The present invention relates to systems and methods for manufacturing customized arthroplasty cutting jigs. More specifically, the present invention relates to automated systems and methods of manufacturing such jigs.
Over time and through repeated use, bones and joints can become damaged or worn. For example, repetitive strain on bones and joints (e.g., through athletic activity), traumatic events, and certain diseases (e.g., arthritis) can cause cartilage in joint areas, which normally provides a cushioning effect, to wear down. When the cartilage wears down, fluid can accumulate in the joint areas, resulting in pain, stiffness, and decreased mobility.
Arthroplasty procedures can be used to repair damaged joints. During a typical arthroplasty procedure, an arthritic or otherwise dysfunctional joint can be remodeled or realigned, or an implant can be implanted into the damaged region. Arthroplasty procedures may take place in any of a number of different regions of the body, such as a knee, a hip, a shoulder, or an elbow.
One type of arthroplasty procedure is a total knee arthroplasty (“TKA”), in which a damaged knee joint is replaced with prosthetic implants. The knee joint may have been damaged by, for example, arthritis (e.g., severe osteoarthritis or degenerative arthritis), trauma, or a rare destructive joint disease. During a TKA procedure, a damaged portion in the distal region of the femur may be removed and replaced with a metal shell, and a damaged portion in the proximal region of the tibia may be removed and replaced with a channeled piece of plastic having a metal stem. In some TKA procedures, a plastic button may also be added under the surface of the patella, depending on the condition of the patella.
Implants that are implanted into a damaged region may provide support and structure to the damaged region, and may help to restore the damaged region, thereby enhancing its functionality. Prior to implantation of an implant in a damaged region, the damaged region may be prepared to receive the implant. For example, in a knee arthroplasty procedure, one or more of the bones in the knee area, such as the femur and/or the tibia, may be treated (e.g., cut, drilled, reamed, and/or resurfaced) to provide one or more surfaces that can align with the implant and thereby accommodate the implant.
Accuracy in implant alignment is an important factor to the success of a TKA procedure. A one- to two-millimeter translational misalignment, or a one- to two-degree rotational misalignment, may result in imbalanced ligaments, and may thereby significantly affect the outcome of the TKA procedure. For example, implant misalignment may result in intolerable post-surgery pain, and also may prevent the patient from having full leg extension and stable leg flexion.
To achieve accurate implant alignment, prior to treating (e.g., cutting, drilling, reaming, and/or resurfacing) any regions of a bone, it is important to correctly determine the location at which the treatment will take place and how the treatment will be oriented. In some methods, an arthroplasty jig may be used to accurately position and orient a finishing instrument, such as a cutting, drilling, reaming, or resurfacing instrument on the regions of the bone. The arthroplasty jig may, for example, include one or more apertures and/or slots that are configured to accept such an instrument.
A system and method has been developed for producing customized arthroplasty jigs configured to allow a surgeon to accurately and quickly perform an arthroplasty procedure that restores the pre-deterioration alignment of the joint, thereby improving the success rate of such procedures. Specifically, the customized arthroplasty jigs are indexed such that they matingly receive the regions of the bone to be subjected to a treatment (e.g., cutting, drilling, reaming, and/or resurfacing). The customized arthroplasty jigs are also indexed to provide the proper location and orientation of the treatment relative to the regions of the bone. The indexing aspect of the customized arthroplasty jigs allows the treatment of the bone regions to be done quickly and with a high degree of accuracy that will allow the implants to restore the patient's joint to a generally pre-deteriorated state.
It is believed that it is best for the vast majority of patients to have the patient's joint restored to its pre-deteriorated state (i.e., natural (i.e., kinematic) alignment). However, for some patient's, it may not be possible or desirable to restore the patient's joint to it natural (i.e., kinematic) alignment. For example, a physician may determine that the patient's joint assume a zero degree mechanical axis alignment or an alignment between the zero degree mechanical axis alignment and the natural (i.e., kinematic) alignment.
There is a need in the art for a system and method capable of generating customized arthroplasty jigs configured for a variety of alignment results. There is also a need in the art for a system and method capable of communicating joint alignment information to a physician and incorporating into the jig design the physician's input regarding the alignment information.
Various embodiments of a method of manufacturing a custom arthroplasty resection guide or jig are disclosed herein. In a first embodiment, the method may include: generate MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; generate MRI body coil two dimensional images, wherein the body coil images include a hip region of the patient, the knee region of the patient and an ankle region of the patient; in the knee coil images, identify first locations of knee landmarks; in the body coil images, identify second locations of the knee landmarks; run a transformation with the first and second locations, causing the knee coil images and body coil images to generally correspond with each other with respect to location and orientation.
In a second embodiment, the method may include: preoperatively plan in a three dimensional computer environment a proposed post surgical joint geometry for a joint, wherein the proposed post surgical joint geometry is a natural (i.e., kinematic) alignment joint geometry that is generally representative of the joint prior to degeneration; provide a two dimensional coronal view of the proposed post surgical joint geometry to a physician; employ feedback received from the physician regarding the two dimensional coronal view to arrive at a finalized post surgical joint geometry that is at least one of: a) the natural alignment joint geometry; b) a zero degree mechanical axis alignment joint geometry, or somewhere between a) and b).
In a third embodiment, the method may include: a) identify in a computer environment hip, knee and ankle centers in a first set of two dimensional images; b) generate in a computer environment a three dimensional knee model from a second set of two dimensional images; c) cause the three dimensional knee model and hip, knee and ankle centers to be positioned relative to each other in a global coordinate system generally as if the three dimensional knee model were generated from the first set of two dimensional images; d) preoperatively plan an arthroplasty procedure with the three dimensional knee model of step c); and e) at least one of maintain or reestablish the positional relationship established in step c) between the three dimensional knee model and the hip, knee and ankle centers to address any positional changes in the global coordinate system for the three dimensional knee model during the preoperatively planning of step d).
In a fourth embodiment, the method may include: a) generating a three dimensional femur bone model from MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; b) identifying a hip center and a femur knee center in MRI body coil two dimensional images, wherein the body coil images include a hip region of the patient and the knee region of the patient; c) causing the three dimensional femur bone model and hip center and femur knee center to generally correspond with each other with respect to location and orientation; d) defining relative to the three dimensional femur bone model a femoral mechanical axis via the femur knee center and the hip center; e) identifying a most distal condylar point of the three dimensional femur bone model; f) defining a distal plane that is orthogonal to the femoral mechanical axis in a coronal view of the three dimensional femur bone model, wherein the distal plane also passes through the most distal condylar point; g) and defining a resection plane that is parallel to the distal plane and proximally offset from the distal plane; and h) using data associated with the resection plane to define a resection guide in the custom arthroplasty resection guide.
In a fifth embodiment, the method may include: a) generating a three dimensional tibia bone model from MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; b) identifying an ankle center and a tibia knee center in MRI body coil two dimensional images, wherein the body coil images include an ankle region of the patient and the knee region of the patient; c) causing the three dimensional tibia bone model and ankle center and tibia knee center to generally correspond with each other with respect to location and orientation; d) defining relative to the three dimensional tibia bone model a tibial mechanical axis via the tibia knee center and the ankle center; e) identifying a condylar point of the three dimensional tibia bone model; f) defining a proximal plane that is orthogonal to the tibial mechanical axis in a coronal view of the three dimensional tibia bone model, wherein the proximal plane also passes through a condylar point; g) defining a resection plane that is parallel to the proximal plane and distally offset from the proximal plane; and h) using data associated with the resection plane to define a resection guide in the custom arthroplasty resection guide.
In a sixth embodiment, the method may include: a) identify in a computer environment hip, knee and ankle centers in a first set of two dimensional images; b) generate in a computer environment a three dimensional knee model from a second set of two dimensional images; c) cause the three dimensional knee model and hip, knee and ankle centers to be positioned relative to each other in a global coordinate system generally as if the three dimensional knee model were generated from the first set of two dimensional images; d) preoperatively plan an arthroplasty procedure with the three dimensional knee model of step c) via a method including: i) defining a mechanical axis relative to the three dimensional knee model via a pair of points including the knee center and at least one of the hip center or ankle center; and ii) defining a resection plane parallel to, and offset from, a reference plane that: 1) is orthogonal to the mechanical axis in a coronal view and 2) extends through a condylar point on the three dimensional knee model; and e) using data associated with the resection plane to define a resection guide in the custom arthroplasty resection guide.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Disclosed herein are customized arthroplasty jigs 2 and systems 4 for, and methods of, producing such jigs 2. The jigs 2 are customized to fit specific bone surfaces of specific patients. Depending on the embodiment and to a greater or lesser extent, the jigs 2 are automatically planned and generated and may be similar to those disclosed in these three U.S. Patent Applications: U.S. patent application Ser. No. 11/656,323 to Park et al., titled “Arthroplasty Devices and Related Methods” and filed Jan. 19, 2007; U.S. patent application Ser. No. 10/146,862 to Park et al., titled “Improved Total Joint Arthroplasty System” and filed May 15, 2002; and U.S. Pat. No. 11/642,385 to Park et al., titled “Arthroplasty Devices and Related Methods” and filed Dec. 19, 2006. The disclosures of these three U.S. Patent Applications are incorporated by reference in their entireties into this Detailed Description.
The methods and systems disclosed herein allow a resulting jig 2 to generate surgical resections that allow implanted arthroplasty prosthetic femoral and tibial joint components to achieve a joint alignment that is: (1) generally representative of the patient's pre-degenerative joint line; generally corresponding to a zero mechanical axis alignment; or (3) somewhere between (1) and (2). Whether the resections result in a joint alignment that is (1), (2) or somewhere between (1) and (2) may be a result of physician input and modification of the natural (i.e., kinematic) joint alignment calculated during preoperative planning (“POP”).
As can be understood from
In reality, only approximately two percent of the human population has the zero-degree mechanical axis (“neutral”) leg skeletal structure depicted in
A knee arthroplasty procedure may be considered a natural alignment or kinematic alignment procedure when the knee arthroplasty procedure is preoperatively planned such that the prosthetic knee implants implanted during the knee arthroplasty procedure generally return the patient's knee geometry to the geometry that existed before the patient's knee geometry was impacted via deterioration of the knee joint. For example, if the patient's pre-deteriorated knee geometry was varus, such as depicted in
In natural or kinematic alignment, the goal may be to create a prosthetic knee joint line 222 that recreates the patient's pre-degenerated knee joint line 222, which may have been parallel to the ground during a two legged stance in the frontal plane (feet approximated and parallel to the ground during gait). Studies suggest that with the feet approximated in two-legged stance, the joint line is parallel to the ground, and the mechanical axis is positioned with a two to three degree inward inclination.
A knee arthroplasty procedure may be considered a zero-degree mechanical axis or neutral alignment procedure when the knee arthroplasty procedure is preoperatively planned such that the prosthetic knee implants implanted during the knee arthroplasty procedure generally result in a neutral knee geometry for the patient, regardless of whether the patient's pre-deteriorated knee geometry was varus, valgus or neutral. In zero-degree mechanical axis alignment, the goal may be to create a prosthetic knee joint line 222 that is perpendicular to the TMA 218, the TMA 218 coinciding with the MA 214.
A patient's natural pre-degenerated knee geometry may have served the patient well prior to knee joint degeneration. However, a physician may determine that it is in the patient's best interest to receive a post surgical knee geometry that is a natural alignment, neutral alignment, or something in between, depending on the physician's assessment of the patient's deteriorated bone geometry and condition, the applicability of available prosthetic implants, and other factors. Consequently, there is a need for the systems and methods disclosed herein.
To provide an overall understanding of the systems 4 for, and methods of, producing the customized arthroplasty jigs 2, reference is made to
The first section, which is discussed with respect to
The second section, which is discussed with respect to
The resulting “saw cut and drill hole data” 44 is referenced to the restored bone models 28 to provide saw cuts and drill holes that will allow arthroplasty implants to achieve a joint alignment that is: (1) generally representative of the patient's pre-degenerative joint line (i.e., natural alignment); generally corresponding to a zero mechanical axis alignment; or (3) somewhere between (1) and (2). Whether the resections result in a joint alignment that is (1), (2) or somewhere between (1) and (2) may be a result of physician input and modification of the natural joint alignment calculated during POP.
