powerline Technology, 27003885 Revision 2, Atheros Communications, Inc., 2009, 2 pages.
Author Unknown, “MegaPlug AV: 200 Mbps Ethernet Adapter,” Product Specifications, Actiontec Electronics, Inc., 2010, 2 pages.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
International Preliminary Report on Patentability for PCT/US2011/061761 dated May 28, 2013, 8 pages.
International Search Report for PCT/US2011/061761 dated Jan. 26, 2012, 3 pages.
Author Unknown, “Equivalent Circuits—(Thevenin and Norton),” Bucknell Lecture Notes, Wayback Machine, Mar. 25, 2010, http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Source/Source2.html, 15 pages.
International Search Report and Written Opinion for PCT/IL2014/050766, dated Nov. 11, 2014, 12 pages.
International Preliminary Report on Patentability for PCT/IL2014/050766, dated Mar. 10, 2016, 9 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 13/687,457, dated May 13, 2016, 5 pages.
Non-final Office Action for U.S. Appl. No. 13/687,457, dated Jun. 27, 2016, 30 pages.
Non-final Office Action for U.S. Appl. No. 13/899,118, dated Jun. 30, 2016, 11 pages.
Final Office Action for U.S. Appl. No. 14/317,475, dated May 26, 2016, 12 pages.
Notice of Allowance for U.S. Appl. No. 14/317,475, dated Aug. 5, 2016, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/845,768, dated Apr. 11, 2016, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/845,946, dated Jun. 8, 2016, 7 pages.
Final Office Action for U.S. Appl. No. 13/687,457, dated Feb. 10, 2017, 33 pages.
Advisory Action for U.S. Appl. No. 13/687,457, dated May 24, 2017, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/899,118, dated Jan. 12, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/845,929, dated Nov. 7, 2016, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/845,929, dated May 9, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/845,946, dated Sep. 9, 2016, 10 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/845,946, dated Apr. 20, 2017, 10 pages.
Non-Final Office Action for U.S. Appl. No. 14/853,118, dated Aug. 12, 2016, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/884,317, dated Aug. 31, 2016, 16 pages.
Non-Final Office Action for U.S. Appl. No. 14/884,317, dated Feb. 13, 2017, 17 pages.
Final Office Action for U.S. Appl. No. 14/884,317, dated Jul. 28, 2017, 26 pages.
Final Office Action for U.S. Appl. No. 15/156,556, dated Jul. 26, 2017, 16 pages.
Non-Final Office Action for U.S. Appl. No. 15/156,556, dated Apr. 11, 2017, 13 pages.
Non-Final Office Action for U.S. Appl. No. 14/961,098, dated Nov. 14, 2016, 10 pages.
English Translation of CN201180059270.4 Office Action dated May 13, 2015; 19 Pages; Chinese Patent Office.
International Search Report of the International Searching Authority; PCT/US2011/061761; dated Jan. 26, 2012; 3 Pages; European Patent Office.
Non-Final Office Action for U.S. Appl. No. 13/687,457, dated Jul. 10, 2018, 39 pages.
Advisory Action for U.S. Appl. No. 14/884,317, dated Oct. 10, 2017, 6 pages.
Non-Final Office Action for U.S. Appl. No. 15/049,621, dated Feb. 26, 2018, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/049,621, dated Jun. 22, 2018, 15 pages.
Advisory Action for U.S. Appl. No. 15/156,556, dated Oct. 4, 2017, 3 pages.
Non-Final Office Action for U.S. Appl. No. 15/156,556, dated May 3, 2018, 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/228,375, dated Sep. 21, 2017, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/228,375, dated Apr. 10, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/585,688, dated Sep. 1, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/613,913, dated Feb. 8, 2018, 21 pages.
Notice of Allowance for U.S. Appl. No. 15/613,913, dated Aug. 1, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/687,457, dated Nov. 20, 2018, 10 pages.
Non-Final Office Action for U.S. Appl. No. 15/614,124, dated Jan. 14, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 15/614,124, dated Jun. 10, 2019, 7 pages.
Final Office Action for U.S. Appl. No. 15/049,621, dated Nov. 2, 2018, 17 pages.
Advisory Action for U.S. Appl. No. 15/049,621, dated Jan. 3, 2019, 3 pages.
Final Office Action for U.S. Appl. No. 15/156,556, dated Sep. 26, 2018, 19 pages.
Non-Final Office Action for U.S. Appl. No. 16/031,173, dated Nov. 29, 2018, 14 pages.
Notice of Allowance for U.S. Appl. No. 16/031,173, dated May 9, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/225,992, dated Apr. 16, 2019, 16 pages.
Notice of Allowance for U.S. Appl. No. 16/148,420, dated May 7, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/281,333, dated Aug. 7, 2019, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/203,520, dated Nov. 21, 2019, 16 pages.
Notice of Allowance for U.S. Appl. No. 16/203,520, dated Jan. 21, 2020, 13 pages.
