The present invention generally relates to transferring and processing information for distributed energy resource management devices (EMDs) through the use of presence-based real time communications. For example, instant messaging technology (IMT) facilitates automation of tasks such as remote configuration and updates of EMDs, data acquisition, operation of total energy management solutions (TEMS) systems, and command and control of devices in a distributed energy resource (DER) network.
The ability to efficiently control distributed generation and to curtail assets in response to notifications of regional power disruptions, from grid operators and utilities (commonly referred to as a demand response (DR)) plays an increasingly important role in today's energy markets. Efficiently controlling these operations requires an analysis of both distributed generation and resource consumption. One of the biggest efficiency challenges facing the industries involved in these processes relates to remote communications between utilities, grid operators, and EMDs to enable real-time response to dynamic energy usage conditions. Real-time bidirectional communication serves multiple purposes, including without limitation:
Communications between utilities, grid operators, and TEMS service providers as well as communications between TEMS service providers and remote EMDs presently lack standardization. Many utilities, grid operators, and EMD manufacturers utilize their own standards for communicating messages and data. Furthermore, these standards often lack key features that are conducive to providing TEMS. The lack of standardization and absence of key features often requires TEMS service providers to undertake large communication related engineering efforts simply to support new EMDs and/or participate in new DR programs. Additionally, the lack of features in communication standards necessitates the implementation of certain services by TEMS service providers in both costly and technologically undesirable manners.
Reliability and security are also major concerns for communications between utilities, grid operators, and TEMS service providers as well as communications between TEMS service providers and remote EMDs. A counterfeit or missed message to or from a utility or grid operator would result in large penalties for TEMS service providers and could even cause damage to a grid. Similarly, a counterfeit or missed message to or from remote EMDs could damage customer equipment or disrupt customer operations. Furthermore, certain data exchanged between utilities, grid operators, EMDs, and TEMS service providers as well as TEMS service providers and customers is sensitive in nature and should therefore be protected via secure authorization requirements and encryption processes to prevent the interception of the data.
Another problem specific to how a TEMS service provider communicates with remote EMDs is scalability in terms of cost and complexity. Currently, cost effective bidirectional communication between EMDs and TEMS service providers necessitates polling remote EMDs at frequent intervals (e.g., five minutes or less), which requires inbound access to all remote EMDs in a distributed energy resource (DER) network. Creating inbound access for an EMD at a customer site generally requires interfacing with the site's IT department, who are often reluctant to allow third party devices to operate on their computer networks, which can either delay an installation or require alternative means of access to EMDs (such as installing a cellular gateway which not only incurs additional installation costs, but also ongoing monthly fees for wireless service, which is slower and less reliable than an Ethernet connection). Furthermore, a reliance on polling for data acquisition increases the costly processing infrastructure and algorithmic complexity TEMS service providers must have available. Additionally, many EMDs rely on serial and/or HTTP based communication for EMD configuration, and this can cause security problems in some cases and adds complexity (often in the form of site visits) to the process of troubleshooting and changing or updating a remote EMD configuration and programming.
A communication framework built upon presence based IMT will not only address the aforementioned problems of TEMS service provider and utility/grid operator communication and scalability, but also facilitates dynamic, real-time, highly efficient and automated processes of site configuration, data collection, device control, event management, energy management, and energy procurement via encrypted messages in a reliable secure environment. Thus, embodiments of the present invention are directed to real time communication in a network of distributed energy resource management devices (EMDs). Presence-based real time communications are established between one or more distributed energy resource management devices (EMDs) connected to an electric utility grid and a network operations center (NOC) application. For example, the presence-based real time communications may be based on secure encrypted instant messaging technology (e.g., Extensible Messaging and Presence Protocol (XMPP)) implemented on an instant messaging server (IMS) for machine-to-human(s) (M2H), human-to-machine(s) (H2M), and machine-to-machine(s) (M2M) communications with instant messaging clients (IMCs) at the EMDs and the NOC.
In further specific embodiments, the presence-based real time communications may include energy management communications such as at least one of control commands, data acquisition, data reporting, event notification, energy procurement, and EMD control commands such as configuration changes, programming updates, and distributed energy resource (DER) control commands. Similarly, the EMD may be a distributed generation (DG) device.
Embodiments of the present invention also include a system for real time communication in a network of distributed energy resource management devices (EMDs) according to any of the above where there are distributed energy resource management devices (EMDs) connected to an electric utility grid and a network operations center (NOC) application having presence-based real time communications with the EMDs.
