Many medical devices require a power source to function properly. In some cases, medical devices may be plugged into a wall outlet to receive power. However, tethering a medical device to a wall outlet may be cumbersome or difficult to maneuver for the user. In other scenarios, medical devices may be connected to an intermediate power supply or other piece of capital equipment located between the medical device and a wall outlet. Using such an intermediate power source may also be cumbersome and difficult. Furthermore, in many situations, such medical devices must remain sterile; otherwise a patient may be susceptible to infection or other contamination from being exposed to a non-sterile device. Battery packs could be used with such medical devices. However, such battery packs may be non-sterile. Thus, using a battery could pose increased risks to a patient. In the event that a non-sterile battery is used, the sterile medical device may ultimately become exposed to the battery, which may compromise the sterility of the medical device for use with a patient. In short, using a non-sterile power source with a sterile medical device may pose a variety of risks. As a battery or battery pack delivers power, the battery may also generate heat within the battery. If being used in a surgical instrument in a surgical setting, such heat may be dangerous or otherwise pose risks. In other exemplary situations, heat may simply cause discomfort or may be otherwise undesirable.
Merely exemplary surgical devices that rely on electrical power are disclosed in U.S. Pat. No. 7,416,101 entitled “Motor-Driven Surgical Cutting and Fastening Instrument with Loading Force Feedback,” issued Aug. 26, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,738,971 entitled “Post-Sterilization Programming of Surgical Instruments,” issued Jun. 15, 2010, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009 and issued on Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209990 entitled “Motorized Surgical Cutting and Fastening Instrument Having Handle Based Power Source,” published Aug. 20, 2009, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011 and issued on Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein. It should be understood that the devices described in the above-cited references may be readily adapted to include an integral power source, such as those described herein. Similarly, various ways in which medical devices may be adapted to include a portable power source are disclosed in U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
Additional exemplary devices that may be adapted to include a portable power source are disclosed in U.S. Pat. No. 6,500,176 entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,112,201 entitled “Electrosurgical Instrument and Method of Use,” issued Sep. 26, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,125,409, entitled “Electrosurgical Working End for Controlled Energy Delivery,” issued Oct. 24, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,169,146 entitled “Electrosurgical Probe and Method of Use,” issued Jan. 30, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,186,253, entitled “Electrosurgical Jaw Structure for Controlled Energy Delivery,” issued Mar. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,189,233, entitled “Electrosurgical Instrument,” issued Mar. 13, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,220,951, entitled “Surgical Sealing Surfaces and Methods of Use,” issued May 22, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,309,849, entitled “Polymer Compositions Exhibiting a PTC Property and Methods of Fabrication,” issued Dec. 18, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,311,709, entitled “Electrosurgical Instrument and Method of Use,” issued Dec. 25, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,354,440, entitled “Electrosurgical Instrument and Method of Use,” issued Apr. 8, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,381,209, entitled “Electrosurgical Instrument,” issued Jun. 3, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, the disclosure of which is incorporated by reference herein; and U.S. patent application Ser. No. 13/151,481 and published on May 10, 2012 as U.S. Pub. No. 2012/011637913/151,181, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” filed Jun. 2, 2011, the disclosure of which is incorporated by reference herein. The devices described in those references may also be readily adapted to include an integral power source, such as those described herein.
While several systems and methods have been made for use with an electrically powered medical device, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements. In the drawings some components or portions of components are shown in phantom as depicted by broken lines.
