Pressure-regulating airbag for embedding-type ink cartridge and the method for assembling it

Information

  • Patent Grant
  • 6739710
  • Patent Number
    6,739,710
  • Date Filed
    Tuesday, December 24, 2002
    21 years ago
  • Date Issued
    Tuesday, May 25, 2004
    20 years ago
Abstract
This specification discloses a negative pressure-regulating airbag for an embedding-type ink cartridge and its assembly method. In addition to a bag with a variable volume, the negative pressure-regulating airbag has a buckle ring, a plate, and a elastic element. The buckle ring is closely connected to the bag. A vent hole is formed in the middle of the buckle ring, allowing air to enter or escape the airbag when the ambient pressure changes. The buckle ring has a protruding part on the surface of the bag so as to be embedded into a preserved hole on an ink cartridge by pressing during the assembly. This forms a quick and tight connection between the airbag and the ink cartridge. One end of the elastic element is connected to the ink cartridge and the other end to the plate so that the plate imposes a force to depress the airbag. This keeps a negative pressure inside the cartridge to prevent ink leakage from the cartridge during transportation or use.
Description




BACKGROUND OF THE INVENTION




1. Field of Invention




The invention relates to a pressure-regulating airbag for ink cartridges and, in particular, to an airbag that is embedded in an ink cartridge and the assembly method therefor.




2. Related Art




The ink cartridge is an essential element for any inkjet pen. If there is no pressure-regulating device inside the cartridge, ink may leak out when the ambient pressure becomes low, for example, during transportation by air. This will result in unacceptable inkjet cartridge products. Moreover, unexpected temperature rise in the storage place is likely to increase the pressure inside the cartridge that may cause ink leakage too.




The importance of the pressure-regulating design of the ink cartridge is further seen in the continuous operation of an inkjet mechanism. As the ink is consumed, the ink volume becomes smaller, resulting in an increasing negative pressure. If the pressure is not appropriately tuned, the negative pressure may diminish or cancel with the ink ejection force from the inkjet chip, losing the ink droplet ejection precision. Eventually, the inkjet printer performance will be seriously affected. What is worse is that the internal negative pressure disallows the inkjet chip to eject ink before the ink is depleted.




There are already many patents or products with an ink cartridge negative pressure reduction mechanism. For example, a classic example is the U.S. Pat. No. 5,409,134. It proposed a design that used a thin plate spring to support the airbag. After then, various ideas were disclosed in accord with the pros and cons of the patent. However, most of the known designs put emphasis upon the variations and modifications in the pressure-regulating mechanisms, but the problem of how to increase the efficiency of assembling the inkjet cartridge and pressure-regulating element is never addressed.




SUMMARY OF THE INVENTION




An objective of the invention is to provide a negative pressure-regulating airbag that is embedded into an ink cartridge by pressing and the method for assembling it, so that the assembly of the airbag and the ink cartridge can be quickly and conveniently achieved.




In addition to a bag with a variable volume, the disclosed negative pressure-regulating airbag has a buckle ring, a plate, and an elastic element. The buckle ring is closely connected to the bag. A vent hole is formed in the middle of the buckle ring, allowing air to enter or escape the airbag when the ambient pressure changes. The buckle ring has a protruding part on the surface of the bag so as to be embedded into a preserved little hole on an ink cartridge by pressing during the assembly. This forms a quick and tight connection between the airbag and the ink cartridge. One end of the elastic element is connected to the ink cartridge and the other end to the plate so that the plate imposes a force to depress the airbag. This keeps the negative pressure inside the cartridge within a desired range to prevent ink leakage from the cartridge due to the ambient pressure change during transportation or use.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will become more fully understood from the detailed description given hereinbelow illustration only, and thus are not limitative of the present invention, and wherein:





FIG. 1

is a schematic view of the disclosed airbag according to a first embodiment of the invention;





FIG. 2

is a schematic view showing the relation among the spring, plate and ink cartridge in

FIG. 1

;





FIG. 3

is a schematic view of pressure adjustment in

FIG. 1

;





FIG. 4

is a schematic view of replenishing air in

FIG. 1

;





FIG. 5

is another embodiment of the invention; and





FIG. 6

is a diagram of the force to the location for compression springs and torsion springs.











