Embodiments relate to the field of circuit protection devices, including fuse devices.
Embodiments relate to the field of circuit protection devices, including fuse devices.
Polymer positive temperature coefficient (PPTC) devices may be used as overcurrent or over-temperature protection device, as well as current or temperature sensors, among various applications. In overcurrent or over-temperature protection applications, the PPTC device may be considered a resettable fuse, designed to exhibit low resistance when operating under designed conditions, such as low current. The resistance of the PPTC device may be altered by direct heating due to temperature increase in the environment of the circuit protection element, or via resistive heating generated by electrical current passing through the circuit protection element. For example, a PPTC device may include a polymer material and a conductive filler that provides a mixture that transitions from a low resistance state to a high resistance state, due to changes in the polymer material, such as a melting transition or a glass transition. At such a transition temperature, sometimes called a trip temperature, where the trip temperature may often range from room temperature or above, the polymer matrix may expand and disrupt the electrically conductive network, rendering the composite much less electrically conductive. This change in resistance imparts a fuse-like character to the PPTC materials, which resistance may be reversible when the PPTC material cools back to room temperature.
The behavior of PPTC devices may be tailored to satisfy various criteria, including robust performance, as well as operation temperature. For example, known fluoropolymer-based PPTC devices may provide reliable trip temperatures in the range of 160° C. or greater. This performance may not be suitable for all applications. With respect to this and other considerations the present disclosure is provided.
In one embodiment a fuse device may include a PPTC body; a first electrode, disposed on a first side of the PPTC body; and a second electrode, disposed on a second side of the PPTC body. The PPTC body may include a polymer matrix and a conductive filler, wherein the polymer matrix comprises a polymer having a melting temperature of less than 150° C.
In another embodiment, a fuse device may include a PPTC body; a first electrode, disposed on a first side of the PPTC body; and a second electrode, disposed on a second side of the PPTC body. The PPTC body may include a polymer matrix and a conductive filler, wherein the polymer matrix comprises a low temperature PVDF material having a melting temperature in a range between 90° C. and 110° C.
In a further embodiment, a fuse device may include a PPTC body; a first electrode, disposed on a first side of the PPTC body; and a second electrode, disposed on a second side of the PPTC body. The PPTC body may include a polymer matrix and a conductive filler, wherein the polymer matrix comprises a linear low-density polyethylene material, having a melting temperature is a range of 100° C.
The present embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments are shown. The embodiments are not to be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey their scope to those skilled in the art. In the drawings, like numbers refer to like elements throughout.
In the following description and/or claims, the terms “on,” “overlying,” “disposed on” and “over” may be used in the following description and claims. “On,” “overlying,” “disposed on” and “over” may be used to indicate that two or more elements are in direct physical contact with one another. Also, the term “on,”, “overlying,” “disposed on,” and “over”, may mean that two or more elements are not in direct contact with one another. For example, “over” may mean that one element is above another element while not contacting one another and may have another element or elements in between the two elements. Furthermore, the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect.
In various embodiments, novel device structures and materials are provided for forming a PPTC device, where the PPTC device is configured to operate as a fuse device at relatively low temperatures. In various embodiments, a low trip-temperature PPTC is formed using a select combination of a fluoropolymer and conductive filler. According to some embodiments, a PPTC device may exhibit a trip temperature of less than 150° C.
In various embodiments, a PPTC device may be constructed as shown in
In some embodiments, the PPTC body may be formed using a polymer matrix such as a low melting point polyvinylidene fluoride (PVDF) polymer, an ethylene vinyl acetate (EVA) polymer, a high-density polyethylene (HDPE), a low-density polyethylene (LDPE), a linear low density polyethylene (LLDPE), or an ethylene butyl acrylate (EBA) polymer. In other embodiments, the polymer matrix may be any crystalline polyolefin polymer, olefin copolymer, or combination of the two.
In various non-limiting embodiments, the polymer matrix may comprise a PVDF material having a melting temperature below 150 C, where the volume fraction of polymer in the PPTC body 35 to 75%, wherein the conductive filler comprises a volume fraction of 25 to 65%, and wherein the volume resistivity of the conductive filler is less than 500 μΩ-cm.
In various non-limiting embodiments, the polymer matrix may comprise a polyolefin polymer, olefin copolymer, or combination of the two, where the polymer matrix has a melting temperature of 120° C. or less, where the volume fraction of polymer in the PPTC body 35 to 75%, wherein the conductive filler comprises a volume fraction of 25 to 65%, and wherein the volume resistivity of the conductive filler is less than 500 μΩ-cm.
In various non-limiting embodiments, the hold current density of the PPTC body at 25 C may range from 0.05 to 0.4 A/mm2. The embodiments are not limited in this context.
According to some embodiments, the conductive filler of the PPTC body 104 may be formed from conductive particles having a particle size in the range of 0.1 μm to 50 μm. The embodiments are not limited in this context. In some non-limiting embodiments, the particles may be a conductive ceramic, metal boride, metal nitride, or metal carbide (e.g., Tungsten carbide, titanium carbide, titanium diboride, vanadium carbide, zirconium carbide).
In other non-limiting embodiments, the conductive particles may be a metal, such as nickel, tungsten or copper. In additional non-limiting embodiments, the conductive particles may be a metal alloy such as a nickel-copper alloy, copper-tin alloy, or other alloy. In still further embodiments, the conductive filler particles may be a carbon material, such as carbon black, graphite.
Turning now to
Turning now to
The hold current density (the ratio of the hold current of the low tripping temperature PTC materials layer at 25° C. to the area of PPTC through which current travels between opposing electrodes) of the above examples of
The configuration of a PPTC device may vary according to different embodiments of the disclosure.
While the present embodiments have been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible while not departing from the sphere and scope of the present disclosure, as defined in the appended claims. Accordingly, the present embodiments are not to be limited to the described embodiments, and may have the full scope defined by the language of the following claims, and equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 16/138,611, filed Sep. 21, 2018 entitled “PPTC Device Having Low Melting Temperature Polymer Body” and claims priority to U.S. Provisional Patent Application Ser. No. 62/561,793, filed Sep. 22, 2017, entitled, “PPTC Device Having Low Melting Temperature Polymer Body,” and incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5793276 | Tosaka et al. | Aug 1998 | A |
7286038 | Wang et al. | Oct 2007 | B1 |
8653932 | Yang | Feb 2014 | B2 |
20020094441 | Korzhenko | Jul 2002 | A1 |
20040041683 | Tosaka | Mar 2004 | A1 |
20070146112 | Wang et al. | Jun 2007 | A1 |
20080074232 | Chen et al. | Mar 2008 | A1 |
20130094116 | Yang et al. | Apr 2013 | A1 |
20140146432 | Wang | May 2014 | A1 |
20140305923 | Dorfman et al. | Oct 2014 | A1 |
20140306605 | Lo et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2479926 | Oct 2003 | CA |
104103390 | Oct 2014 | CN |
104319042 | Jan 2015 | CN |
103762012 | Aug 2016 | CN |
106317544 | Jan 2017 | CN |
2014207421 | Oct 2014 | JP |
Entry |
---|
Machine translation of JP-2014207421. (Year: 2004). |
Number | Date | Country | |
---|---|---|---|
20210313135 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62561793 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16138611 | Sep 2018 | US |
Child | 17349065 | US |