1. Field of the Invention
The present invention relates generally to storage device controllers, and more particularly, to a power saving system and methodology for storage device controllers.
2. Background
Conventional computer systems typically include several functional components. These components may include a central processing unit (CPU), main memory, input/output (“I/O”) devices, and streaming storage devices (for example, tape drives) (referred to herein as “storage device”).
In conventional systems, the main memory is coupled to the CPU via a system bus or a local memory bus. The main memory is used to provide the CPU access to data and/or program information that is stored in main memory at execution time. Typically, the main memory is composed of random access memory (RAM) circuits. A computer system with the CPU and main memory is often referred to as a host system.
The storage device is coupled to the host system via a controller that handles complex details of interfacing the storage devices to the host system. Communications between the host system and the controller is usually provided using one of a variety of standard I/O bus interfaces.
Typically, when data is read from a storage device, a host system sends a read command to the controller, which stores the read command into the buffer memory. Data is read from the device and stored in the buffer memory.
Buffer memory may be a Synchronous Dynamic Random access Memory (“SDRAM”), or Double Data Rate-Synchronous Dynamic Random Access Memory (referred to as “DDR”).
Various clocks are used for operating various storage controller components. For example, a buffer controller clock (“BCCLK”) is used for various storage controller components; a Fibre Channel clock (“FCCLK”) is used for a Fibre Channel port/interface through which data enters the storage controller; and a receive channel (also referred to as “Channel 1” or “CH1”) clock (designated as “RxCLK”). Other clocks may also be used for other components in a storage controller.
In conventional systems, in order to save power, some of these clocks are turned off in different parts of the storage controller. However, this solution may result in loss of data, especially, when unsolicited frames arrive from a Fibre Channel interface.
Therefore, there is a need for a system and method that can save power and also minimize loss of data.
A storage controller for transferring data between a storage device and a host system is provided. The storage controller includes, a power save module that is enabled in a power save mode after a receive logic in the storage controller has processed all frames and during the power save mode at least a clock is turned off to save power while a clock for operating the receive logic is kept on to process any unsolicited frames that may be received by the receive logic.
The storage controller operates in a single frame mode during the power save mode to process any unsolicited frames. Setting a bit in a configuration register for a processor enables the power save mode. The power save mode is enabled after a memory controller is in a self-refresh mode. The power save module monitors a bit that denotes when a memory controller is in a self-refresh mode. A clock power control module is used to turn off a buffer controller clock during the power save mode.
The power save module exits the power save mode upon receiving an unsolicited frame or a reset signal from a processor.
A system for transferring data between a storage device and a host system is provided. The system includes a storage controller with a power save module that is described above.
In yet another aspect of the present invention, a method used by a storage controller that facilitates data transfer between a host system and a storage device is provided. The method includes, enabling a power save module to start a power save sequence when a receive logic in the storage controller has processed all frames, wherein during the power save mode at least a clock is turned off to save power while a clock for operating the receive logic is kept on to process any unsolicited frames; enabling a single frame mode during which a received frame is handled by storage controller firmware; and exiting the power save mode if an unsolicited frame is received by the receive logic.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof concerning the attached drawings.
The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:
To facilitate an understanding of the preferred embodiment, the general architecture and operation of a controller will initially be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture.
The system of
As shown in
A read only memory (“ROM”) omitted from the drawing is used to store firmware code executed by microprocessor 100. Fibre Channel interface interfaces with host interface 104A and processes Fibre Channel frames. Fibre Channel interface 103 operates under the FCCLK.
Controller 101 can be an integrated circuit (IC) that comprises of various functional modules, which provide for the writing and reading of data stored on storage device 110. Microprocessor 100 is coupled to controller 101 via interface 109 to facilitate transfer of data, address, timing and control information.
Buffer memory 111 is coupled to controller 101 via ports to facilitate transfer of data, timing and address information. Buffer memory 111 may be a DDR or SDRAM or any other type of memory. Buffer memory 111 operates under the BCCLK.
Disk formatter 104 is connected to microprocessor bus 107 and to buffer controller 108. A direct memory access (“DMA”) DMA interface (not shown) is connected to microprocessor bus 107 and to data and control port (not shown).
Buffer controller (also referred to as “BC”) 108 connects buffer memory 111, channel one (CH1) 105, error correction code (“ECC”) module 106 and to bus 107. Buffer controller 108 regulates data movement into and out of buffer memory 111. BC 108, DF 104 and ECC module 106 operate under the BCCLK.