Embodiments also include a communications device for a network of distributed energy resource management devices (EMDs) according to any of the above where a local communications client for a distributed EMD connected to an electric utility grid establishes presence-based real time communications with a network operations center (NOC) application.
In further specific embodiments, the data acquired by the system can be aggregated and analyzed to determine power usage patterns from multiple sites, divisions, organizations, and groups of organizations in certain time slices, patterns of usage, load balancing options, and other scenarios to facilitate ongoing automated optimization of energy usage and acquisition cost.
As used herein, the term “real time” refers to the ability to function and control systems and processes while operating as events occur.
As used herein, instant messaging technology (IMT) refers to as any protocol that utilizes an instant message server (IMS) or an IMS cluster to provide communications with instant message client (IMC) nodes. The IMCs initiate communication with an IMS, and this reliance on outbound connections allows IMT to avoid most firewall conflicts. Messages between IMCs and the IMS are delivered via a highly reliable transport protocol independently of the physical media of transmission, for example, by Transmission Control Protocol (TCP).
The IMS may also provide for message encryption such as by Transport Layer Security (TLS). The IMS maintains a list of credentials for all IMCs with registered accounts, and IMCs wishing to communicate on the IMS network must provide valid credentials to the IMS in a secure manner (such as by Simple Authentication and Security Layer (SASL)). IMCs without valid credentials may not be allowed to participate. The IMS may also maintain various lists for the benefit of IMCs with registered accounts, such as:
Controllable message routing by the IMS is a further benefit of IMT, and IMSs can be configured to support Broadcast Services. A Broadcast Service allows an IMC to send messages to a Service on the IMS (as opposed to another IMC node). Upon receipt of a message, an IMS based Broadcast Service will deliver the message to all available IMC accounts subscribed to the Broadcast Service. This facilitates a single write to be sent to multiple readers allowing efficient large scale messages distribution to all involved parties instantly. This is different than typical instant messaging arrangements where one message would have to be written for each intended IMC recipient, and from group chat where all participants are allowed to write. Broadcast Services, in which only the controlling entity can send a message to the readers, decrease the amount of traffic sent between IMCs and simplify Roster management.
The foundation of the NOC IMC presence based application 105 may be constructed from IMTs. The Extensible Messaging and Presence Protocol (XMPP) provides an open XML-based protocol for secure, near real-time, and extensible instant messaging and presence information. The XMPP is generally used in messaging clients such as Jabber and is adaptable for use within the communication framework of the current invention as it meets the criteria of IMT previously defined. More information about XMPP may be found at http://xmpp.org/. While Jabber is an example of one application that uses XMPP, there are many other applications that use the protocol. Additionally, other protocols meeting the IMT definition, including proprietary protocols, may be used, created, or adapted to provide the communication abilities required in a NOC IMC presence based application 105 to effectuate the desired network. Using IMT allows the current invention to utilize preexisting readily available internet/intranet networks. The use of IMT, specifically presence messages and IMS maintained presence and roster lists (including Broadcast Services), allows a TEMS service provider to operate a NOC IMC application in order to determine in real-time what DERs are available to participate in DR events. Machines communicate data through the networks using a defined language, typically called a data standard within the IMT protocol. The message data standard employed by one embodiment of the current invention has strict rules defined so that messages can be interpretable by both human and machine, but in other specific embodiments that may not be the case. Conventionally, this data standard does not exist and all messages are ad-hoc and unstructured messages an IMC user has entered and does not have structural rules to facilitate machine understanding of the contained message. The XMPP protocol in and of itself is just a protocol definition that may be implemented to facilitate transfer of the standardized messages over the internet.
Using presence based IMT as the communication framework allows the communication component of framework to be kept separate or abstracted from other TEMS system components 101-104. With an IMS or IMS cluster 108 acting as a separate communication application, no other TEMS system component functions as the communication hub. This provides the TEMS application a desirable common interface between all TEMS system components. The energy usage and management communications of the TEMS application through the presence network may be referred to in this description as PowerTalk.