The third section, which is discussed with respect to [Blocks 190-235] of
The fourth section, which is discussed with respect to [Blocks 120, 175, 180 and 255] of
The fifth section, which is discussed with respect to
The sixth section, which is discussed with respect to
As shown in
As indicated in
As can be understood from
As illustrated in
As can be understood from
While the embodiment is discussed in the context of the imaging being via MRI, in other embodiments the imaging is via CT or other medical imaging methods and systems. In one embodiment employing MRI, the imaging process may be as disclosed in U.S. patent application Ser. No. 11/946,002 to Park, which is titled “Generating MRI Images Usable For The Creation Of 3D Bone Models Employed To Make Customized Arthroplasty Jigs,” was filed Nov. 27, 2007 and is incorporated by reference in its entirety into this Detailed Description.
As can be understood from
In one embodiment, the hip, knee and ankle centers 54, 56, 57, 58 are identified only in the coronal views of the body coil 2d images 52. In one embodiment, the X, Y and Z global coordinate locations for each of the femur hip center 54, femur knee center 56, tibia knee center 57 and tibia ankle center 58 are stored, for example, in a table or matrix in a computer file separate from the 3D bone models 22 or 3D restored bone models 28, discussed below [Block 115]. In other embodiments, the X, Y and Z global coordinate locations for each of the femur hip center 54, femur knee center 56, tibia knee center 57 and tibia ankle center 58 are stored with or as part of the 3D bone models 22 or 3D restored bone models 28, discussed below.
In one embodiment, the hip center can be the approximate center point of the femur head via visual examination. The ankle center can be the approximate center point of the cortical bone rim of the ankle plafond (i.e., the distal articular surface of tibia) via visual examination. The knee center can be the approximate center point close to the intercondylar groove of the distal femur and/or the approximate center point of the tibia spine in the 3D restored knee model. The centers of the hip and ankle in the 2D body coil images 52 may be identified. The approximate joint center coordinates of the hip, ankle and 3D knee model may be recorded as (x′1-3, y′1-3, z′1-3). For example, the joint center coordinates for each of hip, knee, and ankle, may be, respectively, (x′1, y′1, z′1), (x′2, y′2, z′2), and (x′3, y′3, z′3).
As shown in
As shown in
As shown in
As shown in
In one embodiment, three or more points 62 are identified in the respective 2D knee coil images 16 of
In other embodiments, the three or more points 60, 62 may be distributed across multiple coronal images 16, 52. For example, the three or more femur points 62 may be distributed across two or more coronal 2D knee coil images 16, and the three or more tibia points 62 may be distributed across two or more coronal 2D knee coil images 16. Similarly, the three or more femur points 60 may be distributed across two or more coronal 2D body coil images 52, and the three or more tibia points 60 may be distributed across two or more coronal 2D body coil images 52.
In yet other embodiments, the three or more points 60, 62 may be distributed across different types of images 16, 52, such as, for example, a combination of coronal, axial and/or sagittal. For example, the three or more femur points 62 may be distributed across one or more coronal 2D knee coil image 16, one or more sagittal knee coil image, and/or one or more axial knee coil image, and the three or more tibia points 62 may be distributed across one or more coronal 2D knee coil image 16, one or more sagittal knee coil image, and/or one or more axial knee coil image. Similarly, the three or more femur points 60 may be distributed across one or more coronal 2D body coil image 52, one or more sagittal body coil image, and/or one or more axial body coil image, and the three or more tibia points 60 may be distributed across one or more coronal 2D body coil image 52, one or more sagittal body coil image, and/or one or more axial body coil image.
Regardless of how many points 60, 62 are located and in which type of image views and combinations of views, in one embodiment, the coordinate locations of the points 60, 62 in the global coordinate system 63 are stored for use with the transformation process discussed below.
As can be understood from
As can be understood from
Whether the transformation operates on points in a particular view (e.g., coronal, axial and/or sagittal) or on a particular bone (e.g., femur and/or tibia) will depend on which landmarks the points 60, 62 are identified and in which views, as discussed above with respect to [Block 125] of
In one embodiment, the MRI coordinates of the points 60 on the bone landmarks of the region of the knee 14 in the 2D body coil images 52 may be illustrated as (x, y, z) and stored for further analysis. Similarly, the MRI coordinates of the points 62 on the bone landmarks of the region of the knee 14 in the 2D knee coil images 16 may be illustrated as (^x, ^y, ^z) and stored for further analysis. In one embodiment, the landmarks on which the points 60, 62 are located may be the epicondylar points of the distal femur, the approximate center of distal femur, the approximate center of proximal tibia, or other recognizable landmarks. In another embodiment, the points 60, 62 can be located anywhere on the area of distal femur and proximal tibia. The points for both the knee coil images 16 and body coil images 52 are in approximately similar locations via visual examination.
Once the points 60, 62 are similarly located in the images 16, 52, the transformation or optimization of the points 60, 62 and associated images 16, 52 takes place by brining as close as possible the points 62 of the 2D knee coil images 16, which are stored as (^x, ^y, ^z), to the points of the 2D body coil images 52, which are stored as (x, y, z). In other words, for example, the closeness of the two sets of points may be evaluated as the sum of squared distances from points in the first set to the whole second set. The manipulations of rotation and translation are applied to the points and associated images for the distal femur and proximal tibia.
In one embodiment, the transformation employs the Iterative Closest Point (“ICP”) algorithm, gradient descent optimization or other optimization algorithms or transformations.
While [Blocks 125-135] of
A third positional matching embodiment employs a contour to contour positional matching approach. In one version of the third positional matching embodiment, splines are defined along the bone contours in the 2D body coil images 52 and along the bone contours in the 2D knee coil images 16. In another version of the third positional matching embodiment, the 2D knee coil images 16 are segmented and converted into a 3D bone model 22, and splines are defined along the bone contours in the 2D body coil images 52.
In some versions of the third positional matching embodiment, the splines are generally limited to the bone contours at specific landmarks. In other versions of the third positional matching embodiment, the splines extend along a substantial portion, if not the entirety, of the bone contours. Regardless of which version of the third positional matching embodiment is employed, the splines of the bone contours of the 2D body coil images 52 are positionally matched to bone contours of the 2D knee coil images 16 or the descendent 3D bone model 22 via the ICP algorithm or one of the other above-mentioned transformations. In one version of the third positional matching embodiment, the contours employed exist in both coronal and sagittal image slices.
In a fourth positional matching embodiment, image intensity variations in the 2D knee coil images 16 are identified and positionally matched to corresponding image intensity variations identified in the 2D body coil images 52. For example, image registration techniques are employed that are similar to those described in U.S. patent application Ser. No. 12/386,105, which was filed Apr. 4, 2009, titled System and Method for Image Segmentation in Generating Computer Models of a Joint to Undergo Arthroplasty, and is hereby incorporated by reference into the present application in its entirety. Specifically, a bone 18, 20 in the 2D knee coil images 16 is segmented by a technician. Additionally, a technician may provide an initial approximate transform by specifying one or more landmarks in each of the knee coil and body coil images. The group of the rigid 3D transform with 6 parameters P (3 rotational angle+3 translation parameters) is parameterized. The function to be optimized is defined (see application Ser. No. 12/386,105—local image correlation function F). In one version of the fourth positional matching embodiment, a set of points S is defined in the knee coil images to be used in function F (e.g., the set of points S might be all the voxel points within 3-5 mm distance from the segmentation contours or some subset of such voxel points (e.g., a random subsample of such voxel points)). For every 6-dimensional parameter p in P, transform T(p) is applied to the set S to compute correlation F in the transformed set f(p)=F(T(p)(S)). Standard optimization techniques are applied in order to maximize f over parameters p. For example, when a technician provides an initial approximate transform, a gradient descent optimization method may be employed.
As can be understood from the preceding discussion, the various positional matching embodiments may employ a rigid 3D transform that best aligns the femur 18 in the 2D knee coil images 16 to the femur 18 in the 2D body coil images 52. A similar rigid 3D transform may also be employed in the various positional matching embodiments to best align the tibia 20 in the 2D knee coil images 16 to the tibia 20 in the 2D body coil images 52.
A given transform can be applied to the images 16, 52. In other words, a first image can be resampled over the transform. The transformed first image can be overlapped with the second image with the goal of the transform being that the two overlapped images match as close as possible in the region of femur bone. The transform process can be similarly run for the tibia.
While, in some embodiments, the transformed knee coil images and the body coil images may not match precisely because every MRI has a number of its own artifacts that degrade the image differently in different areas, the positional matching will be sufficient to allow the rest of the POP to continue as described herein.
As a general summary, in one embodiment, a few distinguished landmarks in the knee coil images are positional matched to similar or corresponding landmarks in the body coil images. In another embodiment, a larger number of points on the bone boundary in the body coil images are matched to the whole bone boundary (e.g., to the mesh surface in 3D) in the knee coil images. In yet another embodiment, the contours on the bone boundary in the body coil images are matched to the whole boundary of the knee coil images or, alternatively, the descendent 3D bone model. In the yet another embodiment, the image intensity variations around the bone boundary in the body coil images are matched to the image intensity variations in the knee coil images.
Each of embodiments one through three of the positional matching method may be done via a combination of manual and automated methodology or via an entirely automated methodology. The fourth embodiment of the positional matching method may be entirely automated.
As indicated in
As described below with respect to [Blocks 180 and 255] of
As indicated in
As can be understood from
Regardless of whether the centers 54, 56, 57, 58 are part of the bone models 22 or separate from the bone models 22 but capable of being shown with the bone models 22, the bone models 22 depict the bones 18, 20 in the present deteriorated condition with their respective degenerated joint surfaces 24, 26, which may be a result of osteoarthritis, injury, a combination thereof, etc. Also, the hip, knee and ankle centers 54, 56, 57, 58 and bone surfaces 24, 26 are positioned relative to each other as would generally be the case with the patient's long leg anatomy in the present deteriorated state. That the centers 54, 56, 57, 58 are correctly oriented with respect to the bone models 22 to represent the patient's long leg anatomy in the present deteriorated state is made possible, at least in part, via the transformation process described above with respect to [Blocks 125-135] of
In one embodiment, the systems and methods disclosed herein create the 3D computer generated bone models 22 from the bone-only contour lines segmented from the 2D knee coil images 16 via the systems and methods described in U.S. patent application Ser. No. 12/386,105, which was filed Apr. 4, 2009, is entitled System and Method for Image Segmentation in Generating Computer Models of a Joint to Undergo Arthroplasty, and is hereby incorporated by reference into the present application in its entirety. In other embodiments the systems and methods disclosed herein employ any one or more of the following computer programs to create the 3D computer generated bone models 22 from the bone-only contour lines segmented from the 2D knee coil images 16: Analyze from AnalyzeDirect, Inc., Overland Park, Kans.; Insight Toolkit, an open-source software available from the National Library of Medicine Insight Segmentation and Registration Toolkit (“ITK”), www.itk.org; 3D Slicer, an open-source software available from www.slicer.org; Mimics from Materialise, Ann Arbor, Mich.; and Paraview available at www.paraview.org.
As indicated in
As with the bone models 22 discussed above, the hip, knee and ankle centers 54, 56, 57, 58 may be incorporated into the restored bone models 28 or stored separately from the restored bone models 28, but capable of being toggled on or off to be displayed relative to the restored bone models 28 or hidden.
In one embodiment, the restored bone models 28 are manually created from the bone models 22 by a person sitting in front of a computer 6 and visually observing the bone models 22 and their degenerated surfaces 24, 26 as 3D computer models on a computer screen 9. The person visually observes the degenerated surfaces 24, 26 to determine how and to what extent the degenerated surfaces 24, 26 surfaces on the 3D computer bone models 22 need to be modified to restore them to their pre-degenerated condition. By interacting with the computer controls 11, the person then manually manipulates the 3D degenerated surfaces 24, 26 via the 3D modeling computer program to restore the surfaces 24, 26 to a state the person believes to represent the pre-degenerated condition. The result of this manual restoration process is the computer generated 3D restored bone models 28, wherein the surfaces 24′, 26′ are indicated in a non-degenerated state.
In one embodiment, the above-described bone restoration process is generally or completely automated, as disclosed in U.S. patent application Ser. No. 12/111,924 to Park, which is titled Generation of a Computerized Bone Model Representative of a Pre-Degenerated State and Usable in the Design and Manufacture of Arthroplasty Devices, was filed Apr. 29, 2008 and is incorporated by reference in its entirety into this Detailed Description. In other words, a computer program may analyze the bone models 22 and their degenerated surfaces 24, 26 to determine how and to what extent the degenerated surfaces 24, 26 surfaces on the 3D computer bone models 22 need to be modified to restore them to their pre-degenerated condition. The computer program then manipulates the 3D degenerated surfaces 24, 26 to restore the surfaces 24, 26 to a state intended to represent the pre-degenerated condition. The result of this automated restoration process is the computer generated 3D restored bone models 28, wherein the surfaces 24′, 26′ are indicated in a non-degenerated state.