Data flow between a host and disk passes through buffer memory 111. ECC module 106 generates the ECC that is saved on disk 110 writes and provides correction mask to BC 108 for disk 110 read operation. Plural channels may be used to allow data flow.
Channels (for example, channel 0 (“CH0”), CH1 105 and channel 2 (“CH2”)(not shown)) are granted arbitration turns when they are allowed access to buffer memory 111 in high speed burst write or read for a certain number of clocks. The plural channels use first-in-first out (“FIFO”) type memories to store data that is in transit.
CH1 105 may be inside BC 108 or outside BC 108, as shown in
Buffer Controller 108:
BC 108 also includes a memory controller 108B that interfaces with buffer 111 through a SDRAM interface 108J. Interrupts 1081 are sent from buffer controller 108 to processor 100.
BCCLK that is used for various components may be generated by using an oscillator (not shown) and controlled by a clock distribution module. The clock distribution module and clock generation has been described in U.S. patent application Ser. No. 10/867,113 filed on Jun. 24, 2004, the disclosure of which is incorporated herein by reference in its entirety.
As described below, power save module 113 and BCCLK Power Save module 114 (may also be referred to as BCCLK Power Save Module or BCCLK_PWR_CNTRL) are used to save power in storage controller 101, according to one aspect of the present invention.
Power Save Module 113:
In one aspect of the present invention, power save module 113 is provided that uses a clock distribution system so that the BCCLK is shut down in various modules, for example, ECC module 106, DF 104, and memory controller 108B. The receive clocks for Fibre Channel interface 103 and CH1 105 in the receive path are kept running to process unsolicited frames that may be received via interface 103.
The Power Save Mode is turned on when there are no pending interrupts in the receive logic (i.e. Fibre Channel Interface 103 and CH1 105). State machine 113A monitors CH1 105 flags and waits until all the data in CH1 105 has been processed. Thereafter, the Power Save Mode is enabled.
A single frame mode (“SFM”) is also used in conjunction with the power save mode. During the SFM, unsolicited frames are not sent to BC 108 when the BCCLK is turned off, but instead frames are handled/processed/throttled (used interchangeably) individually.
A user that wants to use controller 101 in the power save mode sets the “Power Save Mode” bit (shown as 201) in MP 100 configuration register 200 in
Upon receiving signal 113E, power save module sends signal 113B to CH1 105 logic. Signal 113B sets CH1 105 into SFM and during this mode each frame in CH1 105 is throttled (or handled) individually. Every frame that is received during the SFM uses a firmware action before being transferred to buffer memory 111. After this, power save module 113 waits until CH1 105 FIFO (not shown) and transmit pipe used for moving frames (not shown) are empty.
Signal 113C notifies power save module 113 when CH1 105 has processed all the frames. Once the FIFO and the pipes are empty, power save module 113 instructs MP 100 via signal 113I to enter into a self-refresh mode and to turn off the BCCLK (via signal 113D). In turn, MP 100 notifies BCCLK Power Control module 114, via signal 113J to enter into a self-refresh mode and to turn off the BCCLK. The self-refresh mode allows data in buffer memory 111 to stay current/valid.
BCCLK Power Control module 114 notifies memory controller 108B, via signal 113G to enter into a self refresh mode. Power save module 113 monitors signal 113H to determine if and when buffer memory 111 is in refresh mode. Once buffer memory 111 is in refresh mode, BCCLK power control module 114 sends signal 113L to memory controller 108B to turn off the BCCLK. This turns off the BCCLK for various modules, including BC 108, ECC module 106, and DF 104. The clocks for FC interface 103 and CH1 105 are always running to receive an unsolicited frame.
When an unsolicited frame is received by FC interface 103 and CH1 105, an interrupt 113K is generated. This resets the Power Save Mode and Power Save module 113 exits the power save sequence. The unsolicited frame is processed in the SFM. Thereafter, the entire process is repeated again.
Power save status is provided to MP 100 via signal 113M and is represented by plural bits 202, as listed below:
Bit 00001: State Machine 113A is in idle state 300 and the Power Save mode bit 201 is 0.
Bit 00010: The Power Save module 113 is waiting for CH1 105 FIFOs and pipelines to become empty.
Bit 00100: The Power Save module 113 is waiting for buffer memory 111 to go into the self-refresh mode.