DETAILED DESCRIPTION OF THE INVENTION




First Embodiment




As shown in

FIG. 1

, the disclosed negative pressure-regulating airbag


20


has a bag with a variable volume, a buckle ring


30


, a plate


50


, and an elastic element


40


(see FIG.


2


). The buckle ring


30


is tightly sealed onto the bag. A vent hole


31


is formed in the middle of the buckle ring


30


for air to enter or escape the airbag


20


when the ambient pressure changes. The buckle ring


30


has a protruding part


32


so as to be embedded into a preserved little hole


11


on an ink cartridge


10


by pressing during assembly. Therefore, the connection between the bag and the ink cartridge


10


is quick and air-proof.




With reference to

FIG. 2

, the elastic element


40


comprises two torsion spring


401


,


402


. One end of each torsion spring


401


,


402


is connected with each other and to the plate


50


. The other end of each torsion spring


401


,


402


is connected to the ink cartridge. The elastic element


40


imposes an evenly distributed force on the airbag


20


via the plate


50


. The pressure inside the ink cartridge


10


is thus kept within a desired range because the airbag


20


tends to shrink. This can avoid ink leakage during transportation or storage or the ambient air pressure suddenly changes during use.




With reference to

FIG. 6

, the force of the compression spring is increasing with the change of the air-bag location. This will increase the balancing pressure of the air-bag to let the controlling difficult and unstable. But the force of the torsion spring is near equal between operation ranges, though the change of the air-bag location. So it improves the stability of the pressure controlling.




Other Variations of the Embodiment




Aside from the above-mentioned embodiment, a person skilled in the part can further make various changes or modifications. For example, an element such as a wavy plate (not shown) can be disposed at the bending part of the air bag


20


to avoid opposite sides of the bag from sticking together. This can ensure that the air flows through the bending part without resistance.




Moreover, as shown in

FIG. 5

, the airbag


20


is changed from the folding type in

FIGS. 1 through 4

to a non-folding one


60


. This also achieves the objective of the invention.




Although the buckle ring


30


is embedded into a preserved little hole


11


on the ink cartridge


10


through its protruding part


32


, it is more desirable to form a one-way tilted texture, anti-skidding teeth, or equivalent means on the surface of the protruding part


32


so that it is completely fixed once being inserted into the little hole


11


. Based upon the same idea, a back hook or a stopper can be formed at the end of the protruding part


32


. Examples are an O-ring or another buckle ring that holds the protruding part


32


.




The above-mentioned variations of the disclosed embodiment are for illustrative purposes, and should not be construed as limitations of the scope of the invention. Any person skilled in the art can make other equivalent changes to the quality, appearance, and according to the costs.




Embodiment of the Assembly Procedure




The assembly method for the negative pressure adjusting airbag


20


,


60


is implemented through the following steps:




1. Connect the bag of the negative pressure adjusting airbag


20


,


60


with the buckle ring


30


. With reference to

FIG. 1

, the buckle ring


30


can be made of the same material as the bag surface (e.g. polyethylene) or some other material that can be easily assembled and produced by ejection. Afterwards, the buckle ring


30


is fixed onto the bag by surface mounting, thermal bonding, or bonding through vibration welding means (e.g. ultrasonic or high-frequency waves).




2. Connect the elastic element


40


with the plate


50


. With reference to

FIG. 2

, the plate


50


and the one end of the elastic element


40


can be connected by plugging, thermal welding or other equivalent means.




3. Connect the elastic element


40


with the ink cartridge


10


. Pull the elastic element


40


and the plate


50


away from the ink cartridge


10


.




4. Insert the bag. With reference to

FIG. 3

, the airbag is mounted by pressing the buckle ring


30


on the bag so that the protruding part


32


is embedded into the little hole


11


preserved on the ink cartridge


10


.




5. Release the elastic element


40


and the plate


50


. The plate


50


depresses the bag so that the airbag tends to shrink inside the cartridge.




The steps 1 and 2 can be processed at the same time on different assembly lines. Steps 3 and 4 can be interchanged in order without departing from the spirit of the invention.




