The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Referring generally now to
The transverse texturing assembly 112 includes a carriage assembly 114, which is supported by the bridge rig 106 for traveling at least a portion of the span of the bridge rig 106 along its generally transverse orientation 108. The transverse texturing assembly 112 also includes a texturing element 116, which is connected to the carriage assembly 114 for texturing the paved road surface 102 as the carriage assembly 114 moves along the bridge rig 106. For example, in a specific embodiment, the transverse texturing assembly 112 includes an undercarriage assembly 118, which is connected to the carriage assembly 114. In this configuration, the texturing element 116 is translationally coupled with the undercarriage assembly 118 for texturing the paved road surface 102. The texturing element 116 is longitudinally aligned with the paved road surface 102 for traveling in the generally longitudinal orientation 110 of the paved road surface 102 with respect to the carriage assembly 114. Thus, the texturing element 116 is capable of forward and backward movement along the paved road surface 102 in an orientation generally parallel to the direction of travel of the machine 100 as it translates longitudinally with respect to the carriage assembly 114. By coordinating the longitudinal movement of the texturing element 116 with the transverse movement of the carriage assembly 114, the paved road surface 102 is textured on a skew 104 while the frame of the machine 100 remains square to the paved road surface 102.
For example, in order to create a transverse tining pattern (skew pattern) on a 6:1 skew, the longitudinal translation of the texturing element 116 (e.g., forward and backward movement generally parallel to the direction of travel of the machine 100) is coordinated with the transverse travel of the carriage assembly 114 (e.g., leftward or rightward movement generally perpendicular to the direction of travel of the machine 100) to provide about one inch of longitudinal texturing element movement for every six inches of transverse carriage assembly movement. Similarly, in order to achieve a transverse tining pattern on a 4:1 skew, the longitudinal translation of the texturing element 116 is coordinated with the transverse travel of the carriage assembly 114 to provide about one inch of longitudinal texturing element movement for every four inches of transverse carriage assembly movement. It will be appreciated that a number of various skews having different ratios may be achieved with the present invention by adjusting the movement of the texturing element 116 with relation to the movement of the carriage assembly 114.
In exemplary embodiments, the bridge rig 106 supports the transverse texturing assembly 112 along the span of the bridge rig 106 on a path that allows the carriage assembly 114 to attain a stowage position 120 when it reaches the end of the path. For example, when the carriage assembly 114 reaches the leftward most or rightward most end of the span of the bridge rig 106, it is angled upward and away from the paved road surface 102 in the stowage position 120. In this manner, the machine 100 can be moved along the paved road surface 102 with the carriage assembly 114 in the stowage position 120 to texture successive areas of pavement without unduly contacting the paved road surface 102 with the texturing element 116. It is contemplated that the transverse texturing assembly 112 may be removed from contact with the paved road surface 102 in a variety of other ways, including lifted off the surface, rotated about an axis along the bridge rig 106, and the like. For example, in one specific embodiment, the carriage assembly 114 travels a generally linear path along the span of the bridge rig 106, but is capable of rotating the texturing element 116 from a stationary position and lifting the texturing element 116 upward and away from the paved road surface 102.
In exemplary embodiments, the carriage assembly 114 is moved along the span of the bridge rig 106 with hydraulic circuitry. The carriage assembly 114 includes a right angle gear box 122, which is coupled with a stationary timing chain 124 located between the right and left ends of the machine 100 and attached at both ends of the bridge rig 106. One end of the machine 100 has a chain tensioning device. The right angle gear box 122 is coupled with the stationary timing chain 124 via a main driven sprocket 130. The stationary timing chain 124 transmits power to the undercarriage assembly 118 by utilizing the right angle gear box 122, thereby controlling the longitudinal translation of the texturing element 116. For example, in one specific embodiment, the right angle gear box 122 has a 2:1 reduction ratio and is connected to an output drive sprocket 126. The output drive sprocket 126 is then connected to the undercarriage assembly 118 via a second chain 128 coupled with a jack shaft 132. The jack shaft 132 is, in turn, connected with a final drive chain 134, which is coupled with the texturing element 116 for transmitting power to the texturing element 116.
For example, in a specific embodiment, the texturing element 116 is a lower texture broom mount assembly 116 that includes anchor points 140 for the final drive chain 134. One of the anchor points 140 for the final drive chain 134 is adjustable. The undercarriage assembly 118 includes a frame and an upper broom mount slide assembly 136 with chain guide idler sprockets 138 mounted thereto. The final drive chain 134 is guided through the chain guide idler sprockets 138 on the upper broom mount slide assembly 136 and connected to the anchor points 140 on the lower texture broom mount assembly 116. Thus, as the final drive chain 134 receives power from the stationary timing chain 124 via the main driven sprocket 130, the right angle gear box 122, the output drive sprocket 126, the second chain 128, and the jack shaft 132, the lower texture broom mount assembly 116 is shifted front to rear in the upper broom mount slide assembly 136.
It will be appreciated that the direction of skew can be changed by running the stationary timing chain 124 either over or under the main driven sprocket 130 on the carriage assembly 114. Further, it should be noted that additional skew patterns can be accomplished by utilizing a main driven sprocket 130 having more or fewer teeth to achieve the desired skew ratio. Moreover, while the arrangement of the gear box, the sprockets, and the chains illustrated in the accompanying figures is shown with some specificity, it should be apparent that many changes can be made in the arrangement of gear boxes, chains, and sprockets, including the utilization of more and fewer gear boxes, chains, and sprockets, without departing from the scope and intent of the present invention. Further, while the carriage assembly 114 and the undercarriage assembly 118 have been fabricated as separate pieces in the accompanying figures, it will be appreciated that they, and possibly the upper broom mount slide assembly 136, may be of unitary construction without departing from the scope and intent of the present invention.
In the embodiment illustrated in
Referring now to
In the exemplary embodiments, steps of the method 200 may be implemented as sets of instructions or software. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the method can be rearranged while remaining within the scope and spirit of the present invention. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes.
The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 60/811,490, filed Jun. 7, 2006. Said U.S. Provisional Application Ser. No. 60/811,490 is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60811490 | Jun 2006 | US |