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
End effector (16) is coupled to control module (12) by another electrical connection (22). End effector (16) is configured to perform a desired function of medical device (10). By way of example only, such function may include cauterizing tissue, ablating tissue, severing tissue, ultrasonically vibrating, stapling tissue, or any other desired task for medical device (10). End effector (16) may thus include an active feature such as an ultrasonic blade, a pair of clamping jaws, a sharp knife, a staple driving assembly, a monopolar RF electrode, a pair of bipolar RF electrodes, a thermal heating element, and/or various other components. End effector (16) may also be removable from medical device (10) for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. In some versions, end effector (16) is modular such that medical device (10) may be used with different kinds of end effectors (e.g., as taught in U.S. Provisional Application Ser. No. 61/410,603, etc.). Various other configurations of end effector (16) may be provided for a variety of different functions depending upon the purpose of medical device (10) as will be apparent to those of ordinary skill in the art in view of the teachings herein. Similarly, other types of components of a medical device (10) that may receive power from power source (14) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Medical device (10) of the present example includes a trigger (18) and a sensor (20), though it should be understood that such components are merely optional. Trigger (18) is coupled to control module (12) and power source (14) by electrical connection (22). Trigger (18) may be configured to selectively provide power from power source (14) to end effector (16) (and/or to some other component of medical device (10)) to activate medical device (10) when performing a procedure. Sensor (20) is also coupled to control module (12) by an electrical connection (22) and may be configured to provide a variety of information to control module (12) during a procedure. By way of example only, such configurations may include sensing a temperature at end effector (16) or determining the oscillation rate of end effector (16). Data from sensor (20) may be processed by control module (12) to effect the delivery of power to end effector (16) (e.g., in a feedback loop, etc.). Various other configurations of sensor (20) may be provided depending upon the purpose of medical device (10) as will be apparent to those of ordinary skill in the art in view of the teachings herein. Of course, as with other components described herein, medical device (10) may have more than one sensor (20), or sensor (20) may simply be omitted if desired.
It should also be understood that control module (121) may be removed for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. Further, end effector (140) may also be removable from medical device (150) for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. While certain configurations of an exemplary medical device (150) have been described, various other ways in which medical device (150) may be configured will be apparent to those of ordinary skill in the art in view of the teachings herein. By way of example only, medical devices (10, 150) and/or any other medical device referred to herein may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 6,500,176; U.S. Pat. No. 6,783,524; U.S. Pat. No. 7,112,201; U.S. Pat. No. 7,125,409; U.S. Pat. No. 7,169,146; U.S. Pat. No. 7,186,253; U.S. Pat. No. 7,189,233; U.S. Pat. No. 7,220,951; U.S. Pat. No. 7,309,849; U.S. Pat. No. 7,311,709; U.S. Pat. No. 7,354,440; U.S. Pat. No. 7,381,209; U.S. Pat. No. 7,416,101; U.S. Pat. No. 7,738,971; U.S. Pub. No. 2006/0079874; U.S. Pub. No. 2007/0191713; U.S. Pub. No. 2007/0282333; U.S. Pub. No. 2008/0200940; U.S. Pub. No. 2009/0143797; U.S. Pub. No. 2009/0209990; U.S. Pub. No. 2010/0069940; U.S. Pub. No. 2011/0015660; U.S. Pat. Pub. No. 2011/0087218; U.S. patent application Ser. No. 13/151,481 and published on May 10, 2012 as U.S. Pub. No. 2012/0116379; and/or U.S. Provisional Application Ser. No. 61/410,603. The disclosures of each of those documents are incorporated by reference herein in their entirety.
It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
It will be appreciated that medical device/surgical instrument (10, 120) may be powered using power source (14, 121), and during the operation of surgical instrument (10, 120), power source (14, 121) may generate heat. It may be desirable in some instances to draw away, remove, dissipate, or otherwise deal with such heat. For example,
The user may insert battery pack (110) into handle assembly (102) prior to using surgical instrument (100). Once the user is done using surgical instrument (100), the user may either leave battery pack (110) within handle assembly (102) or may remove battery pack (110) from handle assembly (102). Handle assembly (102) also comprises a leaf spring (113) operable to provide frictional tension to further hold battery pack (110) within handle assembly (102). Leaf spring (113) also urges battery pack (110) into engagement with a heat sink within handle assembly (102).
