The present application claims priority under 35 U.S.C. §119 to Application No. DE 102009015964.9 filed on 2 Apr. 2009, entitled “Pressure Tank Blank and Method and Blow Molding Station for the production Thereof,” the disclosure of which is hereby incorporated by reference in its entirety.
The present invention relates to a pressure tank and, in particular, to a thermoplastic pressure tank blank having a reinforcing strip to prevent bursting of the blank under pressure. Furthermore, the invention relates to a method of forming the pressure tank blank, and a blow-molding station for the production of the pressure tank blank.
Pressure tanks based on a blank made of thermoplastic are used to store and discharge fluids such as propane or butane. At normal ambient temperatures, the typical equilibrium state results between the predominant liquid phase and the gas phase of the relevant fluid. Such cost-effective pressure tanks, which are typically bottle-shaped or cartridge-shaped and having a circular cross-section, have proven themselves for small volumes up to several hundred milliliters. Concerns have existed up to this point about use for larger volumes and/or for gases such as hydrogen as well, which generate a significant internal pressure in the pressure tank at ambient temperature, because a pressure tank of this type made of a reinforced plastic blank does have a high static bursting strength, but is in danger of breaking in the event of specific dynamic loads, as occur during the drop test, for example. A further weak point is the seal between the neck or the mouth of the tank and the screwed-in valve, because neither an increase of the tank wall thickness nor the described reinforcement may solve the problem of making the connection between the tank and the screwed-in valve reliably tight and resistant to being torn out.
While the weak points of the blank may be externally reinforced by a special further reinforcement (e.g., via an external reinforcement in the form of a winding made of high tensile strength fibers impregnated with artificial resin), such approaches have proven to be extremely uneconomical.
Thus is would be desirable to provide a pressure tank having a reinforcing strip that reduces the risk of a tank bursting when under pressure.
A pressure tank blank for a handling-safe pressure tank is disclosed. The blank includes a body and a mouth that threadingly engage a closure element such as a valve. The blank includes a metal insert disposed on the interior of the body, proximate the neck. The blank is adapted to reinforce at least the shoulder of the blank. After reinforcement and attaching of the valve, the resulting tank is usable for large volumes of liquid gas and/or gases under high pressure, in particular, hydrogen.
This solution is based on our finding that the most endangered area of a thermoplastic pressure tank is designated as the shoulder (i.e., the area that is typically externally reinforced along the transition from the tank body into the container neck). The internal reinforcement using a metal insert is significantly more favorable in relation thereto, because it can be integrated into the blow-molding method of the tank blank. The metal insert preferably has openings which are filled by the plastic. Uniform precise centering of the metal insert in relation to the container cross-section in this area is thus achieved.
A refinement, which ensures a secure seat of the metal insert even in the event of strong impacts acting on the tank and other mechanical shocks, is that the cross-section of the openings of metal insert widens from the exterior to the interior of the blank. The openings thus form undercuts penetrated by the plastic. In a particularly preferred embodiment, the metal opening extends up to the mouth at the end of the neck of the blank. As a result, the neck area of the blank is thus also particularly resistant to bending and shear forces acting externally on the neck. A further improvement of the fixation of the metal insert on the inner contour of the blank may be achieved in that the metal insert has a profiled surface at least in the area of the neck (e.g., the base portion of metal insert may be contoured to the interior surface of the neck and/or neck portion of the metal insert may be contoured to the blank neck).
The problem of ensuring a tight connection between the tank and the valve, which naturally results in particular in tanks under high internal pressure, disappears if the metal insert has an internal thread for threadingly engaging the threads of a valve in the mouth area, because a metal internal thread is significantly more dimensionally stable and has greater long-term stability than an internal thread in a thermoplastic.
A further improvement of the bursting strength is achieved if the blank has a metal spherical cap enveloped by the plastic on its floor area opposite to the neck. This metal spherical cap is thus more or less the counterpart of the metal insert on the neck or mouth side. For better fixation, the metal spherical cap can therefore have openings, which are filled by the plastic like those of the metal insert, and are optionally also undercut.
Furthermore, the metal spherical cap can also have a threaded nipple in the middle having an internal thread. This embodiment is particularly suitable for pressure tanks which are not filled via the neck-side valve, but rather via a floor opening, which is subsequently closed using a threaded stopper.