Bit 01000: Buffer memory 111 is in self-refresh mode and the BCCLK is not running.
Bit 10000: An interrupt 113K occurred or MP 100 requested (via signal 113F,
Bit 203: This bit is used to turn off the BCCLK. The bit may be set by an external microprocessor or by the Power Save mode.
Bit 204: This bit when set (for example, 1), allows the memory controller 108B to go in the self-refresh mode. When the bit is cleared (for example, 0), the memory controller 108B exits the self-refresh mode.
State Machine 113A Diagram:
In state 302, state machine 113B waits for CH1 105 FIFO's to become empty. This occurs after the power save mode bit 201 is set. During this state, the SFM is enabled and the BCCLK is on.
In state 304, the self-refresh mode is enabled, after CH1 105 FIFO and frame-processing pipeline (not shown) is empty. During this state, the SFM is turned on, a self-refresh request is placed and the BCCLK is still on.
Once the self-refresh mode is enabled, in state 306, the BCCLK is turned off, while the SFM is still enabled. The state machine 113A now waits for a wake up event. Two events may “wakeup” state machine 113A, first an interrupt 113K from MC 102 or a reset request 113F from MP 100. Once the wake up event occurs, the self-refresh is disabled in state 310. The BCCLK is still turned off and SFM 1 is still enabled. During this state, if an unsolicited frame arrived, then the frame is processed in the SFM. After the frame is processed, the state machine is back to the idle state 300.
In one aspect of the present invention, clocks are turned off selectively to components that are idle. The components that may receive unsolicited frames have their clocks on to process incoming frames. This saves power with minimum loss of data.
Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure.
This application is a continuation of U.S. patent application Ser. No. 10/965,468, filed Oct. 13, 2004 (now U.S. Pat. No. 7,386,661). The disclosure of the above application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3800281 | Devore et al. | Mar 1974 | A |
3988716 | Fletcher et al. | Oct 1976 | A |
4001883 | Strout et al. | Jan 1977 | A |
4016368 | Apple, Jr. | Apr 1977 | A |
4050097 | Miu et al. | Sep 1977 | A |
4080649 | Calle et al. | Mar 1978 | A |
4156867 | Bench et al. | May 1979 | A |
4225960 | Masters | Sep 1980 | A |
4275457 | Leighou et al. | Jun 1981 | A |
4390969 | Hayes | Jun 1983 | A |
4451898 | Palermo et al. | May 1984 | A |
4486750 | Aoki | Dec 1984 | A |
4500926 | Yoshimaru et al. | Feb 1985 | A |
4587609 | Boudreau et al. | May 1986 | A |
4603382 | Cole et al. | Jul 1986 | A |
4625321 | Pechar et al. | Nov 1986 | A |
4667286 | Young et al. | May 1987 | A |
4777635 | Glover | Oct 1988 | A |
4805046 | Kuroki et al. | Feb 1989 | A |
4807116 | Katzman et al. | Feb 1989 | A |
4807253 | Hagenauer et al. | Feb 1989 | A |
4809091 | Miyazawa et al. | Feb 1989 | A |
4811282 | Masina | Mar 1989 | A |
4812769 | Agoston | Mar 1989 | A |
4860333 | Bitzinger et al. | Aug 1989 | A |
4866606 | Kopetz | Sep 1989 | A |
4881232 | Sako et al. | Nov 1989 | A |
4920535 | Watanabe et al. | Apr 1990 | A |
4949342 | Shimbo et al. | Aug 1990 | A |
4970418 | Masterson | Nov 1990 | A |
4972417 | Sako et al. | Nov 1990 | A |
4975915 | Sako et al. | Dec 1990 | A |
4989190 | Kuroe et al. | Jan 1991 | A |