Cooling plates (116) of the present example have a rectangular shape and are both wider and taller than batteries (118). Cooling plates (116) comprise any heat conducting material such as, but not limited to aluminum, copper, or any other suitable material as would be apparent to one of ordinary skill in the art in view of the teachings herein. While cooling plates (116) extend beyond the perimeter of batteries (118) in more than one direction in the present example, it will be appreciated that cooling plates (116) may extend in just one direction beyond the perimeter of batteries (118). While the exemplary version shows cooling plates (116) having a rectangular shape, any other suitable shape for cooling plates may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein. Cooling plates (116) are operable to act as a heat sink such that when batteries (118) heat up, cooling plates (116) draw the heat away from batteries (118) and dissipate the heat by radiating heat out to atmospheric air.
Handle assembly (102) includes a plurality of vent holes (101). Vent holes (101) are operable to vent heat that has been drawn away from batteries (118). It will be understood that batteries (118) may operate in a relatively cooler state as a result of cooling plates (116) and/or vent holes (101). In some versions, cooling plates (116) are in thermal communication with separate heat sinks proximate to battery compartment (112) such that cooling plates (116) may draw heat away from batteries (118) and transfer heat to the heat sinks, which are operable to further dissipate the heat. Leaf spring (113) further aids in dissipation of heat by biasing batteries (118) into the heat sinks.
As battery pack (218) delivers power to a surgical device, battery pack (218) may become heated in such a way where it may be desirable to dissipate or otherwise draw heat away from battery pack (218). As battery pack (218) heats up, wax lining (216) melts such that wax lining (216) travels downward toward a wax channel (224) positioned at the bottom of battery compartment (212) as seen in
Once enclosure (500) is sealed, only an electrical port (514) and motor output (516) remain exposed to engage a surgical instrument, which can be seen in
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. This application also claims priority to U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1754806 | Stevenson | Apr 1930 | A |
3297192 | Swett | Jan 1967 | A |
3419198 | Pettersen | Dec 1968 | A |
3619671 | Shoh | Nov 1971 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4057220 | Kudlacek | Nov 1977 | A |
4535773 | Yoon | Aug 1985 | A |
4641076 | Linden et al. | Feb 1987 | A |
4662068 | Polonsky | May 1987 | A |
4666037 | Weissman | May 1987 | A |
4717018 | Sacherer et al. | Jan 1988 | A |
4717050 | Wright | Jan 1988 | A |
4721097 | D'Amelio | Jan 1988 | A |
4768969 | Bauer et al. | Sep 1988 | A |
4800878 | Cartmell | Jan 1989 | A |
4844259 | Glowczewskie, Jr. | Jul 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
5071417 | Sinofsky | Dec 1991 | A |
5107155 | Yamaguchi | Apr 1992 | A |
5144771 | Miwa | Sep 1992 | A |
5169733 | Savovic et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5246109 | Markle et al. | Sep 1993 | A |
5273177 | Campbell | Dec 1993 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5322055 | Davison | Jun 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5358508 | Cobb et al. | Oct 1994 | A |
5361902 | Abidin et al. | Nov 1994 | A |
5429229 | Chester et al. | Jul 1995 | A |
5449370 | Vaitekumas | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5501607 | Yoshioka et al. | Mar 1996 | A |
5507297 | Slater et al. | Apr 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5580258 | Wakata | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5590778 | Dutchik | Jan 1997 | A |
5592065 | Oglesbee et al. | Jan 1997 | A |
5597531 | Liberti et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5630420 | Vaitekumas | May 1997 | A |
5630456 | Hugo et al. | May 1997 | A |
5690222 | Peters | Nov 1997 | A |
5741305 | Vincent et al. | Apr 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5817128 | Storz | Oct 1998 | A |