As depicted in
In one embodiment, the POP procedure is a manual process, wherein computer generated 3D implant models 34 (e.g., femur and tibia implants in the context of the joint being a knee) and restored bone models 28 are manually manipulated relative to each other by a person sitting in front of a computer 6 and visually observing the implant models 34 and restored bone models 28 on the computer screen 9 and manipulating the models 28, 34 via the computer controls 11. As can be understood from
In one embodiment, the POP process is generally or completely automated. In one embodiment, the above-described POP process is generally or completely automated, as disclosed in U.S. patent application Ser. No. 12/563,809 to Park, which is titled Arthroplasty System and Related Methods, was filed Sep. 21, 2009 and is incorporated by reference in its entirety into this Detailed Description. In other words, a computer program may manipulate computer generated 3D implant models 34 (e.g., femur and tibia implants in the context of the joint being a knee) and restored bone models or planning bone models 28 relative to each other to determine the saw cut and drill hole locations 30, 32 relative to the restored bone models 28. The implant models 34 may be superimposed over the restored bone models 28, or vice versa. In one embodiment, the implant models 34 are located at point P′ (X0-k, Y0-k, Z0-k) relative to the origin (X0, Y0, Z0) of the global coordinate system 63, and the restored bone models 28 are located at point P (X0-j, Y0-j, Z0-j). To cause the joint surfaces of the models 28, 34 to correspond, the computer program may move the restored bone models 28 from point P (X0-j, Y0-j, Z0-j) to point P′ (X0-k, Y0-k, Z0-k), or vice versa [Block 160]. Once the joint surfaces of the models 28, 34 are in close proximity, the joint surfaces of the implant models 34 may be shape-matched to align or correspond with the joint surfaces of the restored bone models 28 [Block 165]. By causing the joint surfaces of the models 28, 34 to so align, the implant models 34 are positioned relative to the restored bone models 28 such that the saw cut locations 30 and drill hole locations 32 can be determined relative to the restored bone models 28. As a result of this POP process, the resection locations 30 will be such that the actual implants will generally restore the patient's knee geometry to what it was prior to degeneration.
As depicted in
As indicated in
For example, after the joint gap analysis and manipulation is complete as recited in [Block 170], the coordinates for the joint centers of the restored 3D knee model are changed from (x′2, y′2, z′2) because of the manipulation of the models 28, 34 in bringing the joint line parallel to the ground. After completion of the joint gap analysis and manipulation, the joint line 64 is set up and is perpendicular to the center of distal femur and perpendicular to the center of proximal tibia. Such manipulation can be done for both the distal femur and proximal tibia. As a result, the coordinates of the joint centers of this newly aligned 3D knee model (with joint line references and joint center points) may be further identified and recorded as (x″2, y″2, z″2).
As indicated in
As illustrated in
In one embodiment, a 2D coronal snapshot 69′ of the models 28, 34, points 54, 56, 57, 58, and axes 68, 70, 72 is created [Block 195]. An example of such a coronal snapshot 69′ is depicted in
As shown in
In one embodiment, if the v/v angles fall into an acceptable range wherein θ, φ<±3°, then the snapshot 69′″ has an acceptable natural geometry and can be forwarded to the physician. If the v/v angles do not fall into an acceptable range wherein θ, φ<±3°, then the POP process is run again to arrive at a natural geometry that is acceptable.
As shown in
As indicated in
However, as can be understood from
As can be understood from
Thus, in summary of the events at [Block 215] of
If the alignment is updated as in [Block 225], then per [Block 230], the 2D coronal snapshots 69′, 69″ of [Blocks 195 and 200] are regenerated off of the models 28, 34 of [Block 170] as updated per [Block 225]. The updated coronal snapshots 69′, 69″ are again sent to the physician [Block 205] and the process repeats itself as recited above with respect to [Blocks 210-230], until the physician agrees with the proposed correction [Block 215] and the proposed correction is found to be desirable, no further correction being deemed necessary by the physician [Block 235].
As indicated in
As mentioned above with respect to
Computer programs for creating the 3D computer generated arthritic models 36 from the 2D images 16 include: Analyze from AnalyzeDirect, Inc., Overland Park, Kans.; Insight Toolkit, an open-source software available from the National Library of Medicine Insight Segmentation and Registration Toolkit (“ITK”), www.itk.org; 3D Slicer, an open-source software available from www.slicer.org; Mimics from Materialise, Ann Arbor, Mich.; and Paraview available at www.paraview.org.
Similar to the bone models 22, the arthritic models 36 depict the bones 18, 20 in the present deteriorated condition with their respective degenerated joint surfaces 24, 26, which may be a result of osteoarthritis, injury, a combination thereof, etc. However, unlike the bone models 22, the arthritic models 36 are not bone-only models, but include cartilage in addition to bone. Accordingly, the arthritic models 36 depict the arthroplasty target areas 42 generally as they will exist when the customized arthroplasty jigs 2 matingly receive the arthroplasty target areas 42 during the arthroplasty surgical procedure.
As indicated in
As depicted in
In one embodiment, the procedure for indexing the jig models 38 to the arthroplasty target areas 42 is a manual process. The 3D computer generated models 36, 38 are manually manipulated relative to each other by a person sitting in front of a computer 6 and visually observing the jig models 38 and arthritic models 36 on the computer screen 9 and manipulating the models 36, 38 by interacting with the computer controls 11. In one embodiment, by superimposing the jig models 38 (e.g., femur and tibia arthroplasty jigs in the context of the joint being a knee) over the arthroplasty target areas 42 of the arthritic models 36, or vice versa, the surface models 40 of the arthroplasty target areas 42 can be imported into the jig models 38, resulting in jig models 38 indexed to matingly (matchingly) receive the arthroplasty target areas 42 of the arthritic models 36. Point P′ (X0-k, Y0-k, Z0-k) can also be imported into the jig models 38, resulting in jig models 38 positioned and oriented relative to point P′ (X0-k, Y0-k, Z0-k) to allow their integration with the bone cut and drill hole data 44 of [Block 240].
In one embodiment, the procedure for indexing the jig models 38 to the arthroplasty target areas 42 is generally or completely automated, as disclosed in U.S. patent application Ser. No. 11/959,344 to Park, which is titled System and Method for Manufacturing Arthroplasty Jigs, was filed Dec. 18, 2007 and is incorporated by reference in its entirety into this Detailed Description. For example, a computer program may create 3D computer generated surface models 40 of the arthroplasty target areas 42 of the arthritic models 36. The computer program may then import the surface models 40 and point P′ (X0-k, Y0-k, Z0-k) into the jig models 38, resulting in the jig models 38 being indexed to matingly receive the arthroplasty target areas 42 of the arthritic models 36. The resulting jig models 38 are also positioned and oriented relative to point P′ (X0-k, Y0-k, Z0-k) to allow their integration with the bone cut and drill hole data 44 of [Block 240].
In one embodiment, the arthritic models 36 may be 3D volumetric models as generated from the closed-loop process discussed in U.S. patent application Ser. No. 11/959,344 filed by Park. In other embodiments, the arthritic models 36 may be 3D surface models as generated from the open-loop process discussed in U.S. patent application Ser. No. 11/959,344 filed by Park.
In one embodiment, the models 40 of the arthroplasty target areas 42 of the arthritic models 36 may be generated via an overestimation process as disclosed in U.S. Provisional Patent Application 61/083,053, which is titled System and Method for Manufacturing Arthroplasty Jigs Having Improved Mating Accuracy, was filed by Park Jul. 23, 2008, and is hereby incorporated by reference in its entirety into this Detailed Description.
As indicated in
As can be understood from
As can be understood from
For a discussion of example customized arthroplasty cutting jigs 2 capable of being manufactured via the above-discussed process, reference is made to
As indicated in
The interior portion 100 of the femur jig 2A is configured to match the surface features of the damaged lower end (i.e., the arthroplasty target area 42) of the patient's femur 18. Thus, when the target area 42 is received in the interior portion 100 of the femur jig 2A during the TKR surgery, the surfaces of the target area 42 and the interior portion 100 match. In other words, the surface of the interior portion 100 of the femur jig 2A is generally a negative of the target area 42 of the patient's femur 18 and will matingly or matchingly receive the target area 42.
The surface of the interior portion 100 of the femur cutting jig 2A is machined or otherwise formed into a selected femur jig blank 50A and is based or defined off of a 3D surface model 40 of a target area 42 of the damaged lower end or target area 42 of the patient's femur 18.
As indicated in
The interior portion 104 of the tibia jig 2B is configured to match the surface features of the damaged upper end (i.e., the arthroplasty target area 42) of the patient's tibia 20. Thus, when the target area 42 is received in the interior portion 104 of the tibia jig 2B during the TKR surgery, the surfaces of the target area 42 and the interior portion 104 match. In other words, the surface of the interior portion 104 of the tibia jig 2B is generally a negative of the target area 42 of the patient's tibia 20 and will matingly or matchingly receive the target area 42.
The surface of the interior portion 104 of the tibia cutting jig 2B is machined or otherwise formed into a selected tibia jig blank 50B and is based or defined off of a 3D surface model 40 of a target area 42 of the damaged upper end or target area 42 of the patient's tibia 20.
Another embodiment of the methods and systems for manufacturing the jigs 2A, 2B will now be described, the another embodiment having a shorthand designation of “MA alignment”, wherein the embodiment described above with respect to
The MA alignment embodiment begins by following generally the same process as described above with respect to
As can be understood from
As indicated in
As indicated in
As can be understood from
As can be understood from
As indicated in
In one embodiment, the depth of resection DR for the femur may be approximately 8 mm, plus or minus 1-3 mm depending on the depth of the implant intended to be implanted. For example, the depth of resection DR for the femur may be based on the thickness of the femoral implant form the most distal point of the medial or lateral condyle to the other side of the flange.
In one embodiment, the depth of resection DR for the tibia may be approximately 11 mm, plus or minus 1-3 mm depending on the depth of the implant intended to be implanted. For example, the depth of resection DR for the tibia may be based on the thickness of the tibia implant form the most proximal point of the medial or lateral condyle to the other side of the base plate and its liner.
As can be understood from
As indicated in
As can be understood from
As shown in
For example, as shown in
Similarly, as can be understood from
As can be understood from
Femoral implant model sizing may be completed by first sizing the femoral implant model 34 in the sagittal view so as to fit the distal condyles and anterior cortex of the femoral bone model 22. Inspections for fit are made in the coronal and axial views. The best implant size is determined based on the distance form the posterior condylar line to the anterior cortex. If notching of the femoral shaft is present, the femoral implant model 34 flexed up to a maximum of approximately five degrees and reassessed for notching. If notching is still present, then the femoral implant model 34 is upsized and returned to a neutral alignment. If notching is again present, then the femoral implant model 34 is flexed up to a maximum of approximately five degrees and the medial-lateral overhang is assessed and a size for the femoral implant model is selected.
As can be understood from
As can be understood from
The discussion provided herein is given in the context of TKR and TKR jigs and the generation thereof. However, the disclosure provided herein is readily applicable to uni-compartmental or partial arthroplasty procedures in the knee or other joint contexts. Thus, the disclosure provided herein should be considered as encompassing jigs and the generation thereof for both total and uni-compartmental arthroplasty procedures.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is a continuation-in-part (“CIP”) of U.S. patent application Ser. No. 12/760,388 (“the '388 application”), which was filed Apr. 14, 2010 and titled “Preoperatively Planning an Arthroplasty Procedure and Generating a Corresponding Patient Specific Arthroplasty Resection Guide”. The '388 application is a CIP application of U.S. patent application Ser. No. 12/563,809 filed on Sep. 21, 2009 and titled “Arthroplasty System and Related Methods”, which claims priority to U.S. patent application 61/102,692 (“the '692 application”) filed Oct. 3, 2008 and titled “Arthroplasty System and Related Methods”. The '388 application is also a CIP application of U.S. patent application Ser. No. 12/546,545 filed on Aug. 24, 2009 and titled “Arthroplasty System and Related Methods”, which claims priority to the '692 application. The '388 application is also a CIP application of U.S. patent application Ser. No. 11/959,344, which was filed Dec. 18, 2007 and titled “System and Method for Manufacturing Arthroplasty Jigs”. The '388 application is also CIP application of U.S. patent application Ser. No. 12/111,924 (“the '924 application”), which was filed Apr. 29, 2008 and titled “Generation of a Computerized Bone Model Representative of a Pre-Degenerated State and Useable in the Design and Manufacture of Arthroplasty Devices”. The '388 application is also a CIP application of U.S. patent application Ser. No. 12/505,056 (“the '056 application”), which was filed Jul. 17, 2009 and titled “System and Method for Manufacturing Arthroplasty Jigs Having Improved Mating Accuracy”. The '056 application claims priority to U.S. patent application 61/083,053 filed Jul. 23, 2008 and titled “System and Method for Manufacturing Arthroplasty Jigs Having Improved Mating Accuracy”. The present application claims priority to all of the above mentioned applications and hereby incorporates by reference all of the above-mentioned applications in their entireties into the present application.
