1. Field of the Invention
The present invention relates generally to an apparatus embedded in and or applied to gasket structures, and more particularly to a sensing apparatus applied to combustion gaskets of internal combustion engines. More specifically, the invention relates to a pressure sensing apparatus provided within structures of multi-layered steel combustion gaskets for measuring pressure levels of combustion gases within the cylinder bores of internal combustion engines.
2. Description of the Prior Art
It is known to employ electronic sensors in gaskets for sealing between engine components including, for example, the block and cylinder head of a multi-cylinder internal combustion engine. In one case, the gasket comprises a sealing plate having several combustion chamber orifices, with combustion chamber sealing elements situated on the edges of the sealing plate surrounding the combustion chamber orifices. The gasket includes sensor elements for cylinder-specific detection of sealing movements perpendicular to the plane of the sealing plate, caused by pressure changes in respective combustion chambers being measured. All of the sensor elements are arranged outside of the combustion chamber sealing elements, and can be piezoelectric and piezoresistive, as well as glass fiber light guide-style sensors.
In another example, a gasket enclosed sensor system is employed for measurement of combustion chamber parameters and delivery of signals to points external of the engine. The gasket includes a combustion opening substantially surrounding a combustion chamber, and includes an access opening extending from the combustion chamber to a point external of the engine. A metallic sensor terminal is positioned within the access opening, and insulating material substantially surrounds the metallic sensor terminal.
In yet another example, a fluid sensor and associated circuitry are used to indicate presence of oil flow in a multi-cylinder internal combustion engine. The oil sensor includes a heating element positioned within the oil line, directly in the oil flow path. A comparator measures the value of signals from upstream and downstream heat sensors, and triggers a switching circuit when the temperature at the sensors approach one another to indicate an adequate oil flow to the engine.
In still another example, a gasket formed in the shape of an exhaust flange includes a load sensor comprising a pressure sensitive electrically resistive material positioned between electrodes and conductors extending outwardly of the perimeter of the gasket. A seal provided between first and second layers of the gasket, and about the load sensor, provides a seal for the electrodes, which are positioned in a cavity to protect the sensor from fluids.
A sensor for a multiple layer steel (MLS) cylinder head gasket aperture boundary is adapted to measure combustion pressures occurring in internal combustion engines for detection and control of engine knock, i.e. predetonation conditions, among other purposes. The structure of the sensor includes a pressure sensitive membrane at one end of a metal tube, wherein the tube is positioned adjacent a cylinder bore aperture boundary. The membrane is affixed to the tube at its aperture boundary end, and an optical sensor structure is fixed within the tube downstream of the membrane. The tube protects the optical sensor from becoming damaged under high sealing stresses that occur at the cylinder bore. As disclosed, the sensor is placed into a spacer layer of the MLS gasket, in a groove formed in at least one spacer layer, and an optical fiber wire coupled with a sensor from each cylinder bore is bundled into a common groove of the spacer layer. Various methods for forming the groove are available. The groove may be located outside of the conventional component boundary of the gasket. Thus, the spacer layer may be extended radially outwardly of the conventional component perimeter at the convenience of the gasket designer. Finally, a converter is employed to change optical signals received from the optical wire into electrical signals for appropriate transmittal to a microprocessor of an engine control unit.
Where a plurality of cylinder bores is provided in the gasket, and to the extent that pressure sensing is provided at each bore, a real time quality engine management control opportunity based upon cylinder-by-cylinder measurement of combustion pressure is provided. The specific cylinder-to-cylinder data can be input into an engine control unit module that includes systems for optimization of engine performance parameters, including fuel economy and emissions levels, among others.
As the pressure sensor apparatus is designed to be applied to a protective tube positioned in a groove of a spacer layer, the apparatus may be positioned between beaded or active layers of a multiple-layered steel gasket without severe risk of being crushed or overstressed. Various alternative embodiments for positioning the tube are disclosed. The sensor may also be positioned relatively close to the flame front within the gasket structure, and as such can be particularly effective to measure pressure levels of cylinder-specific combustion gases in real time.
a-9d are alternative embodiments to achieve adequate sealing of the sensor tube adjacent to a combustion bore opening.