5868244 | Ivanov et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5882310 | Marian, Jr. | Mar 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beupre | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5997531 | Loeb et al. | Dec 1999 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6051010 | Dimatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6083191 | Rose | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6204592 | Hur | Mar 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6246896 | Dumoulin et al. | Jun 2001 | B1 |
6248238 | Burtin et al. | Jun 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6339368 | Leith | Jan 2002 | B1 |
6398755 | Belef et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6475680 | Arai et al. | Nov 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6520185 | Bommannan et al. | Feb 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6609414 | Mayer et al. | Aug 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6626901 | Treat et al. | Sep 2003 | B1 |
6647281 | Morency | Nov 2003 | B2 |
6650975 | Ruffner | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6658301 | Loeb et al. | Dec 2003 | B2 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6717193 | Olewine et al. | Apr 2004 | B2 |
6730042 | Fulton et al. | May 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6815206 | Lin et al. | Nov 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6838862 | Luu | Jan 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6869435 | Blake | Mar 2005 | B2 |
6923807 | Ryan et al. | Aug 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083589 | Banko et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7150712 | Buehlmann et al. | Dec 2006 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7221216 | Nguyen | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7244024 | Biscardi | Jul 2007 | B2 |
7292227 | Fukumoto et al. | Nov 2007 | B2 |
7296804 | Lechot et al. | Nov 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7349741 | Maltan et al. | Mar 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7364554 | Bolze et al. | Apr 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7473145 | Ehr et al. | Jan 2009 | B2 |
7479152 | Fulton, III et al. | Jan 2009 | B2 |
7494492 | Da Silva et al. | Feb 2009 | B2 |
D594983 | Price et al. | Jun 2009 | S |
7563142 | Wenger et al. | Jul 2009 | B1 |
7583564 | Ketahara et al. | Sep 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7643378 | Genosar | Jan 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7766929 | Masuda | Aug 2010 | B2 |
7770722 | Donahoe et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780660 | Bourne et al. | Aug 2010 | B2 |
7815658 | Murakami | Oct 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7889489 | Richardson et al. | Feb 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
8038025 | Stark et al. | Oct 2011 | B2 |
8040107 | Ishii | Oct 2011 | B2 |
8052605 | Muller et al. | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8075530 | Taylor et al. | Dec 2011 | B2 |
8097011 | Sanai et al. | Jan 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8177776 | Humayun et al. | May 2012 | B2 |
8195271 | Rahn | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8216212 | Grant et al. | Jul 2012 | B2 |
8221418 | Prakash et al. | Jul 2012 | B2 |
8240498 | Ramsey et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8267094 | Danek et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298253 | Charles | Oct 2012 | B2 |
8301262 | Mi et al. | Oct 2012 | B2 |
8336725 | Ramsey et al. | Dec 2012 | B2 |
8344690 | Smith et al. | Jan 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8400108 | Powell et al. | Mar 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8444653 | Nycz et al. | May 2013 | B2 |
8449529 | Bek et al. | May 2013 | B2 |
8487487 | Dietz et al. | Jul 2013 | B2 |
8550106 | Hebach et al. | Oct 2013 | B2 |
8564242 | Hansford et al. | Oct 2013 | B2 |
8617077 | van Groningen et al. | Dec 2013 | B2 |
8641629 | Kurokawa | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030109802 | Laeseke et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040173487 | Johnson et al. | Sep 2004 | A1 |