Number | Name | Date | Kind |
---|---|---|---|
3195411 | MacDonald at al. | Jul 1965 | A |
3825151 | Arnaud | Jul 1974 | A |
D245920 | Shen | Sep 1977 | S |
4198712 | Swanson | Apr 1980 | A |
4298992 | Burstein | Nov 1981 | A |
4436684 | White | Mar 1984 | A |
D274093 | Kenna | May 1984 | S |
D274161 | Kenna | Jun 1984 | S |
4467801 | Whiteside | Aug 1984 | A |
4575330 | Hull | Mar 1986 | A |
4646726 | Westin et al. | Mar 1987 | A |
4719585 | Cline et al. | Jan 1988 | A |
4721104 | Kaufman et al. | Jan 1988 | A |
4821213 | Cline et al. | Apr 1989 | A |
4822365 | Walker et al. | Apr 1989 | A |
4825857 | Kenna | May 1989 | A |
4841975 | Woolson | Jun 1989 | A |
4931056 | Ghajar et al. | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4976737 | Leake | Dec 1990 | A |
5007936 | Woolson | Apr 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5030219 | Matsen, III et al. | Jul 1991 | A |
5037424 | Aboczsky | Aug 1991 | A |
5075866 | Goto et al. | Dec 1991 | A |
5078719 | Schreiber | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5098383 | Hemmy et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5122144 | Bert et al. | Jun 1992 | A |
5123927 | Duncan et al. | Jun 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5140646 | Ueda | Aug 1992 | A |
5141512 | Farmer et al. | Aug 1992 | A |
5154717 | Matsen, III et al. | Oct 1992 | A |
5156777 | Kaye | Oct 1992 | A |
5171276 | Caspari et al. | Dec 1992 | A |
D336518 | Taylor | Jun 1993 | S |
5218427 | Koch | Jun 1993 | A |
5234433 | Bert et al. | Aug 1993 | A |
5236461 | Forte | Aug 1993 | A |
5274565 | Reuben | Dec 1993 | A |
5298115 | Leonard | Mar 1994 | A |
5305203 | Raab | Apr 1994 | A |
D346979 | Stalcup et al. | May 1994 | S |
5320529 | Pompa | Jun 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5364402 | Mumme et al. | Nov 1994 | A |
5365996 | Crook | Nov 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
D355254 | Krafft et al. | Feb 1995 | S |
D357315 | Dietz | Apr 1995 | S |
5408409 | Glassman et al. | Apr 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5448489 | Reuben | Sep 1995 | A |
5452407 | Crook | Sep 1995 | A |
5462550 | Dietz et al. | Oct 1995 | A |
5484446 | Burke et al. | Jan 1996 | A |
D372309 | Heldreth | Jul 1996 | S |
D374078 | Johnson et al. | Sep 1996 | S |
5556278 | Meitner | Sep 1996 | A |
5569260 | Petersen | Oct 1996 | A |
5569261 | Marik et al. | Oct 1996 | A |
5601563 | Burke et al. | Feb 1997 | A |
5601565 | Huebner | Feb 1997 | A |
5662656 | White | Sep 1997 | A |
5681354 | Eckhoff | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683398 | Carls et al. | Nov 1997 | A |
5690635 | Matsen, III et al. | Nov 1997 | A |
5716361 | Masini | Feb 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5735277 | Schuster | Apr 1998 | A |
5741215 | D'Urso | Apr 1998 | A |
5749876 | Duvillier et al. | May 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769092 | Williamson, Jr. | Jun 1998 | A |
5769859 | Dorsey | Jun 1998 | A |
D398058 | Collier | Sep 1998 | S |
5810830 | Noble et al. | Sep 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
5824098 | Stein | Oct 1998 | A |
5824100 | Kester et al. | Oct 1998 | A |
5824111 | Schall et al. | Oct 1998 | A |
5860980 | Axelson, Jr. et al. | Jan 1999 | A |
5860981 | Bertin et al. | Jan 1999 | A |
5871018 | Delp et al. | Feb 1999 | A |
5880976 | DiGioia III et al. | Mar 1999 | A |
5908424 | Bertin et al. | Jun 1999 | A |
5911724 | Wehrli | Jun 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5993448 | Remmler | Nov 1999 | A |
5995738 | DiGioia, III et al. | Nov 1999 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6068658 | Insall et al. | May 2000 | A |
6090114 | Matsuno et al. | Jul 2000 | A |
6096043 | Techiera et al. | Aug 2000 | A |
6106529 | Techiera | Aug 2000 | A |
6112109 | D'Urso | Aug 2000 | A |
6126690 | Ateshian et al. | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6161080 | Aouni-Ateshian et al. | Dec 2000 | A |
6171340 | McDowell | Jan 2001 | B1 |
6173200 | Cooke et al. | Jan 2001 | B1 |
6183515 | Barlow et al. | Feb 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6228121 | Khalili | May 2001 | B1 |
6254639 | Peckitt | Jul 2001 | B1 |
6285902 | Kienzle, III et al. | Sep 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6343987 | Hayama et al. | Feb 2002 | B2 |
6382975 | Poirier | May 2002 | B1 |
6383228 | Schmotzer | May 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6415171 | Gueziec et al. | Jul 2002 | B1 |
6458135 | Harwin et al. | Oct 2002 | B1 |
6463351 | Clynch | Oct 2002 | B1 |
6503254 | Masini | Jan 2003 | B2 |
6510334 | Schuster et al. | Jan 2003 | B1 |
6514259 | Picard et al. | Feb 2003 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6533737 | Brosseau et al. | Mar 2003 | B1 |
D473307 | Cooke | Apr 2003 | S |
6540784 | Barlow et al. | Apr 2003 | B2 |
6558426 | Masini | May 2003 | B1 |
6575980 | Robie et al. | Jun 2003 | B1 |
6602259 | Masini | Aug 2003 | B1 |
6672870 | Knapp | Jan 2004 | B2 |
6692448 | Tanaka et al. | Feb 2004 | B2 |
6701174 | Krause et al. | Mar 2004 | B1 |
6702821 | Bonutti | Mar 2004 | B2 |
6711431 | Sarin et al. | Mar 2004 | B2 |
6711432 | Krause et al. | Mar 2004 | B1 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6716249 | Hyde | Apr 2004 | B2 |
6738657 | Franklin et al. | May 2004 | B1 |
6747646 | Gueziec et al. | Jun 2004 | B2 |
6770099 | Andriacchi et al. | Aug 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6799066 | Steines et al. | Sep 2004 | B2 |
6814575 | Poirier | Nov 2004 | B2 |
6905510 | Saab | Jun 2005 | B2 |
6905514 | Carignan et al. | Jun 2005 | B2 |
6923817 | Carson et al. | Aug 2005 | B2 |
6932842 | Litschko et al. | Aug 2005 | B1 |
6944518 | Roose | Sep 2005 | B2 |
6955345 | Kato | Oct 2005 | B2 |
6969393 | Pinczewski et al. | Nov 2005 | B2 |
6975894 | Wehrli et al. | Dec 2005 | B2 |
6978188 | Christensen | Dec 2005 | B1 |
7029479 | Tallarida et al. | Apr 2006 | B2 |
7033360 | Cinquin et al. | Apr 2006 | B2 |
7039225 | Tanaka et al. | May 2006 | B2 |
7060074 | Rosa et al. | Jun 2006 | B2 |
7074241 | McKinnon | Jul 2006 | B2 |
7090677 | Fallin et al. | Aug 2006 | B2 |
7094241 | Hodorek et al. | Aug 2006 | B2 |
RE39301 | Bertin | Sep 2006 | E |
7104997 | Lionberger et al. | Sep 2006 | B2 |
7128745 | Masini | Oct 2006 | B2 |
D532515 | Buttler et al. | Nov 2006 | S |
7141053 | Rose et al. | Nov 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7166833 | Smith | Jan 2007 | B2 |
7172597 | Sanford | Feb 2007 | B2 |
7174282 | Hollister et al. | Feb 2007 | B2 |
7177386 | Mostafavi et al. | Feb 2007 | B2 |
7184814 | Lang et al. | Feb 2007 | B2 |
7235080 | Hodorek | Jun 2007 | B2 |
7238190 | Schon et al. | Jul 2007 | B2 |
7239908 | Alexander et al. | Jul 2007 | B1 |
7258701 | Aram et al. | Aug 2007 | B2 |
7275218 | Petrella et al. | Sep 2007 | B2 |
7309339 | Cusick et al. | Dec 2007 | B2 |
7340316 | Spaeth et al. | Mar 2008 | B2 |
7359746 | Arata | Apr 2008 | B2 |
7383164 | Aram et al. | Jun 2008 | B2 |
7388972 | Kitson | Jun 2008 | B2 |
7392076 | De La Barrera | Jun 2008 | B2 |
7393012 | Funakura et al. | Jul 2008 | B2 |
7394946 | Dewaele | Jul 2008 | B2 |
7429346 | Ensign et al. | Sep 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7517365 | Carignan et al. | Apr 2009 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7542791 | Mire et al. | Jun 2009 | B2 |
7547307 | Carson et al. | Jun 2009 | B2 |
7611519 | Lefevre et al. | Nov 2009 | B2 |
7616800 | Paik et al. | Nov 2009 | B2 |
7618421 | Axelson, Jr. et al. | Nov 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7621744 | Massoud | Nov 2009 | B2 |
7621920 | Claypool et al. | Nov 2009 | B2 |
7630750 | Liang et al. | Dec 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7634306 | Sarin et al. | Dec 2009 | B2 |
7641660 | Lakin et al. | Jan 2010 | B2 |
7641663 | Hodorek | Jan 2010 | B2 |
7643862 | Schoenefeld | Jan 2010 | B2 |
7658741 | Claypool et al. | Feb 2010 | B2 |
7682398 | Croxton et al. | Mar 2010 | B2 |
7693321 | Lehtonen-Krause | Apr 2010 | B2 |
7699847 | Sheldon et al. | Apr 2010 | B2 |
7702380 | Dean | Apr 2010 | B1 |
7715602 | Richard | May 2010 | B2 |
7717956 | Lang | May 2010 | B2 |
D618796 | Cantu et al. | Jun 2010 | S |
7747305 | Dean et al. | Jun 2010 | B2 |
D619718 | Gannoe et al. | Jul 2010 | S |
D622854 | Otto et al. | Aug 2010 | S |
7769429 | Hu | Aug 2010 | B2 |
7780681 | Sarin et al. | Aug 2010 | B2 |
7787932 | Vilsmeier et al. | Aug 2010 | B2 |
7794467 | McGinley et al. | Sep 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
D626234 | Otto et al. | Oct 2010 | S |
7806838 | Tsai et al. | Oct 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7815645 | Haines | Oct 2010 | B2 |
7842039 | Hodorek et al. | Nov 2010 | B2 |
7842092 | Otto et al. | Nov 2010 | B2 |
7881768 | Lang et al. | Feb 2011 | B2 |
7894650 | Weng et al. | Feb 2011 | B2 |
7927335 | Deffenbaugh et al. | Apr 2011 | B2 |
7940974 | Skinner et al. | May 2011 | B2 |
7950924 | Brajnovic | May 2011 | B2 |
7963968 | Dees, Jr. | Jun 2011 | B2 |
D642263 | Park | Jul 2011 | S |
7974677 | Mire et al. | Jul 2011 | B2 |
D642689 | Gannoe et al. | Aug 2011 | S |
8007448 | Moctezuma de La Barrera | Aug 2011 | B2 |
8021368 | Haines | Sep 2011 | B2 |
8036729 | Lang et al. | Oct 2011 | B2 |
8052623 | Haimerl et al. | Nov 2011 | B2 |
8059878 | Feilkas et al. | Nov 2011 | B2 |
D651315 | Bertoni et al. | Dec 2011 | S |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8086336 | Christensen | Dec 2011 | B2 |
D655008 | Gannoe et al. | Feb 2012 | S |
8126234 | Edwards et al. | Feb 2012 | B1 |
8126533 | Lavallee | Feb 2012 | B2 |
RE43282 | Alexander et al. | Mar 2012 | E |
8133234 | Meridew et al. | Mar 2012 | B2 |
8142189 | Brajnovic | Mar 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8170641 | Belcher | May 2012 | B2 |
8177850 | Rudan et al. | May 2012 | B2 |
D661808 | Kang | Jun 2012 | S |
8202324 | Meulink et al. | Jun 2012 | B2 |
8214016 | Lavallee et al. | Jul 2012 | B2 |
8221430 | Park et al. | Jul 2012 | B2 |
8224127 | Woodard et al. | Jul 2012 | B2 |
8231634 | Mahfouz et al. | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8241293 | Stone et al. | Aug 2012 | B2 |
8265949 | Haddad | Sep 2012 | B2 |
8306601 | Lang et al. | Nov 2012 | B2 |
8311306 | Pavlovskaia et al. | Nov 2012 | B2 |
D672038 | Frey | Dec 2012 | S |
8323288 | Zajac | Dec 2012 | B2 |
8331634 | Barth et al. | Dec 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8480679 | Park | Jul 2013 | B2 |
8483469 | Pavlovskaia et al. | Jul 2013 | B2 |
20020087274 | Alexander et al. | Jul 2002 | A1 |
20020160337 | Klein et al. | Oct 2002 | A1 |
20030009167 | Wozencroft | Jan 2003 | A1 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20040102792 | Sarin et al. | May 2004 | A1 |
