The present invention relates to pressure sensors and, more specifically, to a pressure sensor having a memory for storing characteristics of the sensor.
Pressure sensors are used for controlling and monitoring fluid pressure in thousands of hydraulic and pneumatic applications. Pressure sensors are also used to indirectly measure variables such as fluid flow, speed, fluid level and altitude. There are number of different technologies used in the construction of pressures sensors. For example, strain gauges can be used to measure the strain or deformation of a structure exposed to a pressurized fluid. Semiconductor piezoresistance, the change in conductivity of a semiconductor under pressure, can also be used to sense pressure. A change in capacitance as a result of a change in the distance between two conductive plates when subjected to fluid pressure is another technology commonly used in pressure sensors.
Ideally, the output of a pressure sensor would vary linearly with a change in pressure. However, the output of pressure sensors is not ideal and it typically non-linear, particularly with respect to pressure and temperature. To obtain accurate measurements, the user typically profiles a pressure sensor by measuring the output at a plurality of different pressures and temperatures and by developing an electronic circuit or an algorithm for a digital computer that accounts for the non-linearity of the sensor. Profiling is time consuming and because of the cost is often only performed at a single temperature even though the accuracy of the sensor may be less than desirable at other temperatures.
What is desired, therefore, is an effective, low cost way obtaining accurate readings from a pressure sensor.
Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to
Referring to
Referring also to
Ideally the output of a pressure transducer would have a linear relationship to the pressure. However, the relationship of the pressure and output signal is seldom linear and varies with the type of transducer. In addition, the transducer output is commonly substantially affected by temperature and may be affected by other environmental factors, such as humidity. Before using a pressure sensor, the sensor must be profiled wherein the output of the sensor is measured and recorded at a plurality of different pressures, temperatures and other environmental conditions that may affect the linearity of the transducer's output. Profiling enables development of circuitry or an algorithm for a digital data processor that accounts for the non-ideal characteristics of the pressure sensor but profiling is a time consuming process and, therefore, expensive and often the effects of temperature and other factors are ignored to reduce the cost of the system incorporating the pressure sensor. However, the manufacturer of the pressure sensor typically tests each sensor to determine that the individual sensor conforms to the appropriate specification. These tests are typically performed by automated equipment and are relatively inexpensive compared to the profiling performed by the user. The present inventor concluded that substantial time and expense could be avoided if the manufacturer of the pressure sensor stored the characterizing data for the pressure sensor obtained during testing of the sensor in the sensor itself.
The exemplary pressure sensor 20 includes a non-volatile memory 78, such as an EEPROM or flash memory in which data characterizing the pressure transducer is stored. The data typically includes linearization data specifying the deviation of the transducer's output from a linear relationship relative to the pressure. The characteristic data may also include corrections for the output of the sensor as a function of temperature and the exemplary pressure sensor includes a temperature sensor 80 affixed to the body of the sensor with an output connected to the ADC 72. Other characterization data, such as a correction for humidity and/or time, may also be stored in the memory as appropriate and the pressure sensor may include a humidity transducer 82 or other transducers enabling quantification of other parameters that affect the accuracy of the output of the sensor. When the pressure sensor is tested during manufacturing the characteristic data is captured by the test instrumentation and stored in the memory. Referring to
The memory in the pressure sensor enables storage of characterization data by the manufacturer of the sensor enabling the user pressure sensor to obtain accurate readings without time consuming and expensive profiling of the sensor.
The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
All the references cited herein are incorporated by reference.
The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
This application claims the benefit of U.S. Provisional App. No. 61/216,222, filed May 14, 2009.
Number | Date | Country | |
---|---|---|---|
61216222 | May 2009 | US |