20040253130 | Sauciuc et al. | Dec 2004 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033195 | Fulton, III et al. | Feb 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060079829 | Fulton, III et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079877 | Houser et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20070027447 | Theroux et al. | Feb 2007 | A1 |
20070084742 | Miller et al. | Apr 2007 | A1 |
20070103437 | Rosenberg | May 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070207354 | Curello et al. | Sep 2007 | A1 |
20070261978 | Sanderson | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070297137 | Glahn et al. | Dec 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080057470 | Levy et al. | Mar 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080150754 | Quendt | Jun 2008 | A1 |
20080161783 | Cao | Jul 2008 | A1 |
20080173651 | Ping | Jul 2008 | A1 |
20080188810 | Larsen et al. | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080221491 | Slayton et al. | Sep 2008 | A1 |
20080228104 | Uber, III et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080281301 | Deboer et al. | Nov 2008 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090043797 | Dorie et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090143797 | Smith et al. | Jun 2009 | A1 |
20090143798 | Smith et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090143801 | Deville et al. | Jun 2009 | A1 |
20090143802 | Deville et al. | Jun 2009 | A1 |
20090143803 | Palmer et al. | Jun 2009 | A1 |
20090143804 | Palmer et al. | Jun 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090240246 | Deville et al. | Sep 2009 | A1 |
20090253030 | Kooij | Oct 2009 | A1 |
20090275940 | Malackowski et al. | Nov 2009 | A1 |
20090281430 | Wilder | Nov 2009 | A1 |
20090281464 | Cioanta et al. | Nov 2009 | A1 |
20100016855 | Ramstein et al. | Jan 2010 | A1 |
20100021022 | Pittel et al. | Jan 2010 | A1 |
20100030218 | Prevost | Feb 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100076455 | Birkenbach et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100106144 | Matsumura et al. | Apr 2010 | A1 |
20100106146 | Boitor et al. | Apr 2010 | A1 |
20100125172 | Jayaraj | May 2010 | A1 |
20100152610 | Parihar et al. | Jun 2010 | A1 |
20100201311 | Lyell Kirby et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100249665 | Roche | Sep 2010 | A1 |
20100268221 | Beller et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20110009694 | Schultz et al. | Jan 2011 | A1 |
20110015660 | Wiener et al. | Jan 2011 | A1 |
20110058982 | Kaneko et al. | Mar 2011 | A1 |
20110077514 | Ulric et al. | Mar 2011 | A1 |
20110087212 | Aldridge et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110152901 | Woodruff et al. | Jun 2011 | A1 |
20110224668 | Johnson et al. | Sep 2011 | A1 |
20120179036 | Patrick et al. | Jul 2012 | A1 |
20120265230 | Yates et al. | Oct 2012 | A1 |
20120283732 | Lam | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20130085330 | Ramamurthy et al. | Apr 2013 | A1 |
20130085332 | Ramamurthy et al. | Apr 2013 | A1 |
20130085397 | Ramamurthy et al. | Apr 2013 | A1 |
20130090528 | Ramamurthy et al. | Apr 2013 | A1 |
20130090530 | Ramamurthy et al. | Apr 2013 | A1 |
20130090552 | Ramamurthy et al. | Apr 2013 | A1 |
20130116690 | Unger et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
102008051866 | Oct 2010 | DE |
102009013034 | Oct 2010 | DE |
0897696 | Feb 1999 | EP |
0947167 | Oct 1999 | EP |
1330991 | Jul 2003 | EP |
1525853 | Apr 2005 | EP |
1535585 | Jun 2005 | EP |
1684396 | Jul 2006 | EP |
1721576 | Nov 2006 | EP |
1743592 | Jan 2007 | EP |
1818021 | Aug 2007 | EP |
1839599 | Oct 2007 | EP |
1868275 | Dec 2007 | EP |
1886637 | Feb 2008 | EP |
1943976 | Jul 2008 | EP |
1970014 | Sep 2008 | EP |
1997439 | Dec 2008 | EP |
2027819 | Feb 2009 | EP |
2090256 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
2165660 | Mar 2010 | EP |
2218409 | Aug 2010 | EP |
2243439 | Oct 2010 | EP |
2345454 | Jul 2011 | EP |
2425874 | Nov 2006 | GB |
2440566 | Feb 2008 | GB |
WO 9724072 | Jul 1997 | WO |
WO 0065682 | Feb 2000 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 2004113991 | Dec 2004 | WO |
WO 2005079915 | Sep 2005 | WO |
WO 2006023266 | Mar 2006 | WO |
WO 2007004515 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007090025 | Aug 2007 | WO |