20040102866 | Harris et al. | May 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040147927 | Tsougarakis et al. | Jul 2004 | A1 |
20040152970 | Hunter et al. | Aug 2004 | A1 |
20040153066 | Coon et al. | Aug 2004 | A1 |
20040153087 | Sanford et al. | Aug 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040220583 | Pieczynski, II et al. | Nov 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20050059978 | Sherry et al. | Mar 2005 | A1 |
20050065617 | De la Barrera et al. | Mar 2005 | A1 |
20050148843 | Roose | Jul 2005 | A1 |
20050148860 | Liew et al. | Jul 2005 | A1 |
20050192588 | Garcia | Sep 2005 | A1 |
20050245934 | Tuke et al. | Nov 2005 | A1 |
20050245936 | Tuke et al. | Nov 2005 | A1 |
20050256389 | Koga et al. | Nov 2005 | A1 |
20050267584 | Burdulis, Jr. et al. | Dec 2005 | A1 |
20060015018 | Jutras et al. | Jan 2006 | A1 |
20060015030 | Poulin et al. | Jan 2006 | A1 |
20060015188 | Grimes | Jan 2006 | A1 |
20060036257 | Steffensmeier | Feb 2006 | A1 |
20060110017 | Tsai et al. | May 2006 | A1 |
20060122491 | Murray et al. | Jun 2006 | A1 |
20060155293 | McGinley et al. | Jul 2006 | A1 |
20060155294 | Steffensmeier et al. | Jul 2006 | A1 |
20060195113 | Masini | Aug 2006 | A1 |
20060271058 | Ashton et al. | Nov 2006 | A1 |
20070021838 | Dugas et al. | Jan 2007 | A1 |
20070038059 | Sheffer et al. | Feb 2007 | A1 |
20070055268 | Utz et al. | Mar 2007 | A1 |
20070073305 | Lionberger et al. | Mar 2007 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070114370 | Smith et al. | May 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070123912 | Carson | May 2007 | A1 |
20070162039 | Wozencroft | Jul 2007 | A1 |
20070167833 | Redel et al. | Jul 2007 | A1 |
20070173858 | Engh et al. | Jul 2007 | A1 |
20070191741 | Tsai et al. | Aug 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070213738 | Martin et al. | Sep 2007 | A1 |
20070226986 | Park et al. | Oct 2007 | A1 |
20070232959 | Couture et al. | Oct 2007 | A1 |
20070233136 | Wozencroft | Oct 2007 | A1 |
20070233140 | Metzger et al. | Oct 2007 | A1 |
20070233141 | Park et al. | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070239167 | Pinczewski et al. | Oct 2007 | A1 |
20070249967 | Buly et al. | Oct 2007 | A1 |
20070276224 | Lang et al. | Nov 2007 | A1 |
20070276400 | Moore et al. | Nov 2007 | A1 |
20070282451 | Metzger et al. | Dec 2007 | A1 |
20070288030 | Metzger et al. | Dec 2007 | A1 |
20070293734 | Coste-Maniere et al. | Dec 2007 | A1 |
20080004701 | Axelson et al. | Jan 2008 | A1 |
20080015433 | Alexander et al. | Jan 2008 | A1 |
20080015599 | D'Alessio et al. | Jan 2008 | A1 |
20080015600 | D'Alessio et al. | Jan 2008 | A1 |
20080015602 | Axelson et al. | Jan 2008 | A1 |
20080015606 | D'Alessio et al. | Jan 2008 | A1 |
20080015607 | D'Alessio et al. | Jan 2008 | A1 |
20080021299 | Meulink | Jan 2008 | A1 |
20080031412 | Lang et al. | Feb 2008 | A1 |
20080033442 | Amiot et al. | Feb 2008 | A1 |
20080058613 | Lang et al. | Mar 2008 | A1 |
20080088761 | Lin et al. | Apr 2008 | A1 |
20080089591 | Zhou et al. | Apr 2008 | A1 |
20080114370 | Schoenefeld | May 2008 | A1 |
20080147072 | Park et al. | Jun 2008 | A1 |
20080153067 | Berckmans et al. | Jun 2008 | A1 |
20080161815 | Schoenefeld et al. | Jul 2008 | A1 |
20080195108 | Bhatnagar et al. | Aug 2008 | A1 |
20080215059 | Carignan et al. | Sep 2008 | A1 |
20080234685 | Gjerde | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080257363 | Schoenefeld et al. | Oct 2008 | A1 |
20080262624 | White et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080286722 | Berckmans, III et al. | Nov 2008 | A1 |
20080287953 | Sers | Nov 2008 | A1 |
20080287954 | Kunz et al. | Nov 2008 | A1 |
20080312659 | Metzger et al. | Dec 2008 | A1 |
20080319491 | Schoenefeld | Dec 2008 | A1 |
20090024131 | Metzger et al. | Jan 2009 | A1 |
20090087276 | Rose | Apr 2009 | A1 |
20090088674 | Caillouette et al. | Apr 2009 | A1 |
20090088753 | Aram et al. | Apr 2009 | A1 |
20090088754 | Aker et al. | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090088758 | Bennett | Apr 2009 | A1 |
20090088759 | Aram et al. | Apr 2009 | A1 |
20090088760 | Aaram et al. | Apr 2009 | A1 |
20090088761 | Roose et al. | Apr 2009 | A1 |
20090088763 | Aram et al. | Apr 2009 | A1 |
20090089034 | Penney et al. | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090110498 | Park | Apr 2009 | A1 |
20090112213 | Heavener et al. | Apr 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090131942 | Aker et al. | May 2009 | A1 |
20090138020 | Park et al. | May 2009 | A1 |
20090151736 | Belcher et al. | Jun 2009 | A1 |
20090157083 | Park et al. | Jun 2009 | A1 |
20090163923 | Flett et al. | Jun 2009 | A1 |
20090209884 | Van Vorhis et al. | Aug 2009 | A1 |
20090222014 | Bojarski et al. | Sep 2009 | A1 |
20090222015 | Park et al. | Sep 2009 | A1 |
20090222016 | Park et al. | Sep 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090248044 | Amiot et al. | Oct 2009 | A1 |
20090254093 | White et al. | Oct 2009 | A1 |
20090254367 | Belcher et al. | Oct 2009 | A1 |
20090270868 | Park et al. | Oct 2009 | A1 |
20090274350 | Pavlovskaia et al. | Nov 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090285465 | Haimerl et al. | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090307893 | Burdulis, Jr. et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100042105 | Park et al. | Feb 2010 | A1 |
20100049195 | Park et al. | Feb 2010 | A1 |
20100087829 | Metzger et al. | Apr 2010 | A1 |
20100099977 | Hershberger | Apr 2010 | A1 |
20100145344 | Jordan et al. | Jun 2010 | A1 |
20100152741 | Park et al. | Jun 2010 | A1 |
20100153076 | Bellettre et al. | Jun 2010 | A1 |
20100153081 | Bellettre et al. | Jun 2010 | A1 |
20100160917 | Fitz et al. | Jun 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100174376 | Lang | Jul 2010 | A1 |
20100185202 | Lester et al. | Jul 2010 | A1 |
20100191242 | Massoud | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100198351 | Meulink | Aug 2010 | A1 |
20100209868 | De Clerck | Aug 2010 | A1 |
20100212138 | Carroll et al. | Aug 2010 | A1 |
20100217109 | Belcher | Aug 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100217336 | Crawford et al. | Aug 2010 | A1 |
20100217338 | Carroll et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100256479 | Park et al. | Oct 2010 | A1 |
20100262150 | Lian | Oct 2010 | A1 |
20100274253 | Ure | Oct 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100292963 | Schroeder | Nov 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100324692 | Uthgenannt et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20100332194 | McGuan et al. | Dec 2010 | A1 |
20110015636 | Katrana et al. | Jan 2011 | A1 |
20110016690 | Narainasamy et al. | Jan 2011 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110029116 | Jordan et al. | Feb 2011 | A1 |
20110046735 | Metzger et al. | Feb 2011 | A1 |
20110054486 | Linder-Ganz et al. | Mar 2011 | A1 |
20110060341 | Angibaud et al. | Mar 2011 | A1 |
20110066193 | Lang et al. | Mar 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071533 | Metzger et al. | Mar 2011 | A1 |
20110071537 | Koga et al. | Mar 2011 | A1 |
20110071581 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110087465 | Mahfouz | Apr 2011 | A1 |
20110092804 | Schoenefeld et al. | Apr 2011 | A1 |
20110092977 | Salehi et al. | Apr 2011 | A1 |
20110092978 | McCombs | Apr 2011 | A1 |
20110093108 | Ashby et al. | Apr 2011 | A1 |
20110106093 | Romano et al. | May 2011 | A1 |
20110112808 | Anderson et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110160736 | Meridew et al. | Jun 2011 | A1 |
20110166578 | Stone et al. | Jul 2011 | A1 |
20110166666 | Meulink et al. | Jul 2011 | A1 |
20110172672 | Dubeau et al. | Jul 2011 | A1 |
20110184526 | White et al. | Jul 2011 | A1 |
20110190899 | Pierce et al. | Aug 2011 | A1 |
20110196377 | Hodorek et al. | Aug 2011 | A1 |
20110213368 | Fitz et al. | Sep 2011 | A1 |
20110213373 | Fitz et al. | Sep 2011 | A1 |
20110213374 | Fitz et al. | Sep 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110213377 | Lang et al. | Sep 2011 | A1 |
20110213427 | Fitz et al. | Sep 2011 | A1 |
20110213428 | Fitz et al. | Sep 2011 | A1 |
20110213429 | Lang et al. | Sep 2011 | A1 |
20110213430 | Lang et al. | Sep 2011 | A1 |
20110213431 | Fitz et al. | Sep 2011 | A1 |
20110218539 | Fitz et al. | Sep 2011 | A1 |
20110218542 | Lian | Sep 2011 | A1 |
20110218545 | Catanzarite et al. | Sep 2011 | A1 |
20110218584 | Fitz et al. | Sep 2011 | A1 |
20110230888 | Lang et al. | Sep 2011 | A1 |
20110238073 | Lang et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110257653 | Hughes et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110268248 | Simon et al. | Nov 2011 | A1 |
20110270072 | Feilkas et al. | Nov 2011 | A9 |
20110276145 | Carignan et al. | Nov 2011 | A1 |
20110295329 | Fitz et al. | Dec 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20110305379 | Mahfouz | Dec 2011 | A1 |
20110313423 | Lang et al. | Dec 2011 | A1 |
20110319897 | Lang et al. | Dec 2011 | A1 |
20110319900 | Lang et al. | Dec 2011 | A1 |
20120004725 | Shterling et al. | Jan 2012 | A1 |
20120010711 | Antonyshyn et al. | Jan 2012 | A1 |
20120029520 | Lang et al. | Feb 2012 | A1 |
20120041446 | Wong et al. | Feb 2012 | A1 |
20120053591 | Haines et al. | Mar 2012 | A1 |
20120065640 | Metzger et al. | Mar 2012 | A1 |
20120066892 | Lang et al. | Mar 2012 | A1 |
20120071881 | Lang et al. | Mar 2012 | A1 |
20120071882 | Lang et al. | Mar 2012 | A1 |
20120071883 | Lang et al. | Mar 2012 | A1 |
20120072185 | Lang et al. | Mar 2012 | A1 |
20120078254 | Ashby et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120078259 | Meridew | Mar 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120101503 | Lang et al. | Apr 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120123420 | Honiball | May 2012 | A1 |
20120130382 | Lannotti et al. | May 2012 | A1 |
20120130434 | Stemniski | May 2012 | A1 |
20120143197 | Lang et al. | Jun 2012 | A1 |
20120143198 | Boyer et al. | Jun 2012 | A1 |
20120150243 | Crawford et al. | Jun 2012 | A9 |
20120151730 | Fitz et al. | Jun 2012 | A1 |
20120158001 | Burdulis, Jr. et al. | Jun 2012 | A1 |
20120158002 | Carignan et al. | Jun 2012 | A1 |
20120165820 | De Smedt et al. | Jun 2012 | A1 |
20120165821 | Carignan et al. | Jun 2012 | A1 |
20120172882 | Sato | Jul 2012 | A1 |
20120179147 | Geebelen et al. | Jul 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120192401 | Pavlovskaia et al. | Aug 2012 | A1 |
20120197260 | Fitz et al. | Aug 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120203233 | Yoshida et al. | Aug 2012 | A1 |
20120209276 | Schuster | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120215226 | Bonutti | Aug 2012 | A1 |