IMTs are advantageous for optimal management of DERs, which require secure communication with a device at periodic intervals, generally within five minutes or less. Optimal management also requires both the ability to receive encrypted messages from a site about events and event information as well as an ability to confirm receipt of the messages, which can be achieved at real-time rates with the described presence based IMT. Furthermore, the communication framework provided by presence based IMT will allow each party with an IMS account to know in real-time the status of other parties with IMS accounts as illustrated in
The communication framework provided by specific embodiments of the present invention allows a record to be created and preserved that indicates energy usage patterns and types of usage in time slices and subsections that facilitate alternative usage analysis and comparison of new pricing methods and opportunities on an ongoing basis. Energy network management and monitoring systems, such as a NOC, may use the record to identify alternative approaches to the energy allocations that may yield cost savings and alternative usage and supplier opportunities, thereby opening up alternative opportunities for DER power production such as local power generation that augments primary energy supply flows, establishing a local generation capability which can manage usage below peak usage patterns and load balance within an organization or facility, and can be securely applied in real-time. The aggregation of power usage patterns from multiple sites, divisions, organizations, and groups of organizations provides power usages statistics, time slices, patterns of usage, load balancing options, and other data. Through energy management tools the gathered information may be provided with a common data analysis format enabling efficient aggregation, segmentation, reorganization, time shifting, and other analytical formatting of the information to ease the review and analysis that reveals possible options or alternatives for power energy purchases and allocations. The efficient mode of analysis is due to the centralized messaging severs that are separate from the applications which use them. Each separate application may choose to log in its' data in its' own way; however, since there is a centralized message router, there is the ability to audit all messages regardless of the applications or devices generating them. This would allow compliance with strict auditing rules.
The presence based NOC IMC application used in the current invention allows a network of distributed EMDs to be created over the internet. Leveraging presence IMT enables streamlined communication of DR and TEMS devices with a NOC and allows all participants to dynamically react to changes in a given energy network. Within the network an IMC may be allowed to subscribe to the presence of other IMCs so that the IMS notifies the IMC whenever changes occur to the network status of other IMCs to which the IMC is subscribed and that information can be acted on accordingly. For example, a NOC subscribes to the presence of every EMD that it manages, so it will always know in real-time the network status of every EMD and DER in a TEMS system. Even more important, the NOC knows the network status of a grid operator or utility. If the grid operator or utility uses an IMT presence based IMC application as their primary means of signaling a DR event, the NOC will always know whether a valid connection is open to that grid operator or utility so that no communication interruptions occur. Conversely, the grid operator or utility may also know the network status of the NOC and or specific DERs. Through this IMS controlled bidirectional presence subscription, loss of either NOC or grid/utility operator IMC connectivity would almost immediately be known to both parties so that secondary means of communication may be used to notify the other party of the problem that needs to be corrected and allow DR events to continue uninterrupted.
If an IMC's status is changed to indicate that it is offline, for example when a NOC is brought down for scheduled maintenance, and another IMC needs to send a message to that IMC, the message is not lost, instead the message can be queued on the IMS and delivered the next time the recipient logs back into the IMS. Even though the TEMS system as a whole may be offline, with this feature, EMDs can continue to send interval data as usual, as if everything was operating normally. Another example of where this is very valuable is during a DR event. If an EMD happened to lose connectivity shortly before or during the start of an event due to a temporary network problem that happened to occur when a NOC was trying to control an EMD, the control message can be queued by the IMS and then delivered immediately after the EMD comes back online so that the site was still able to perform as expected for the remaining duration of the event. In some embodiments of the invention these stored messages may also be purged based on system settings.
Through a presence based IMT network, an energy network monitoring and management application used by a NOC is capable of issuing energy usage commands (including EMD configuration/programming updates), controlling remote distributed energy devices, collecting energy usage information, analyzing the information, notifying its users of upcoming events, comparing energy allocations and rates, iterating the energy allocations, facilitate energy auctions and bids, analyzing those bids and executing the purchase or sale of energy.
The present invention allows the utility, grid operator, energy consumer or consumer groups to communicate, aggregate information, analyze the information, and optimize energy allocations. Such management and optimizations may be presented to users in a format where they can examine these complex profiles. Additionally, other approaches to optimizing energy usage and lowering costs may be facilitated through the proposed invention including, for example, energy auctions.
Specific embodiments of the present invention take advantage of the availability of networks, including the Internet, power grid networks, wireless networks, communicating power meters, telemetry, data storage, machine control, and other technological advances and developments to combine alternative management options and alternative buying opportunities, including capabilities in automatic or semi-automatic procurement of energy where the combinatorial energy usage statistics are used to identify and secure the optimal overall energy supplier contracts and where suppliers cause any of the aforementioned and other capabilities to also identify optimal and most profitable supply and acquisition combinations to optimize for each constituent in the market and for the market overall the analysis, selling and buying and usage of energy.