WO 2007137115 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2008071898 | Jun 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2008107902 | Sep 2008 | WO |
WO 2008131357 | Oct 2008 | WO |
WO 2009018409 | Feb 2009 | WO |
WO 2009046394 | Apr 2009 | WO |
WO 2009070780 | Jun 2009 | WO |
WO 2009073608 | Jun 2009 | WO |
WO 2010030850 | Mar 2010 | WO |
WO 2010096174 | Aug 2010 | WO |
WO 2011059785 | May 2011 | WO |
WO 2011089270 | Jul 2011 | WO |
Entry |
---|
U.S. Appl. No. 13/151,471, filed Jun. 2, 2011, Stulen. |
U.S. Appl. No. 13/151,481, filed Jun. 2, 2011, Yates et al. |
U.S. Appl. No. 13/151,488, filed Jun. 2, 2011, Shelton, IV et al. |
U.S. Appl. No. 13/151,498, filed Jun. 2, 2011, Felder et al. |
U.S. Appl. No. 13/151,503, filed Jun. 2, 2011, Madan et al. |
U.S. Appl. No. 13/151,509, filed Jun. 2, 2011, Smith et al. |
U.S. Appl. No. 13/151,512, filed Jun. 2, 2011, Houser et al. |
U.S. Appl. No. 13/151,515, filed Jun. 2, 2011, Felder et al. |
U.S. Appl. No. 13/176,875, filed Jul. 6, 2011, Smith et al. |
U.S. Appl. No. 13/269,870, filed Oct. 10, 2011, Houser et al. |
U.S. Appl. No. 13/269,883, filed Oct. 10, 2011, Mumaw et al. |
U.S. Appl. No. 13/269,899, filed Oct. 10, 2011, Boudreaux et al. |
U.S. Appl. No. 13/270,667, filed Oct. 11, 2011, Timm et al. |
U.S. Appl. No. 13/270,684, filed Oct. 11, 2011, Madan et al. |
U.S. Appl. No. 13/270,701, filed Oct. 11, 2011, Johnson et al. |
U.S. Appl. No. 13/271,352, filed Oct. 12, 2011, Houser et al. |
U.S. Appl. No. 13/271,364, filed Oct. 12, 2011, Houser et al. |
U.S. Appl. No. 13/274,480, filed Oct. 17, 2011, Mumaw et al. |
U.S. Appl. No. 13/274,496, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/274,507, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/274,516, filed Oct. 17, 2011, Haberstich et al. |
U.S. Appl. No. 13/274,540, filed Oct. 17, 2011, Madan. |
U.S. Appl. No. 13/274,805, filed Oct. 17, 2011, Price et al. |
U.S. Appl. No. 13/274,830, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/275,495, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,514, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,547, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,563, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/276,660, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,673, filed Oct. 19, 2011, Kimball et al. |
U.S. Appl. No. 13/276,687, filed Oct. 19, 2011, Price et al. |
U.S. Appl. No. 13/276,707, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,725, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,745, filed Oct. 19, 2011, Stulen et al. |
U.S. Appl. No. 13/277,328, filed Oct. 20, 2011, Houser et al. |
Dietz, T. et al., “Partially Implantable Vibrating Ossicular Prosthesis, Transducers'97, vol. 1, International Conference on Solid State Sensors and Actuators, (Jun. 16-19, 1997) pp. 433-436 (Abstract). System 6 Aseptic Battery System,” Stryker (2006) pp. 1-2. |
International Search Report and Written Opinion dated Jan. 26, 2012for Application No. PCT/US2011/059212. |
International Search Report and Written Opinion dated Feb. 2, 2012for Application No. PCT/US2011/059378. |
International Search Report dated Feb. 2, 2012for Application No. PCT/US2011/059354. |
International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/059351. |
International Search Report dated Feb. 13, 2012for Application No. PCT/US2011/059217. |
International Search Report dated Feb. 23, 2012 for Application No. PCT/US2011/059371. |
International Search Report dated Mar. 15, 2012 for Application No. PCT/US2011/059338. |
International Search Report dated Mar. 22, 2012for Application No. PCT/US2011/059362. |
International Search Report dated Apr. 4, 2012 for Application No. PCT/US2011/059215. |
International Search Report dated Apr. 11, 2012 for Application No. PCT/US2011/059381. |
International Search Report dated Apr. 18, 2012 for Application No. PCT/US2011/059222. |
International Search Report dated May 24, 2012 for Application No. PCT/US2011/059378. |
International Search Report dated Jun. 4, 2012 for Application No. PCT/US2011/059365. |
International Search Report dated Jun. 12, 2012 for Application No. PCT/US2011/059218. |
Communication from International Searching Authority dated Feb. 6, 2012for Application No. PCT/US2011/059362. |
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059222. |