20120221008 | Carroll et al. | Aug 2012 | A1 |
20120230566 | Dean et al. | Sep 2012 | A1 |
20120230573 | Ito et al. | Sep 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski et al. | Sep 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120265496 | Mahfouz | Oct 2012 | A1 |
20120265499 | Mahfouz et al. | Oct 2012 | A1 |
20120310400 | Park | Dec 2012 | A1 |
20130039551 | Pavlovskaia et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
3305237 | Aug 1983 | DE |
4341367 | Jun 1995 | DE |
102005023028 | Nov 2006 | DE |
0097001 | Dec 1983 | EP |
0574098 | Dec 1993 | EP |
0622052 | Nov 1994 | EP |
0908836 | Apr 1999 | EP |
0908836 | Dec 1999 | EP |
1059153 | Dec 2000 | EP |
1486900 | Dec 2004 | EP |
1532939 | May 2005 | EP |
2215610 | Sep 1989 | GB |
2420717 | Jun 2006 | GB |
2001-092950 | Apr 2001 | JP |
WO 9325157 | Dec 1993 | WO |
WO 9507509 | Mar 1995 | WO |
WO 9527450 | Oct 1995 | WO |
WO 9723172 | Jul 1997 | WO |
WO 9812995 | Apr 1998 | WO |
WO 0100096 | Jan 2001 | WO |
WO 0170142 | Sep 2001 | WO |
WO 0185040 | Nov 2001 | WO |
WO 02096268 | Dec 2002 | WO |
WO 2004032806 | Apr 2004 | WO |
WO 2004049981 | Jun 2004 | WO |
WO 2005051240 | Jun 2005 | WO |
WO 2005087125 | Sep 2005 | WO |
WO 2006058057 | Jun 2006 | WO |
WO 2006060795 | Jun 2006 | WO |
WO 2006092600 | Sep 2006 | WO |
WO 2006134345 | Dec 2006 | WO |
WO 2007014164 | Feb 2007 | WO |
WO 2007058632 | May 2007 | WO |
WO 2007092841 | Aug 2007 | WO |
Entry |
---|
Mole et al., “A New Three-Dimensional Treatment Algorithm for Complex Surfaces: Applications in Surgery”, Feb. 1995. |
Howell et al., “In Vivo Adduction and Reverse Axial Rotation (External) of the Tibial Component can be Minimized During Standing and Kneeling,” Orthopedics|ORTHOSupersite.com vol. 32 No. 5, 319-326 (May 2009). |
Advisory Action and Interview Summary, U.S. Appl. No. 12/390,667, mailed Apr. 27, 2012, 23 pages. |
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 12/386,105, filed Oct. 1, 2012, 6 pages. |
Appeal Brief, U.S. Appl. No. 12/390,667, filed Jul. 12, 2012, 32 pages. |
Appeal Brief, U.S. Appl. No. 12/391,008, filed Oct. 16, 2012, 24 pages. |
Final Office Action, U.S. Appl. No. 12/390,667, mailed Jan. 13, 2012, 27 pages. |
Final Office Action, U.S. Appl. No. 11/641,382, mailed Jul. 25, 2012, 12 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, mailed Mar. 1, 2012, 12 pages. |
Final Office Action, U.S. Appl. No. 11/924,425, mailed Jul. 6, 2012, 14 pages. |
Final Office Action, U.S. Appl. No. 11/946,002, mailed May 9, 2012, 24 pages. |
Final Office Action, U.S. Appl. No. 12/391,008, mailed May 17, 2012, 28 pages. |
Non-Final Office Action, U.S. Appl. No. 11/924,425, mailed Jan. 25, 2012, 35 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,382, mailed Mar. 29, 2012, 24 pages. |
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 25, 2011, 44 pages. |
Non-Final Office Action, U.S. Appl. No. 12/111,924, mailed Jun. 29, 2012, 35 pages. |
Non-Final Office Action, U.S. Appl. No. 12/386,105, dated Feb. 9, 2012, 30 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed Sep. 26, 2012, 21 pages. |
Non-Final Office Action, U.S. Appl. No. 12/391,008, mailed Oct. 31, 2011, 44 pages. |
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Jul. 19, 2012, 28 pages. |
Non-Final Office Action, U.S. Appl. No. 12/563,809, mailed Sep. 21, 2012, 32 pages. |
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Jul. 20, 2012, 25 pages. |
Non-Final Office Action, U.S. Appl. No. 13/374,960, mailed Aug. 1, 2012, 6 pages. |
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Oct. 9, 2012, 9 pages. |
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Sep. 25, 2012, 18 pages. |
Notice of Allowance, U.S. Appl. No. 11/959,344, mailed Mar. 5, 2012, 13 pages. |
Notice of Allowance, U.S. Appl. No. 12/386,105, mailed Jul. 5, 2012, 11 pages. |
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed Nov. 2, 2012, 24 pages. |
Office Action (Restriction Requirement), U.S. Appl. No. 12/563,809, dated Feb. 2, 2012, 7 pages. |
RCE/Amendment, U.S. Appl. No. 11/946,002, filed Sep. 6, 2012, 38 pages. |
Response to Final Office Action, U.S. Appl. No. 11/641,569, filed Jun. 28, 2012, 10 pages. |
Response to Final Office Action, U.S. Appl. No. 11/641,382, filed Sep. 24, 2012, 11 pages. |
Response to Final Office Action, U.S. Appl. No. 11/959,344, filed Dec. 27, 2011, 16 pages. |
Response to Final Office Action, U.S. Appl. No. 11/924,425, filed Sep. 5, 2012, 9 pages. |
Response to Final Office Action, U.S. Appl. No. 12/390,667, filed Mar. 12, 2012, 19 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Nov. 18, 2011, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Dec. 2, 2011, 7 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/391,008, filed Feb. 24, 2012, 18 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Mar. 8, 2012, 16 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/924,425, filed Apr. 25, 2012, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/386,105, filed Jun. 8, 2012, 13 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, filed Jun. 27, 2012, 12 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/111,924, filed Sep. 28, 2012, 10 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Oct. 10, 2012, 8 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Oct. 19, 2012, 15 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/386,105, filed Dec. 21, 2011, 9 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/563,809, filed Feb. 24, 2012, 10 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/111,924, filed Apr. 16, 2012, 8 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/636,939, filed Apr. 19, 2012, 6 pages. |
Response to Restriction, U.S. Appl. No. 12/563,809, filed Aug. 6, 2012, 10 pages. |
Response to Restriction, U.S. Appl. No. 11/924,425, filed Nov. 8, 2011, 5 pages. |
Response to Restriction, U.S. Appl. No. 12/505,056, filed Apr. 11, 2012, 9 pages. |
Response to Restriction, U.S. Appl. No. 12/546,545, filed Jun. 4, 2012, 7 pages. |
Restriction Requirement, U.S. Appl.No. 12/111,924, mailed Mar. 19, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/505,056, mailed Mar. 14, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/546,545, mailed May 3, 2012, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/563,809, mailed Jul. 6, 2012, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/636,939, mailed Apr. 13, 2012, 6 pages. |
Advisory Action, U.S. Appl. No. 11/642,385, dated Oct. 29, 2010, 3 pages. |
Amendment and Response to Ex Parte Quayle Action, U.S. Appl. No. 29/296,687 dated Mar. 24, 2011, 17 pages. |
Amendment and Response to Final Office Action, U.S. Appl. No. 11/642,385, filed Oct. 4, 2010, 16 pages. |
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, dated Apr. 20, 2010, 23 pages. |
Amendment and Response to Office Action and Petition to Revive, U.S. Appl. No. 10/146,862, filed Jan. 18, 2006, 29 pages. |
Amendment and Response to Office Action, U.S. Appl. No. 11/656,323, filed Jun. 25, 2010, 7 pages. |
Amendment and Response to Office Action, U.S. Appl. No. 11/641,569, dated Feb. 5, 2010, 20 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,569, dated May 27, 2009, 12 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,382, dated Oct. 5, 2009, 10 pages. |
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/642,385, filed Nov. 24, 2009, 10 pages. |
Amendment and Response to Restriction/Election Requirement, U.S. Appl. No. 11/656,323, filed Dec. 8, 2009, 6 pages. |
Amendment and Response, U.S. Appl. No. 11/642,385, filed May 28, 2010, 11 pages. |
European Search Report, 10192631.9-2310, dated Mar. 17, 2011, 5 pages. |
Ex Parte Quayle Action, U.S. Appl. No. 29/296,687, mailed Jan. 24, 2011, 11 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, mailed Aug. 5, 2010, 13 pages. |
Final Office Action, U.S. Appl. No. 11/656,323, mailed Sep. 3, 2010, 11 pages. |
Final Office Action, U.S. Appl. No. 11/641,569, mailed May 10, 2010, 9 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/034983, mailed May 22, 2009, 15 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/034967, mailed Jun. 16, 2009, 15 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/041519, mailed Jun. 17, 2009, 10 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/040629, mailed Aug. 6, 2009, 10 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/051109, mailed Nov. 6, 2009, 13 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/058946, mailed Jan. 28, 2010, 14 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2009/068055, mailed Mar. 11, 2010, 10 pages. |
International Search Report and Written Opinion, PCT/US2007/001624, dated Dec. 12, 2007, 14 pages. |
International Search Report and Written Opinion, PCT/US2007/001622, dated Jun. 11, 2007, 14 pages. |
International Search Report and Written Opinion, PCT/US2008/083125, dated Mar. 9, 2009, 13 pages. |
Invitation to Pay Additional Fees mailed on Jul. 31, 2007, for PCT Application No. PCT/US2007/001624 filed on Jan. 19, 2007, 5 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, mailed Jan. 20, 2010, 12 pages. |
NonFinal Office Action, U.S. Appl. No. 11/642,385, mailed Mar. 2, 2010, 11 pages. |
Non-Final Office Action, U.S. Appl. No. 11/656,323, mailed Mar. 30, 2010, 10 pages. |
NonFinal Office Action, U.S. Appl. No. 11/641,569, mailed Nov. 12, 2009, 9 pages. |
Nonfinal Office Action, U.S. Appl. No. 11/959,344, dated Feb. 15, 2011, 29 pages. |
Notice of Allowance, U.S. Appl. No. 29/296,687, mailed Mar. 31, 2011, 18 pages. |
Notice of Non-Compliant Amendment, U.S. Appl. No. 11/641,569, mailed Aug. 7, 2009, 3 pages. |
Office Action, U.S. Appl. No. 10/146,862, mailed Jan. 13, 2005, 10 pages. |
Preliminary Amendment, U.S. Appl. No. 11/641,669, dated Aug. 14, 2008, 13 pages. |
Preliminary Amendment, U.S. Appl. No. 11/642,385, filed Aug. 22, 2008, 42 pages. |
RCE/Amendment, U.S. Appl. No. 11/641,569, filed Aug. 9, 2010, 18 pages. |
RCE/Amendment, U.S. Appl. No. 11/642,382, filed Oct. 26, 2010, 14 pages. |
RCE/Amendment, U.S. Appl. No. 11/642,385, filed Dec. 6, 2010, 13 pages. |
RCE/Amendment, U.S. Appl. No. 11/656,323, filed Nov. 19, 2010, 12 pages. |
Response to Notice of Non-Complaint Amendment, U.S. Appl. No. 11/641,569, dated Aug. 19, 2009, 11 pages. |
Response to Restriction Requirement U.S. Appl. No. 29/296,687, filed Oct. 7, 2010, 3 pages. |
Response to Restriction Requirement, U.S. Appl. No. 11/959,344, filed Nov. 24, 2010, 13 pages. |
Restriction Requirement, U.S. Appl. No. 11/641,382, mailed Sep. 3, 2009, 6 pages. |
Restriction Requirement, U.S. Appl. No. 11/641,569, mailed Apr. 27, 2009, 7 pages. |
Restriction Requirement, U.S. Appl. No. 11/642,385, mailed Oct. 27, 2009, 7 pages. |