5014186 | Chisholm | May 1991 | A |
5023612 | Liu | Jun 1991 | A |
5027357 | Yu et al. | Jun 1991 | A |
5050013 | Holsinger | Sep 1991 | A |
5051998 | Murai et al. | Sep 1991 | A |
5068755 | Hamilton et al. | Nov 1991 | A |
5068857 | Yoshida | Nov 1991 | A |
5072420 | Conley et al. | Dec 1991 | A |
5088093 | Storch et al. | Feb 1992 | A |
5109500 | Iseki et al. | Apr 1992 | A |
5117442 | Hall | May 1992 | A |
5127098 | Rosenthal et al. | Jun 1992 | A |
5133062 | Joshi et al. | Jul 1992 | A |
5136592 | Weng | Aug 1992 | A |
5146585 | Smith, III | Sep 1992 | A |
5157669 | Yu et al. | Oct 1992 | A |
5162954 | Miller et al. | Nov 1992 | A |
5193197 | Thacker | Mar 1993 | A |
5204859 | Paesler et al. | Apr 1993 | A |
5218564 | Haines et al. | Jun 1993 | A |
5220569 | Hartness | Jun 1993 | A |
5237593 | Fisher et al. | Aug 1993 | A |
5243471 | Shinn | Sep 1993 | A |
5249271 | Hopkinson et al. | Sep 1993 | A |
5257143 | Zangenehpour | Oct 1993 | A |
5261081 | White et al. | Nov 1993 | A |
5274509 | Buch | Dec 1993 | A |
5276564 | Hessing et al. | Jan 1994 | A |
5276662 | Shaver, Jr. et al. | Jan 1994 | A |
5276807 | Kodama et al. | Jan 1994 | A |
5280488 | Glover et al. | Jan 1994 | A |
5285327 | Hetzler | Feb 1994 | A |
5285451 | Henson et al. | Feb 1994 | A |
5301333 | Lee | Apr 1994 | A |
5307216 | Cook et al. | Apr 1994 | A |
5315708 | Eidler et al. | May 1994 | A |
5339443 | Lockwood | Aug 1994 | A |
5361266 | Kodama et al. | Nov 1994 | A |
5361267 | Godiwala et al. | Nov 1994 | A |
5408644 | Schneider et al. | Apr 1995 | A |
5420984 | Good et al. | May 1995 | A |
5428627 | Gupta | Jun 1995 | A |
5440751 | Santeler et al. | Aug 1995 | A |
5465343 | Henson et al. | Nov 1995 | A |
5487170 | Bass et al. | Jan 1996 | A |
5488688 | Gonzales et al. | Jan 1996 | A |
5491701 | Zook | Feb 1996 | A |
5500848 | Best et al. | Mar 1996 | A |
5506989 | Boldt et al. | Apr 1996 | A |
5507005 | Kojima et al. | Apr 1996 | A |
5519837 | Tran | May 1996 | A |
5523903 | Hetzler et al. | Jun 1996 | A |
5544180 | Gupta | Aug 1996 | A |
5544346 | Amini | Aug 1996 | A |
5546545 | Rich | Aug 1996 | A |
5546548 | Chen et al. | Aug 1996 | A |
5563896 | Nakaguchi | Oct 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5574867 | Khaira | Nov 1996 | A |
5581715 | Verinsky et al. | Dec 1996 | A |
5583999 | Sato et al. | Dec 1996 | A |
5592404 | Zook | Jan 1997 | A |
5600662 | Zook | Feb 1997 | A |
5602857 | Zook et al. | Feb 1997 | A |
5615190 | Best et al. | Mar 1997 | A |
5623672 | Popat | Apr 1997 | A |
5626949 | Blauer et al. | May 1997 | A |
5627695 | Prins et al. | May 1997 | A |
5640602 | Takase | Jun 1997 | A |
5649230 | Lentz | Jul 1997 | A |
5664121 | Cerauskis | Sep 1997 | A |
5689656 | Baden et al. | Nov 1997 | A |
5691994 | Acosta et al. | Nov 1997 | A |
5692135 | Alvarez, II et al. | Nov 1997 | A |
5692165 | Jeddeloh et al. | Nov 1997 | A |
5719516 | Sharpe-Geisler | Feb 1998 | A |
5729718 | Au | Mar 1998 | A |
5740466 | Geldman et al. | Apr 1998 | A |
5745793 | Atsatt et al. | Apr 1998 | A |
5754759 | Clarke et al. | May 1998 | A |
5758188 | Applebaum et al. | May 1998 | A |
5784569 | Miller et al. | Jul 1998 | A |
5794073 | Ramakrishnan et al. | Aug 1998 | A |
5801998 | Choi | Sep 1998 | A |
5818886 | Castle | Oct 1998 | A |
5822142 | Hicken | Oct 1998 | A |