Communication from International Searching Authority dated Jan. 24, 2012 for Application No. PCT/US2011/059215. |
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059378. |
Machine Translation of the Abstract of German Application No. DE 102009013034. |
Machine Translation of German Application No. DE 102008051866. |
International Search Report dated Jan. 12, 2012 for Application No. PCT/US2011/059226. |
International Search Report dated Jan. 26, 2012 for Application No. PCT/US2011/059220. |
International Search Report dated Feb. 1, 2012 for Application No. PCT/US2011/059223. |
International Search Report dated May 29, 2012 for Application No. PCT/US2011/059358. |
International Search Report and Written Opinion dated Jul. 6, 2012 for Application No. PCT/US2011/059381. |
Restriction Requirement dated Dec. 11, 2012 for U.S. Appl. No. 13/151,481. |
Office Action Non-Final dated Feb. 15, 2013 for U.S. Appl. No. 13/151,481. |
Office Action Final dated Jun. 7, 2013 for U.S. Appl. No. 13/151,481. |
Restriction Requirement dated Feb. 28, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non Final dated Apr. 26, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/151,498. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,687. |
Office Action Non-Final dated Jun. 12, 2013 for U.S. Appl. No. 13/276,687. |
Restriction Requirement dated Apr. 29, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/274,830. |
Restriction Requirement dated Mar. 13, 2013 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Jun. 24, 2013 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Jul. 5, 2013 for U.S. Appl. No. 13/151,488. |
Office Action Non-Final dated Aug. 6, 2013 for U.S. Appl. No. 13/151,471. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Aug. 16, 2013 for U.S. Appl. No. 13/274,516. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/276,673. |
Office Action Non-Final dated Aug. 19, 2013 for U.S. Appl. No. 13/276,673. |
Office Action Non-Final dated Feb. 1, 2013 for U.S. Appl. No. 13/275,563. |
Office Action Final dated Aug. 29, 2013 for U.S. Appl. No. 13/275,563. |
Office Action Non-Final dated Apr. 1, 2013 for U.S. Appl. No. 13/274,805. |
Office Action Final dated Sep. 12, 2013 for U.S. Appl. No. 13/274,805. |
Restriction Requirement dated Feb. 25, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/274,540. |
Restriction Requirement dated Apr. 4, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated May 31, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated May 17, 2013 for U.S. Appl. No. 13/275,547. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,660. |
Office Action Non-Final dated Jun. 3, 2013 for U.S. Appl. No. 13/246,660. |
Restriction Requirement dated Feb. 21, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Non-Final dated May 6, 2013 for U.S. Appl. No. 13/276,707. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,725. |
European Communication dated Feb. 19, 2014 for Application No. EP 11781972.2. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059212 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059215 dated May 8, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059217 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059218 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059220 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059222 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059223 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059226 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059338 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059315 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059354 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059358 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059362 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059365 dated May 8, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059371 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059378 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059381 dated May 7, 2013. |
Notice of Allowance dated Dec. 6, 2013 for U.S. Appl. No. 13/151,471. |
Office Action Non-Final dated Mar. 28, 2014 for U.S. Appl. No. 13/151,471. |
Office Action Final dated Nov. 21, 2013 for U.S. Appl. No. 13/151,498. |