Restriction Requirement, U.S. Appl. No. 11/656,323, mailed Nov. 13, 2009, 10 pages. |
Restriction Requirement, U.S. Appl. No. 11/959,344, dated Oct. 29, 2010, 6 pages. |
Restriction Requirement, U.S. Appl. No. 29/296,687, mailed Sep. 21, 2010, 7 pages. |
AKCA, “Matching of 3D Surfaces and Their Intensities,” ISPRS Journal of Photogrammetry & Remote Sensing, 62(2007), 112-121. |
Akenine-Möller et al., Real-Time Rendering, Second Edition, AK Peters, Natick, MA, 6 pages. (Table of Contents), 2002. |
Arima et al., “Femoral Rotational Alignment, Based on the Anteroposterior Axis, in Total Knee Arthroplasty in a Valgus Knee. A Technical Note,” Journal Bone Joint Surg Am. 1995;77(9):1331-4. |
Author Unknown, “MRI Protocol Reference,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Author Unknown, “MRI Protocol Reference Guide for GE Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Author Unknown, “MRI Protocol Reference Guide for Phillips Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 19 pages. |
Author Unknown, “MRI Protocol Reference Guide for Siemens Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages. |
Barequet et al., “Filling Gaps in the Boundary of a Polyhedron,” Computer Aided Geometric Design, vol. 12, pp. 207-229, 1995. |
Barequet et al., “Repairing CAD Models,” Proceedings of the 8th IEEE Visualization '97 Conference, pp. 363-370, Oct. 1997. |
Bargar et al., “Robotic Systems in Surgery,” Orthopedic and Spine Surgery, Surgical Technology International II, 1993, 419-423. |
Berry et al., “Personalised image-based templates for intra-operative guidance,” Proc. Inst. Mech. Eng. Part H: J. Engineering in Medicine, vol. 219, pp. 111-118, Oct. 7, 2004. |
Besl et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239-256, Feb. 1992. |
Bi{hacek over (sc)}ević et al., “Variations of Femoral Condyle Shape,” Coll. Antropol., vol. 29 No. 2, pp. 409-414, 2005. |
Blaha et al., “Using the Transepicondylar Axis to Define the Sagittal Morphology of the Distal Part of the Femur,” J Bone Joint Surg Am. 2002;84-A Suppl 2:48-55. |
Blinn, Jim Blinn's Corner—A Trip Down the Graphics Pipeline, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 5 pages (Table of Contents), 1996. |
Bøhn et al., “A Topology-Based Approach for Shell-Closure,” Geometric Modeling for Product Realization(P.R. Wilson et al. editors), pp. 297-319, Elsevier Science Publishers B.V., North-Holland, 1993. |
Bullough et al., “The Geometry of Diarthrodial Joints, Its Physiologic Maintenance and the Possible significance of Age-Related Changes in Geometry-to-Load distribution and the Development of Osteoarthritis,” Clin Orthop Rel Res 1981, 156:61-6. |
Burgkart et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value,” Arthritis Rheum 2001, 44:2072-7. |
Canny, “A computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 8(6), pp. 679-698 (1986). |
Chauhan et al., “Computer-assisted knee arthroplasty versus a conventional jig-based technique—a randomised, prospective trial,” The Journal of Bone and Joint Surgery, vol. 86-B, No. 3, pp. 372-377, Apr. 2004. |
Churchill et al., “The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee,” Clin Orthop Relat Res. 1998(356):111-8. |
Cicuttini et al., “Gender Differences in Knee Cartilage Volume as Measured by Magnetic Resonance Imaging,” Osteoarthritis Cartilage 1999, 7:265-71. |
Cicuttini et al., “Longitudinal Study of the Relationship Between Knee angle and Tibiofemoral cartilage Volume in Subjects with Knee Osteoarthritis,” Rheumatology (Oxford) 2004, 43:321-4. |
Cohen et al., Radiosity and Realistic Image Synthesis, Academic Press Professional, Cambridge, MA, 8 pages (Table of Contents), 1993. |
Couglin et al., “Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting,” The Journal of Arthroplasty, vol. 18, No. 8, Elsevier, 2003. |
Delp et al., “Computer Assisted Knee Replacement,” Clinical Orthopaedics and Related Research, No. 354, pp. 49-56, Sep. 1998. |
Dutré et al., Advanced Global Illumination, AK Peters, Natick, MA, 5 pages (Table of Contents), 2003. |
Eckhoff et al., “Difference Between the Epicondylar and Cylindrical Axis of the Knee,” Clin Orthop Relat Res. 2007;461:238-44. |
Eckhoff et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Realty,” The Journal of Bone and Joint Surgery, vol. 87-A, Supplement 2, pp. 71-80, 2005. |
Eisenhart-Rothe et al., “Femorotibial and Patellar Cartilage Loss in Patients Prior to Total Knee arthroplasty, Heterogeneity, and Correlation with alignment of the Knee,” Ann Rheum Dis., Jun. 2005 (BMJ Publishing Group Ltd & European League Against Rheumatism). |
Eisenhart-Rothe et al., “The Role of Knee alignment in Disease Progression and Functional Decline in Knee Osteoarthritis,” JAMA 2001, 286:188-95. |
Elias et al., “A Correlative Study of the Geometry and anatomy of the Distal Femur,” Clin orthop Relat Res. 1990(260):98-103. |
Erikson, “Error Correction of a Large Architectural Model: The Henderson County Courthouse,” Technical Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, pp, 1-11, 1995. |
Ervin et al., Landscape Modeling, McGraw-Hill, New York, NY, 8 pages (Table of Contents), 2001. |
Farin, NURB Curves and Surfaces: From Projective Geometry to Practical Use, AK Peters, Wellesley, MA, 7 pages (Table of Contents), 1995. |
Favorito et al., “total Knee Arthroplasty in the Valgus Knee,” Journal Am Acad Orthop surg. 2002;10(1):16-24. |
Fleischer et al., “Accurate Polygon Scan Conversion Using Half-Open Intervals,” Graphics Gems III, pp. 362-365, code: pp. 599-605, 1992. |
Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley Publishing Company, Reading, MA, 9 pages (Table of Contents), 1990. |
Freeman et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging,” Clinical orthop Relat Res. 2003(410):35-43. |
Freeman et al., “The movement of the Normal Tibio-Femoral Joint,” Journal Biomech. 2005;38(2):197-208. |
Glassner (editor), An Introduction to Ray Tracing, Academic Press Limited, San Diego, CA, 4 pages (Table of Contents), 1989. |
Glassner, Principles of Digital Image Synthesis, vols. One and Two, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 32 pages (Table of Contents), 1995. |
Gooch et al., Non-Photorealistic Rendering, AK Peters, Natick, MA, 4 pages (Table of Contents), 2001. |
Graichen et al., “quantitative Assessment of Cartilage Status in Osteoarthritis by Quantitative Magnetic Resonance Imaging: Technical Validation for Use in analysis of Cartilage Volume and Further Morphologic Parameters,” Arthritis Rheum 2004, 50:811-16. |
Gruen et al., “least Squares 3D Surface and Curve Matching,” ISPRS Journal of Photogrammetry & Remote Sensing, 59(2005), 151-174. |
Grüne et al., “On numerical algorithm and interactive visualization for optimal control problems,” Journal of Computation and Visualization in Science, vol. 1, No. 4, pp. 221-229, Jul. 1999. |
Guéziec et al., “Converting Sets of Polygons to Manifold Surfaces by Cutting and Stitching,” Proc. IEEE Visualization 1998, pp. 383-390, Oct. 1998. |
Hafez et al., “Patient Specific Instrumentation for TKA: Testing the Reliability Using a Navigational System,” MIS Meets CAOS Symposium & Instructional Academy, Less and Minimally Invasive Surgery for Joint Arthroplasty: Fact and Fiction Syllabus, San Diego, CA, 8 pages, Oct. 20-22, 2005 (best available copy). |
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?”, Computer Aided Surgery, vol. 9, No. 3, pp. 93-94, 2004. |
Hafez et al., “Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templating,” Clinical Orthopaedics and Related Research, No. 0, pp. 1-9, 2006. |
Hollister et al, “The Axes of Rotation of the Knee,” Clin Orthop Relat Res. 1993(290):259-68. |
Howell et al., “Longitudinal Shapes of the Tibia and Femur are Unrelated and Variable,” Clinical Orthopaedics and Related Research (2010) 468: 1142-1148. |
Howell et al., “Results of an Initial Experience with Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients,” Orthopedics, 2008;31(9):857-63. |
Howell et al., “In Vivo Adduction and Reverse Axial Rotation (External) of the Tibial Component can be Minimized During Standing and Kneeling,” Orthopedics, In Press. |
Iwaki et al., “Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee,” Journal Bone Joint Surg Br. 2000;82(8):1189-95. |
Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters, Natick, MA, 7 pages (Table of Contents), 2001. |
Jacobs et al, “Hip Resurfacing Through an Anterolateral Approach,” J. Bone Joint Surg Am. 2008:90 Suppl 3:38-44. |
Johnson, “Joint Remodeling as the Basis for Osteoarthritis,” Journal Am Vet Med Assoc. 1962, 141:1233-41. |
Jones et al., “A new approach to the construction of surfaces from contour data,” Computer Graphics Forum, vol. 13, No. 3, pp. 75-84, 1994 [ISSN 0167-7055]. |
Kass et al., “Active Contour Models,” International Journal of Computer Vision, pp. 321-331 (1988). |
Kellgren et al., “Radiological Assessment of Osteoarthrosis,” Ann Rheum Dis 1957, 10:494-501. |
Kessler et al, “Sagittal Curvature of Total Knee Replacements Predicts in vivo Kinematics,” Clin Biomech (Bristol, Avon) 2007; 22(1):52-8. |
Khorramabadi, “A Walk Through the Planned CS Building,” Technical Report UCB/CSD 91/652, Computer Science Department, University of California at Berkeley, 74 pages, 1991. |
Kidder et al., “3-D Model Acquisition, Design, Planning and Manufacturing of Orthopaedic Devices: A Framework,” Advanced Sensor and Control-System Interface (B.O. Nnaji editor), Proceedings SPIE—The International Society for Optical Engineering, Bellingham, WA, vol. 2911, pp. 9-22, Nov. 21-22, 1996. |
Kienzel III et al., “Total Knee Replacement,” IEEE May/Jun. 1995. |
Kienzel III et al., “An Integrated CAD-Robotics System for Total Knee Replacement Surgery”, IEEE International Conference, pp. 889-894, vol. 1, May 1993. |
Krackow et al., “Flexion-Extension Joint Gap Changes After Lateral Structure Release for Valgus Deformity Correction in Total Knee Arthroplasty: A Cadaveric Study,” Journal Arthroplasty, 1999;14(8):994-1004. |
Krackow et al., “Primary Total Knee Arthroplasty in Patients with Fixed Valgus Deformity,” Clin Orthop Relat Res. 1991(273):9-18. |
Krackow, “Approaches to Planning lower Extremity alignment for Total Knee arthroplasty and Osteotomy About the Knee,” adv Orthop surg 7:69, 1983. |
Kumar, Robust Incremental Polygon Triangulation for Surface Rendering, Center for Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore, MD, WSCG, The International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 381-388, 2000. |
Kunz et al., “Computer Assisted Hip Resurfacing Using Individualized Drill Templates,” The Journal of Arthroplasty, vol. 00, No. 0, pp. 1-7, 2009. |
Lea et al., “Registration and immobilization in robot-assisted surgery”, Journal of Image Guided Surgery, pp. 1-10, 1995. |