5831922 | Choi | Nov 1998 | A |
5835930 | Dobbek | Nov 1998 | A |
5841722 | Willenz | Nov 1998 | A |
5844844 | Bauer et al. | Dec 1998 | A |
5850422 | Chen | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5890207 | Sne et al. | Mar 1999 | A |
5890210 | Ishii et al. | Mar 1999 | A |
5907717 | Ellis | May 1999 | A |
5912906 | Wu et al. | Jun 1999 | A |
5925135 | Trieu et al. | Jul 1999 | A |
5937435 | Dobbek et al. | Aug 1999 | A |
5950223 | Chiang et al. | Sep 1999 | A |
5968180 | Baco | Oct 1999 | A |
5983293 | Murakami | Nov 1999 | A |
5991911 | Zook | Nov 1999 | A |
6029226 | Ellis et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6041417 | Hammond et al. | Mar 2000 | A |
6065053 | Nouri et al. | May 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6070200 | Gates et al. | May 2000 | A |
6078447 | Sim | Jun 2000 | A |
6081849 | Born et al. | Jun 2000 | A |
6092231 | Sze | Jul 2000 | A |
6094320 | Ahn | Jul 2000 | A |
6124994 | Malone, Sr. | Sep 2000 | A |
6134063 | Weston-Lewis et al. | Oct 2000 | A |
6157984 | Fisher et al. | Dec 2000 | A |
6178486 | Gill et al. | Jan 2001 | B1 |
6192499 | Yang | Feb 2001 | B1 |
6201655 | Watanabe et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6297926 | Ahn | Oct 2001 | B1 |
6330626 | Dennin et al. | Dec 2001 | B1 |
6381659 | Proch et al. | Apr 2002 | B2 |
6401149 | Dennin et al. | Jun 2002 | B1 |
6470461 | Pinvidic et al. | Oct 2002 | B1 |
6487631 | Dickinson et al. | Nov 2002 | B2 |
6490635 | Holmes | Dec 2002 | B1 |
6530000 | Krantz et al. | Mar 2003 | B1 |
6546496 | Wang et al. | Apr 2003 | B1 |
6574676 | Megiddo | Jun 2003 | B1 |
6662334 | Stenfort | Dec 2003 | B1 |
6781911 | Riesenman et al. | Aug 2004 | B2 |
6826650 | Krantz et al. | Nov 2004 | B1 |
6977685 | Acosta-Serafini et al. | Dec 2005 | B1 |
20010044873 | Wilson et al. | Nov 2001 | A1 |
20030037225 | Deng et al. | Feb 2003 | A1 |
20030118047 | Collette et al. | Jun 2003 | A1 |
20030135676 | Jensen | Jul 2003 | A1 |
20030226050 | Yik et al. | Dec 2003 | A1 |
20050185472 | Randell et al. | Aug 2005 | A1 |
20050188232 | Weng et al. | Aug 2005 | A1 |
20060010339 | Klein | Jan 2006 | A1 |
20060041766 | Adachi | Feb 2006 | A1 |
20060083134 | Matsuno et al. | Apr 2006 | A1 |
20060230300 | Lin | Oct 2006 | A1 |
20060288160 | Krantz et al. | Dec 2006 | A1 |
20070016812 | Song et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
0528273 | Feb 1993 | EP |
0622726 | Nov 1994 | EP |
0718827 | Jun 1996 | EP |
2285166 | Jun 1995 | GB |
63-292462 | Nov 1988 | JP |
01-315071 | Dec 1989 | JP |
03183067 | Aug 1991 | JP |
9814861 | Apr 1998 | WO |
Entry |
---|
PCT International Search Report, Doc. No. PCT/US00/15084, Dated Nov. 15, 2000, 2 pages. |
Blahut R. Digital Transmission of Information (Dec. 4, 1990), pp. 429-430. |
Hwang, Kai and Briggs, Faye A., “Computer Architecture and Parallel Processing” pp. 156-164. |
Zeidman, Bob, “Interleaving DRAMS for Faster Access”, System Design ASIC & EDA, pp. 24-34 (Nov. 1993). |
P.M. Bland et al., Shared Storage Bus Circuitry, IBM Technical Disclosure Bulletin, vol. 25, No. 4, Sep. 1982, pp. 2223-2224. |
PCT Search Report for PCT/US00/07780 mailed Aug. 2, 2000, 4 pages. |
PCT Search Report for PCT/US01/22404, mailed Jan. 29, 2003, 4 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 10965468 | Oct 2004 | US |
Child | 12157212 | US |