The present disclosure relates generally to systems for dispensing hot melt adhesive. More particularly, the present disclosure relates to pressure relief systems that relieve pump pressure at system shutdown.
Hot melt dispensing systems are typically used in manufacturing assembly lines to automatically dispense an adhesive used in the construction of packaging materials such as boxes, cartons and the like. Hot melt dispensing systems conventionally comprise a material tank, heating elements, a pump and a dispenser. Solid polymer pellets are melted in the tank using a heating element before being supplied to the dispenser by the pump. Because the melted pellets will re-solidify into solid form if permitted to cool, the melted pellets must be maintained at temperature from the tank to the dispenser. This typically requires placement of heating elements in the tank, the pump and the dispenser, as well as heating any tubing or hoses that connect those components. Furthermore, conventional hot melt dispensing systems typically utilize tanks having large volumes so that extended periods of dispensing can occur after the pellets contained therein are melted. However, the large volume of pellets within the tank requires a lengthy period of time to completely melt, which increases start-up times for the system. For example, a typical tank includes a plurality of heating elements lining the walls of a rectangular, gravity-fed tank such that melted pellets along the walls prevents the heating elements from efficiently melting pellets in the center of the container. The extended time required to melt the pellets in these tanks increases the likelihood of “charring” or darkening of the adhesive due to prolonged heat exposure.
A hot melt system has a container, a melter, a feed system, a dispensing system, a pump, and a pressure relief system. The melter is capable of heating hot melt pellets that are fed from the container. The pump pressurizes the liquid from the melter and passes it to the dispensing system. The dispensing system can then dispense the liquefied adhesive. The pressure relief system is capable of rerouting liquefied adhesive from an outlet of the pump to and inlet of the pump.
Components of cold section 12 can be operated at room temperature, without being heated. Container 20 can be a hopper for containing a quantity of solid adhesive pellets for use by system 10. Suitable adhesives can include, for example, a thermoplastic polymer glue such as ethylene vinyl acetate (EVA) or metallocene. Feed assembly 22 connects container 20 to hot section 14 for delivering the solid adhesive pellets from container 20 to hot section 14. Feed assembly 22 includes vacuum assembly 24 and feed hose 26. Vacuum assembly 24 is positioned in container 20. Compressed air from air source 16 and air control valve 17 is delivered to vacuum assembly 24 to create a vacuum, inducing flow of solid adhesive pellets into inlet 28 of vacuum assembly 24 and then through feed hose 26 to hot section 14. Feed hose 26 is a tube or other passage sized with a diameter substantially larger than that of the solid adhesive pellets to allow the solid adhesive pellets to flow freely through feed hose 26. Feed hose 26 connects vacuum assembly 24 to hot section 14.
Solid adhesive pellets are delivered from feed hose 26 to melt system 30. Melt system 30 can include a container (not shown) and resistive heating elements (not shown) for melting the solid adhesive pellets to form a hot melt adhesive in liquid form. Melt system 30 can be sized to have a relatively small adhesive volume, for example about 0.5 liters, and configured to melt solid adhesive pellets in a relatively short period of time. Pump 32 is driven by motor 36 to pump hot melt adhesive from melt system 30, through supply hose 38, to dispenser 34. Motor 36 can be an air motor driven by pulses of compressed air from air source 16 and air control valve 17. Pump 32 can be a linear displacement pump driven by motor 36. In the illustrated embodiment, dispenser 34 includes manifold 40 and module 42. Hot melt adhesive from pump 32 is received in manifold 40 and dispensed via module 42. Dispenser 34 can selectively discharge hot melt adhesive whereby the hot melt adhesive is sprayed out outlet 44 of module 42 onto an object, such as a package, a case, or another object benefiting from hot melt adhesive dispensed by system 10. Module 42 can be one of multiple modules that are part of dispenser 34. In an alternative embodiment, dispenser 34 can have a different configuration, such as a handheld gun-type dispenser. Some or all of the components in hot section 14, including melt system 30, pump 32, supply hose 38, and dispenser 34, can be heated to keep the hot melt adhesive in a liquid state throughout hot section 14 during the dispensing process.
System 10 can be part of an industrial process, for example, for packaging and sealing cardboard packages and/or cases of packages. In alternative embodiments, system 10 can be modified as necessary for a particular industrial process application. For example, in one embodiment (not shown), pump 32 can be separated from melt system 30 and instead attached to dispenser 34. Supply hose 38 can then connect melt system 30 to pump 32.
During normal operation of system 10, pressure relief valve 46 is closed and hot melt adhesive from melter 30 is routed to module 40 for dispensing. As discussed with reference to
When pressurized air is not supplied through air hose 35C and 35E, as during shut down of system 10, motor 36 ceases to run, causing pump 32 to stop. Further, when insufficient pressurized air is supplied to air hose 35E to actuate valve 46, adhesive may be rerouted through pressure relief porting 48 from outlet 320 to inlet 321 until the pressure on each side of pump 32 is the same. For example, pressure relief valve 46 may include a valve spring which compresses to close porting 48 when pressurized air is applied and decompresses to open porting 48 when pressurized air is not applied. When system 10 is restarted, solidified adhesive in hot section 14 is re-liquefied, and the liquefied adhesive that was rerouted through pressure relief porting 48 at shutdown is among the first adhesive that passes through pump 32 and is dispensed via dispenser 34. For example, adhesive rerouted through pressure relief porting 48 to passage 31 is drawn into pump inlet 321. Adhesive within porting 48 is unable to char due to insufficient quantities of oxygen. Additionally, various flow control devices, such as orifices and restrictions, may be used to control flow between pressure relief porting 48 and passages 31 and 33. Thus, the char associated with additional recycling through the system is eliminated.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
61718310 | Oct 2012 | US |