Lorensen et al., “Marching Cubes: A High Resolution 3d Surface Construction Algorithm,” Computer Graphics, vol. 21, No. 4, pp. 163-169, 1987. |
Manner et al., “Knee Deformity in Congenital Longitudinal Deficiencies of the Lower Extremity,” Clin Orthop Relat Res. 2006;448:185-92. |
Matsuda et al., “Anatomical Analysis of the Femoral Condyle in Normal and Osteoarthritic Knees,” Journal Orthopaedic Res. 2004;22(1):104-9. |
Matsuda et al., “Femoral Condyle Geometry in the Normal and Varus Knee,” Clinical Orthop Relat Res. 1998(349):183-8. |
Messmer et al., “Volumetric Determination of the Tibia Based on 2d Radiographs Using A 2d/3d Database”, Dept. of Surgery, Trauma Unit, University Hospital, Bassel, Switzerland, Computer Aided Surgery6:183-194 (2001). |
Mihalko et al., The Variability of Intramedullary Alignment of the Femoral Component During Total Knee Arthroplasty, Journal Arthroplasty. 2005;20(1):25-8. |
Morvan et al., IVECs, Interactively Correcting .STL Files in a Virtual Environment, Clemson University, Clemson, SC, Proc. Conf. Virtual Design, Aug. 1996. |
Naoki Kusumoto, Taiji et al., “Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery”, Graduate School of Dentistry Course for Integrated Oral Science and Stomatology, Jun. 16, 2005. |
Nooruddin et al., Simplification and Repair of Polygonal Models Using Volumetric Techniques, IEEE Transactions on Visualization and Computer Graphics, vol. 9, No. 2, pp. 191-205, Apr.-Jun. 2003. |
Panjabi et al., “Errors in Kinematic Parameters of a Planar Joint: Guidelines for Optimal Experimental Design,” Journal Biomech. 1982;15(7):537-44. |
Perillo-Marcone et al., “Effect of Varus/Valgus Malalignment on Bone Strains in the Proximal Tibia After TKR: An Explicit Finite element Study,” Journal Biomechanical Engineering 2007, vol. 129, 1:1-11. |
Peterfy et al., “Quantification of articular Cartilage in the Knee with Pulsed Saturation Transfer Subtraction and Fact-Suppressed MR Imaging: Optimization and Validation,” Radiology 1994, 192:485-91. |
Pinskerova et al., “The Shapes and Relative Movements of the Femur and Tibia at the Knee,” Orthopaedics 2000;29 Suppl 1:S3-5. |
Platt et al., “Mould Arthroplasty of the Knee, A Ten-Year Follow-up Study,” The Journal of Bone and Joint Surgery (British Volume) vol. 51-B, No. 1, pp. 76-87, Feb. 1969. |
Potter, “Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and MacIntosh Design,” The Surgical Clinics of North America, vol. 49, pp. 903-915, Aug. 1969. |
Radermacher et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, vol. 354, pp. 28-38, Sep. 1998. |
Rohlfing et al., “Quo Vadis, Atlas-Based Segmentation?”, The Handbook of Medical Image Anaylsis: Segmentation and Registration Models (Kluwer), pp. 1-55, (http:www.stanford.edu/˜rohlfing/publications/2005-rohlfing-chapter-quovadisatlasbasedsegmentation.pdf). |
Rosset et al., “General Consumer Communication Tools for Improved Image Management and Communication in Medicine,” Journal Digital Imaging, 2005;18(4):270-9. |
Shakespeare D., “Conventional Instruments in Total Knee Replacement: What Should We Do With Them?” Knee. 2006;13(1):1-6. |
Shepstone et al., “The shape of the Distal Femur: A Palaeopathological Comparison of Eburnated and Non-Eburnated Femora,” Ann. Rheum Dis. 1999, 58:72-8. |
Shirley et al., Realistic Ray Tracing, Second Edition, AK Peters, Natick, MA, 7 pages (Table of Contents), 2003. |
Siston et al., “The Variability of Femoral Rotational Alignment in Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2005;87(10):2276-80. |
Siston et al., “Averaging Different Alignment Axes Improves Femoral Rotational Alignment in Computer-Navigated Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2008;90(10):2098-104. |
Soudan et al., “Methods, Difficulties and Inaccuracies in the Study of Human Joint Kinematics and Pathokinematics by the Instant axis Concept. Example: The Knee Joint,” Journal Biomech. 1979;12(1):27-33. |
Spencer et al., “Initial Experience with Custom-Fit Total Knee Replacement: Intra-operative Events and Long-Leg Coronal alignment,” International Orthopaedics (SICOT), 2009:In Press. |
Strothotte et al., Non-Photorealistic Computer Graphics—Modeling, Rendering, and Animation, Morgan Kaufmann Publishers, San Francisco, CA, 9 pages (Table of Contents), 2002. |
Stulberg et al., “Computer-and Robot-Assisted Orthopaedic Surgery”, Computer-Integrated Surgery Technology and Clinical Applications, edited by Taylor et al., Massachusetts Institute of Technology, Chapter 27, pp. 373-378, 1996. |
Teeny et al., “Primary Total Knee Arthroplasty in Patients with Severe Varus Deformity. A Comparative Study,” Clin Orthop Relat Res. 1991(273):19-31. |
Vande Berg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging,” Radiology, vol. 222, No. 2, pp. 430-436, Feb. 2002. |
Wright Medical Technology, Inc., “Prophecy Pre-Operative Naviation Guides Surgical Technique,” 2009. |
Wikipedia, the Free Encyclopedia, “CNC,” (date unknown) located at http://en.wikipedia.org/wiki/CNC>, 6 pages, last visited on Apr. 12, 2007. |
U.S. Appl. No. 10/146,862, filed May 15, 2002, Park et al. |
U.S. Appl. No. 29/296,687, filed Oct. 25, 2007, Park. |
U.S. Appl. No. 13/066,568, filed Apr. 18, 2011, Pavlovskaia et al. |
U.S. Appl. No. 29/394,882, filed Jun. 22, 2011, Park. |
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/959,344, dated Jul. 15, 2011, 13 pages. |
Final Office Action, U.S. Appl. No. 11/959,344, mailed Oct. 27, 2011, 12 pages. |
International Search Report and Written Opinion, PCT/US2011/032342, dated Jul. 1, 2011, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Aug. 3, 2011, 14 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, dated Aug. 24, 2011, 49 pages. |
Notice of Allowance, U.S. Appl. No. 13/066,568, mailed Oct. 26, 2011, 28 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 27, 2011, 8 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/391,008, filed Aug. 29, 2011, 9 pages. |
Response to Restriction, U.S. Appl. No. 11/946,002, filed Sep. 23, 2011, 7 pages. |
Restriction Requirement, U.S. Appl. No. 11/924,425, dated Oct. 13, 2011, 6 pages. |
Restriction Requirement, U.S. Appl. No. 11/946,002, dated Sep. 1, 2011, 8 pages. |
Restriction Requirement, U.S. Appl. No. 12/386,105, dated Oct. 24, 2011, 7 pages. |
Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 14, 2011, 9 pages. |
Restriction Requirement, U.S. Appl. No. 12/391,008, dated Aug. 18, 2011, 6 pages. |
U.S. Appl. No. 13/488,505, filed Jun. 5, 2012, Ilwhan Park et al. |
U.S. Appl. No. 13/573,662, filed Oct. 2, 2012, Pavlovskaia et al. |
U.S. Appl. No. 13/723,904, filed Dec. 21, 2012, Park. |
U.S. Appl. No. 13/730,467, filed Dec. 28, 2012, Park et al. |
U.S. Appl. No. 13/730,585, filed Dec. 28, 2012, Park et al. |
U.S. Appl. No. 13/730,608, filed Dec. 28, 2012, Park et al. |
U.S. Appl. No. 13/731,697, filed Dec. 31, 2012, Pavlovskaia et al. |
U.S. Appl. No. 13/731,850, filed Dec. 31, 2012, Park. |
U.S. Appl. No. 13/749,095, filed Jan. 24, 2013, Song. |
Examiner's Answer in appeal, U.S. Appl. No. 12/391,008, mailed Dec. 13, 2012, 27 pages. |
Final Office Action, U.S. Appl. No. 12/546,545, dated Dec. 20, 2012, 16 pages. |
Final Office Action, U.S. Appl. No. 12/636,939, mailed Jan. 25, 2013, 9 pages. |
Final Office Action, U.S. Appl. No. 12/563,809, mailed Mar. 7, 2013, 14 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Jan. 3, 2013, 12 pages. |
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Mar. 13, 2013, 10 pages. |
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Feb. 6, 2013, 14 pages. |
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Feb. 5, 2013, 16 pages. |
Notice of Allowance, U.S. Appl. No. 12/111,924, dated Dec. 24, 2012, 10 pages. |
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed Feb. 4, 2013, 32 pages. |
Notice of Allowance, U.S. Appl. No. 12/111,924, mailed Mar. 11, 2013, 14 pages. |
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed May 6, 2013, 20 pages. |
Notice of Allowance, U.S. Appl. No. 13/573,662, mailed Mar. 19, 2013, 34 pages. |
Response to Final Office Action, U.S. Appl. No. 12/546,545, filed Feb. 20, 2013, 13 pages. |
Response to Final Office Action, U.S. Appl. No. 12/563,809, filed May 6, 2013, 15 pages. |
Response to Final Office Action, U.S. Appl. No. 12/636,939, filed Apr. 8, 2013, 10 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Feb. 26, 2013, 36 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/563,809, filed Dec. 13, 2012, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Apr. 3, 2013, 9 pages. |
Response to Restriction Requirement, U.S. Appl. No. 12/760,388, filed Apr. 5, 2013, 7 pages. |
Response to Restriction, U.S. Appl. No. 13/573,662, filed Feb. 8, 2013, 8 pages. |
Restriction Requirement, U.S. Appl. No. 13/573,662, mailed Jan. 17, 2013, 6 pages. |
Restriction Requirement, U.S. Appl. No. 12/760,388, mailed Mar. 6, 2013, 7 pages. |
U.S. Appl. No. 13/923,093, filed Jun. 20, 2013, Park. |
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 13/374,960, filed May 7, 2013, 6 pages. |
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed May 8, 2013, 20 pages. |
Non-Final Office Action, U.S. Appl. No. 12/505,056, mailed Jun. 28, 2013, 7 pages. |
Non-Final Office Action, U.S. Appl. No. 12/636,939, mailed Apr. 25, 2013, 16 pages. |
Non-Final Office Action, U.S. Appl. No. 13/730,585, mailed Jun. 11, 2013, 10 pages. |
Non-Final Office Action, U.S. Appl. No. 12/760,388, mailed Jun. 20, 2013, 54 pages. |
Notice of Allowance, U.S. Appl. No. 12/563,809, mailed May 28, 2013, 11 pages. |
Preliminary Amendment, U.S. Appl. No. 13/731,697, filed May 10, 2013, 6 pages. |
Non-Final Office Action, U.S. Appl. No. 11/641,569, mailed Jul. 12, 2013, 21 pages. |
Non-Final Office Action, U.S. Appl. No. 13/723,904, mailed Aug. 9, 2013, 6 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Jul. 15, 2013, 14 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/636,939, filed Jul. 16, 2013, 15 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Aug. 7, 2013, 22 pages. |
Response to Non-Final Office Action, U.S. Appl. No. 12/760,388, filed Sep. 12, 2013, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20110214279 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61102692 | Oct 2008 | US | |
61083053 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12760388 | Apr 2010 | US |
Child | 13086275 | US | |
Parent | 12563809 | Sep 2009 | US |
Child | 12760388 | US | |
Parent | 12546545 | Aug 2009 | US |
Child | 12563809 | US | |
Parent | 12505056 | Jul 2009 | US |
Child | 12546545 | US | |
Parent | 12111924 | Apr 2008 | US |
Child | 12505056 | US | |
Parent | 11959344 | Dec 2007 | US |
Child | 12111924 | US |