International Search Report for PCT/US2010/056458 dated Aug. 2, 2011, 4 pages.
International Preliminary Report on Patentability for PCT/US2010/056458 dated May 23, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/410,916 dated Jul. 18, 2012, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/410,916 dated Aug. 9, 2012, 9 pages.
Author Unknown, “MDS SDx Packaged Stations,” Technical Manual, MDS 05-6312A01, Revision B, May 2011, GE MDS, LLC, Rochester, New York, 44 pages.
Author Unknown, “Quad Integrated IEEE 802.3at PSE Controller and Power Management System with up to 30W per Port Capabilities,” Product Brief, BCM59103, Broadcom Corporation, Oct. 12, 2009, 2 pages.
Author Unknown, “Quad IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4266, Linear Technology Corporation, 2009, 2 pages.
Author Unknown, “Single IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4274, Linear Technology Corporation, 2009, 2 pages.
Author Unknown, “TPS23841: High-Power, Wide Voltage Range, Quad-Port Ethernet Power Sourcing Equipment Manager,” Texas Instruments Incorporated, Nov. 2006, Revised May 2007, 48 pages.
International Search Report for PCT/US2010/034005 dated Aug. 12, 2010, 4 pages.
International Preliminary Report on Patentability for PCT/US2010/034005 dated Nov. 24, 2011, 7 pages.
International Search Report for PCT/US2011/055858 dated Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055858 dated Apr. 25, 2013, 8 pages.
International Search Report for PCT/US2011/055861 dated Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055861 dated Apr. 25, 2013, 9 pages.
International Preliminary Report on Patentability for PCT/US2011/061761 dated Jun. 6, 2013, 9 pages.
Translation of the the First Office Action for Chinese Patent Application No. 201180059270.4 dated May 13, 2015, 19 pages.
International Search Report for PCT/US2013/058937 dated Jan. 14, 2014, 4 pages.
International Preliminary Report on Patentability for PCT/US2013/058937 dated Apr. 9, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/626,371 dated Dec. 13, 2013, 15 pages.
Non-final Office Action for U.S. Appl. No. 13/626,371 dated Jun. 25, 2014, 16 pages.
Notice of Allowance for U.S. Appl. No. 13/626,371 dated Nov. 25, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/626,371 dated Aug. 3, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/859,985 dated Feb. 27, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 13/859,985 dated Jul. 22, 2015, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/860,017 dated Feb. 27, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 13/860,017 dated Jul. 23, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/950,397, dated Mar. 17, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/950,397, dated Jun. 10, 2015, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/771,756 dated Sep. 10, 2014, 26 pages.
Final Office Action for U.S. Appl. No. 13/771,756 dated Apr. 30, 2015, 38 pages.
International Search Report for PCT/IL2013/050976, dated Mar. 18, 2014, 3 pages.
Translation of the First Office Action for Chinese Patent Application No. 201180053270.3 dated May 26, 2015, 17 pages.
Translation of the First Office Action for Chinese Patent Application No. 201180052537.7 dated Jun. 25, 2015, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/687,457 dated Jul. 30, 2015, 12 pages.
Advisory Action for U.S. Appl. No. 13/771,756, dated Aug. 21, 2015, 4 pages.
Non-final Office Action for U.S. Appl. No. 13/899,118, dated Jan. 6, 2016, 10 pages.
Non-final Office Action for U.S. Appl. No. 14/845,768, dated Nov. 19, 2015, 12 pages.
Non-final Office Action for U.S. Appl. No. 14/845,946, dated Dec. 17, 2015, 11 pages.
The Second Office Action for Chinese Patent Application No. 201180059270.4, dated Jan. 28, 2016, 42 pages.
Final Office Action for U.S. Appl. No. 13/687,457, dated Feb. 12, 2016, 22 pages.
Notice of Allowance for U.S. Appl. No. 13/771,756, dated Jan. 29, 2016, 14 pages.
International Search Report and Written Opinion for PCT/IL2015/050656, dated Oct. 8, 2015, 9 pages.
Non-final Office Action for U.S. Appl. No. 14/317,475, dated Feb. 3, 2016, 12 pages.
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages.
International Search Report and Written Opinion for PCT/IL2014/051012, dated Mar. 5, 2015, 11 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/IL2016/050306, dated Jun. 8, 2016, 14 pages.
The Third Office Action for Chinese Patent Application No. 201180059270.4, dated Aug. 23, 2016, 6 pages.
Translation of the Fourth Office Action for Chinese Patent Application No. 201180059270.4, dated Jan. 20, 2017, 6 pages.
Related Publications (1)
Number Date Country
20200235574 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
61416780 Nov 2010 US
Continuations (4)
Number Date Country
Parent 16601704 Oct 2019 US
Child 16839410 US
Parent 15614124 Jun 2017 US
Child 16601704 US
Parent 13899118 May 2013 US
Child 15614124 US
Parent PCT/US2011/061761 Nov 2011 US
Child 13899118 US