With simultaneous reference to

FIGS. 4 and 5

, the ink consumption during normal inkjet printing processes increases the negative pressure inside the ink cartridge so that the atmospheric pressure becomes larger. Therefore, the ambient air goes into the airbag


20


,


60


through the vent hole


31


. This increases the volume of the airbag


20


,


60


to balance the negative pressure, keeping the negative pressure within a normal range. To avoid an extreme operating environment, the airbag


20


,


60


or the ink cartridge


10


can be formed with an additional bubble generator


12


,


21


so that when the pressure difference becomes too large, the air can enter through the bubble generator


12


,


21


. Since the principle and technique of the bubble generator


12


,


21


are well-known, we do not repeat them herein.




Improvement Results




The invention provides a negative pressure adjusting airbag that can be embedded in an ink cartridge and the assembly method therefor. Steps 1 and 2 mentioned above can be performed separately and simultaneously at different places or assembly lines. This makes the production arrangement more flexible. The connection of the airbag and the ink cartridge can be easily achieved by pressing. The invention is very different from the conventional ink cartridge assembly procedure.



Claims
  • 1. An embedding-type negative pressure-regulating airbag for an ink cartridge comprising:an airbag being a bag with a variable volume; a buckle ring tightly connected to the airbag and has a protruding part that is to be embedded in a little hole preserved on the ink cartridge, the center of the buckle ring having a vent hole for air to enter or escape; an elastic element, including two torsion spring, one end of each torsion spring is connected with each other and the other end of each torsion spring is connected to the ink cartridge; and a plate connected with said end of the torsion spring for transferring a spring force to depress the airbag.
  • 2. The embedding-type negative pressure-regulating airbag of claim 1, wherein the airbag has a bubble generator for air to enter from the airbag to the ink cartridge.
  • 3. The embedding-type negative pressure-regulating airbag of claim 1, wherein the ink cartridge has a bubble generator for air to enter from its outside into its inside.
  • 4. An assembly method for an embedding-type negative pressure-regulating airbag for an ink cartridge comprising the steps of:preparing a buckle with a protruding part and a vent hole for connection with a bag with a variable volume; preparing a plate connecting to one end of an elastic element; preparing an ink cartridge, which is preserved with a little hole and connected with the other end of the elastic element, and pulling the elastic element and the plate away from the ink cartridge; inserting the bag and pressing the buckle ring so that the protruding part is embedded in the preserved little hole, thereby connecting the bag with the ink cartridge; and releasing the elastic element and the plate for the elastic element to depress the bag through the plate, so that the volume of the bag tends to shrink.
  • 5. The assembly method of claim 4, wherein the buckle ring is made of a material selected from the group consisting of the same material as the bag surface and materials that are easy to assemble and produced by ejection.
  • 6. The assembly method of claim 4, wherein the buckle is connected to the bag by surface mounting.
  • 7. The assembly method of claim 4, wherein the buckle ring is connected to the bag by a means selected from the group consisting of thermal bonding and vibration welding.
  • 8. An assembly method for an embedding-type negative pressure-regulating airbag for an ink cartridge comprising the steps of:preparing a buckle ring with a protruding part and a vent hole for connection with a bag with a variable volume; preparing an ink cartridge preserved with a little hole and inserting the bag, pressing the buckle ring so that the protruding part is embedded into the little hole, thereby connecting the bag with the ink cartridge; preparing a plate connecting to one end of an elastic element; and connecting the other end of the elastic element with the ink cartridge so that the elastic element depresses the bag through the plate, the volume of the bag tending to shrink.
  • 9. The assembly method of claim 8, wherein the buckle ring is made of a material selected from the group consisting of the same material as the bag surface and materials that are easy to assemble and produced by ejection.
  • 10. The assembly method of claim 8, wherein the buckle ring is connected to the bag by surface mounting.
  • 11. The assembly method of claim 8, wherein the buckle ring is connected to the bag by a means selected from the group consisting of thermal bonding and vibration welding.
Priority Claims (1)
Number Date Country Kind
90132896 A Dec 2001 TW
US Referenced Citations (7)
Number Name Date Kind
5409134 Cowger et al. Apr 1995 A
5923353 Boyd et al. Jul 1999 A
5988803 Komplin et al. Nov 1999 A
6003966 Ahn Dec 1999 A
6203146 Pawlowksi et al. Mar 2001 B1
6213598 Hou et al. Apr 2001 B1
6293666 Mou et al. Sep 2001 B1