Office Action Non Final dated Mar. 18, 2014 for U.S. Appl. No. 13/151,498. |
Office Action Non Final dated Jun. 18, 2014 for U.S. Appl. No. 13/151,503. |
Office Action Non-Final dated Sep. 26, 2013 for U.S. Appl. No. 13/151,509. |
Office Action Final dated Jan. 29, 2014 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Jun. 11, 2014 for U.S. Appl. No. 13/151,512. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Nov. 21, 2013 for U.S. Appl. No. 13/271,352. |
Office Action Non-Final dated Feb. 14, 2014 for U.S. Appl. No. 13/274,480. |
Restriction Requirement dated Dec. 9, 2013 for U.S. Appl. No. 13/274,496. |
Office Action Non-Final dated Feb. 6, 2014 for U.S. Appl. No. 13/274,496. |
Office Action Final dated May 15, 2014 for U.S. Appl. No. 13/274,496. |
Restriction Requirement dated Mar. 28, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Non-Final dated Jun. 19, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Non-Final dated Dec. 16, 2013 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Jun. 12, 2014 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Final dated Nov. 26, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Final dated Dec. 5, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated Jan. 6, 2014 for U.S. Appl. No. 13/275,514. |
Office Action Final dated Feb. 28, 2014 for U.S. Appl. No. 13/275,547. |
Office Action Final dated Mar. 21, 2014 for U.S. Appl. No. 13/276,673. |
Notice of Allowance dated Nov. 12, 2013 for U.S. Appl. No. 13/276,687. |
Notice of Allowance dated Jun. 2, 2014 for U.S. Appl. No. 13/276,687. |
Office Action Final dated Sep. 27, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Non-Final dated Aug. 20, 2014 for U.S. Appl. No. 13/276,725. |
US Office Action, Notice of Allowance, dated Aug. 19, 2014 for U.S. Appl. No. 13/151,471. |
US Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,471. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/151,481. |
US Office Action, Non-Final, dated Nov. 7, 2014 for U.S. Appl. No. 13/151,481. |
US Office Action, Notice of Allowance, dated Aug. 6, 2014 for U.S. Appl. No. 13/151,498. |
US Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,498. |
US Office Action, Non-Final, dated Nov. 6, 2014 for U.S. Appl. No. 13/151,503. |
US Office Action, Non-Final, dated Jul. 9, 2014 for U.S. Appl. No. 13/151,509. |
US Office Action, Notice of Allowance, dated Oct. 28, 2014 for U.S. Appl. No. 13/151,509. |
US Office Action, Notice of Allowance, dated Oct. 29, 2014 for U.S. Appl. No. 13/151,512. |
US Office Action, Restriction Requirement, dated Jul. 11, 2014 for U.S. Appl. No. 13/269,870. |
US Office Action, Non-Final, dated Jul. 29, 2014 for U.S. Appl. No. 13/270,667. |
US Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/270,684. |
US Office Action, Non-Final, dated Oct. 9, 2014 for U.S. Appl. No. 13/270,684. |
US Office Action, Restriction Requirement, dated Sep. 11, 2014 for U.S. Appl. No. 13/270,701. |
US Office Action, Restriction Requirement, dated Sep. 25, 2014 for U.S. Appl. No. 13/271,352. |
US Office Action, Restriction Requirement, dated Oct. 2, 2013 for U.S. Appl. No. 13/274,480. |
US Office Action, Final, dated Jul. 17, 2014 for U.S. Appl. No. 13/274,480. |
US Office Action, Final, dated Aug. 22, 2014 for U.S. Appl. No. 13/274,496. |
US Office Action, Non-Final, dated Oct. 8, 2014 for U.S. Appl. No. 13/274,516. |
US Office Action, Non-Final, dated Aug. 26, 2014 for U.S. Appl. No. 13/274,540. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/274,805. |
US Office Action, Non-Final, dated Oct. 22, 2014 for U.S. Appl. No. 13/274,830. |
US Office Action, Non-Final, dated Sep. 9, 2014 for U.S. Appl. No. 13/275,514. |
US Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/275,547. |
US Office Action, Non-Final, dated Oct. 23, 2014 for U.S. Appl. No. 13/275,563. |
US Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/276,660. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/276,673. |
US Office Action, Notice of Allowance, dated Sep. 12, 2014 for U.S. Appl. No. 13/276,687. |
US Office Action, Restriction Requirement, dated Sep. 24, 2014 for U.S. Appl. No. 13/277,328. |
Number | Date | Country | |
---|---|---|---|
20120115005 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61410603 | Nov 2010 | US | |
61487846 | May 2011 | US |