Referring initially to
Referring now also to
A protective metal tube 22 lies in a groove 24 of the spacer layer 20 in a manner such that the groove 24 completely encases the metal tube 22, as shown. Alternatively, the grove 24 can be formed in both the spacer layer 20 as well as in the upper layer 18. For example, referring to
An end 26 of the tube 22 is positioned near the boundary of the combustion aperture 12. To the extent that only one end 30 of an elongated gasket 10 is depicted (
Referring now to
Referring specifically now to
Referring to
In yet another alternative embodiment, referring now to
In yet another alternative embodiment, referring now to
Referring now to
Referring now to
Finally, those skilled in the art will appreciate that the optical signals generated by means of the sensor apparatus 60 are created by virtue of fluctuating changes in the gap 38 caused by responses of the pressure diaphragm 40 to combustion activity occurring within the cylinders 12. As appreciated by one skilled in the art, changes in pressure adjust the overall axial length of the silica tube 50, thereby changing the distance of the gap 38 between the cable wire strand 36 and the reflective end 42 of the incoming fiber optic cable wire 34. Such signals must ultimately however be converted into electrical signals for purposes of being read appropriately by an engine control module 62 (
The process for manufacturing a spacer layer 20 having at least one groove 24 will be discussed. First, groove 24 is rough cut into spacer layer 20. If groove 24 is only formed in a single spacer layer 20, then at least one surface 61 of spacer layer 20 is preferably provided with a thin support layer 63, as shown in
It is desirable that an adequate seal is provided between the wall of groove 24 and an outer surface of tube 22. Even if the tolerances are tightly controlled between metal tube 2 and the groove wall 24, microsealing is desired. There are several different methods that are desirable to provide the sealant coating in groove 24. One method includes applying sealant coating to a flat layer before the groove is formed. However, use of this method requires that groove 24 must be formed through use of a forming process as opposed to a machining process. Alternatively, the sealant coating may be applied after the groove 24 is formed, through use of a screen printing process.
In another alternative embodiment, the sealant coating may be applied directly to metal tube 22 prior to insertion of metal tube 22 into groove 24. Due to the conformability of the sealant coating, once metal tube 22 is placed in groove 24, the coating will seal any gap between the wall of the groove 24 and metal tube 22. Many different types of coatings may be employed to affect the sealing between the groove 24 and the metal tube 22. Suitable coatings include FKM based coatings, thermoplastic, cement (must be applied in a fluid stage and cured after sensor is assembled) and foam-like coatings.
It is to be understood that the above description is intended to be illustrative and not limiting. Many embodiments will be apparent to those of skill in the art upon reading the above description. For example, a gasket within the sensor elements and wires molded into the body of the gasket material would fall within the broader scope of this invention. Therefore, the scope of the invention should be determined, not with reference to the above description, but instead with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application claims priority under Title 35, USC Section 119(e) of U.S. Patent Application No. 60/396,532 filed on Jul. 16, 2002 which is incorporated by reference in its entirety. This application also claims priority under Title 35, USC Section 120 of U.S. patent application Ser. No. 10/077,411 (now U.S. Pat. No. 6,701,775), filed on Feb. 15, 2002, of which the present application is a continuation-in-part, which is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/04671 | 2/14/2003 | WO | 00 | 2/15/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/071119 | 8/28/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4393687 | Muller et al. | Jul 1983 | A |
4822294 | McClearn | Apr 1989 | A |
5195365 | Chujo et al. | Mar 1993 | A |
5380014 | Schaperkotter | Jan 1995 | A |
5495137 | Park et al. | Feb 1996 | A |
5529346 | Sperring | Jun 1996 | A |
5659132 | Novak et al. | Aug 1997 | A |
5938963 | Tanis | Aug 1999 | A |
6131465 | Wlodarczyk et al. | Oct 2000 | A |
6161520 | Clarke | Dec 2000 | A |
6532737 | Kozerski et al. | Mar 2003 | B1 |
6945117 | Boyd et al. | Sep 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050126262 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60396532 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10077411 | Feb 2002 | US |
Child | 10504372 | US |