Embodiments further enable utilities, grid operators, energy providers and consumers to almost instantly communicate multiple fuel pricing models allowing immediate switching of alternate energy sources based on price, time-of-use energy patterns, and combinatorial and analytical comparisons of energy, resulting in optimal operating costs. New capabilities brought about by intelligent metering and communication capabilities such as IMT based presence enable users to share services and resources over a network simply with a standard internet connection. Firewall-friendly access to resources and DERs anywhere on a network simplifies the task of building, maintaining, and altering a network of devices, software and users. Device level intelligence and embedded control and telemetry capabilities in power systems, meters, and at energy consuming devices and systems is enabled thereby allowing these devices to execute predefined actions at certain times and in response to certain conditions. The devices may be configured, programmed and modified via PowerTalk as needed to change the nature of the devices on the network, thus creating an intelligent network whose operations are organized and optimized for reporting, network administration, and cross platform independence (i.e., common computing platform) that optimizes opportunities in the energy market, whether regulated or deregulated. Embodiments also facilitate direct connectivity to provide customer and supplier access to real-time energy information and critical device performance parameters.
Embodiments of the present invention can offer a data collection system which incorporates one or more of the following elements: energy metering, time of usage intervals in increments approaching real-time, sector identification and hierarchical data such as location, division, billing code, type of usage, etc., historical supplier identification and storage of the data to allow iterative combinations and recombination of these data. Such combination offer exploration, visualization, iteration, optimization, what-if scenario analysis, and other manipulation of the data to record in order to understand, analyze and create bids for the acquisition or sale of energy and to provide enhanced combinatorial and analytical comparisons using the acquired data, to allow for network connectivity of energy measuring devices, to allow for control of energy consuming devices, so as to optimize usage patterns such as shutting down non-essential equipment during peak usage hours to stay under certain critical usage parameters as may optimize acquisition cost, to acquire, store, and aggregate energy usage data ordinarily not stored, or when stored, stored onboard the metering device or usage system, and to enable the information to be downloaded to a computer and evaluated in near real-time or at a later time.
Embodiments may also provide an automated method of collecting, analyzing, grouping, reorganizing, optimizing, messaging, notification, and procuring energy usage data for optimizing energy use and acquisition costs. This may also assist in the collection and organizing of energy usage by timeframe and physical location thereby enabling iteration, reconfiguration, visualization, subgroup classification, load balancing, and other approaches that optimize usage and lower cost.
Although the foregoing provides discussion in terms of an arrangement based on a NOC or centralized point of control, collection, etc., but this is not needed because a distributed protocol supports facility distributed management. For example, an electric utility grid could proxy all commands through a NOC or could directly send commands the EMDs. Similarly, EMDs could send energy usage data to a centralized point of control or to a plurality of distributed decentralized data processing and network control applications.
Embodiments of the present invention may be implemented in any conventional computer programming language. For example, preferred embodiments may be implemented in a procedural programming language (e.g. “C”) or an object oriented programming language (e.g., “C++”, Python, Java). Alternative embodiments of the invention may be implemented as pre-programmed or embedded hardware elements, other related components, or as a combination of hardware and software components.
Embodiments may be implemented as a computer program product for use with a computer system. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (e.g., a diskette, CD-ROM, ROM, or fixed disk) or transmittable to a computer system, via a modem or other interface device, such as a communications adapter connected to a network over a medium. The medium may be either a tangible medium (e.g., optical or analog communications lines) or a medium implemented with wireless techniques (e.g., microwave, infrared or other transmission techniques). The series of computer instructions embodies all or part of the functionality previously described herein with respect to the system. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures, operating systems, or IMT and data protocols. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the network (e.g., the Internet or World Wide Web). Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention are implemented as entirely hardware, or entirely software or embedded software (e.g., a computer program product).
Although various exemplary embodiments of the invention have been disclosed, it should be apparent to those skilled in the art that various changes and modifications can be made which will achieve some of the advantages of the invention without departing from the true scope of the invention.
The present application claims priority to U.S. Provisional Application No. 61/013,079, filed Dec. 12, 2007, which application is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61013079 | Dec 2007 | US |