A method for producing a pressure tank blank from plastic may include the following steps: extruding a tube made of a thermoplastic from an extrusion die into an open blow mold, whose cavity is the negative of the blank; closing the blow mold and introducing compressed air to shape the blank; opening the blow mold after a cooling time and removing the blank. According to this method, pressure tank blanks of the present invention may be produced cost-effectively but having significantly improved strength when a metal insert having the inner contour of at least the shoulder of the blank is introduced into the corresponding area of the cavity when the blow mold is open and the tube, enclosing this metal insert, is extruded into the open blow mold.
A refinement of this method, in which the blank is shaped having a mouth pointing downward, is distinguished in that the metal insert is introduced from below into the open blow mold using a core rod which can be raised and lowered.
A further improvement of the strength of the blank and thus also of the later pressure tank is achieved in one embodiment of the method, in which a metal spherical cap having the inner contour of at least the floor of the blank is introduced into the corresponding area of the cavity when the blow mold is open and the tube, enclosing the metal spherical cap, is extruded into the open blow mold.
The method is particularly efficient if the metal spherical cap for the floor of the blank is introduced into the open blow mold from below, together with the metal insert for its neck area, using the same core rod.
If the blow mold is to be brought into a separate blowing station for shaping the blank in order to shorten the cycle time, a variant of the method is expedient in which the tube extruded into the open blow mold is kept open using partial vacuum in the area of its entry into the blow mold and is cut through above this, the blow mold is subsequently moved out of its position below the extrusion die into the separate blowing station, and a metal spherical cap having the inner contour of at least the floor of the blank is introduced from above into the open blow mold in the area of the cavity corresponding to the floor using a core rod which can be raised and lowered. This dispenses with additionally equipping the core rod carrying the metal insert with the metal spherical cap, allows the use of a correspondingly shorter core rod, and simultaneously permits the choice of implementing the lower or the upper core rod as a blow pin for shaping the blank.
A blow-molding station for producing a pressure tank blank of this type according to the above method comprises a longitudinally-divided blow mold, which comprises at least two mold parts movable relative to one another for opening and closing the blow mold, which together delimit a cavity, which is the negative of the blank having vertical central axis and mouth pointing downward, further has a blow pin which can be raised and lowered for shaping the blank from an extruded thermoplastic tube and is distinguished according to the invention in that the blow pin is situated below the blow mold and is implemented as a holder for the metal insert, which has the inner contour of at least the shoulder of the blank.
The blow pin preferably has radially movable clamping elements to hold the metal insert and to release the blank after the blowing out.
Furthermore, the blow pin can have an extension reaching up to the floor of the blank, which is implemented as a holder for a metal spherical cap, which reinforces the floor of the blank.
An embodiment of the blow-molding station which is suitable for producing a pressure tank blank, which can be reinforced in both the neck area and also in the floor area, is distinguished in that the blow mold has, on the entry side of the plastic tube, mobile mold upper parts which can be moved together relative to the movable mold parts, having an inner contour for implementing the floor of the blank and slides having suction openings for keeping open the cut-off upper end of the plastic tube above these mold upper parts, and a core rod which can be raised and lowered is situated over the blow mold, which is implemented as a holder for metal insert corresponding to the inner contour at least of the shoulder area and/or for a metal spherical cap having the inner contour of at least the floor of the blank.
The core rod over the blow mold can be implemented as a blow pin, in which case a simple core rod is situated as a holder for the metal insert instead of the blow pin situated below the blow mold.
Conventional thermoplastics suitable for pressure tank blanks of this type, which may particularly also be extruded as a tube having multiple layers of varying function, may be utilized to form the tank.
a illustrates a cross-sectional view of the pressure tank blank in accordance with an embodiment of the invention.
b illustrates a close-up view of the area designated “X” in
a, 3b, and 3c illustrate close-up, cross-sectional views of the blow mold shown in
a illustrates a partial view the floor area of a pressure tank blank in accordance with another embodiment of the invention.
a through 6e illustrate sequential steps for the production of the pressure tank blank of
Like reference numerals have been used to identify like elements throughout this disclosure.
The pressure tank blank shown in longitudinal section in
The blank includes an interior metal insert 6, which is enveloped by the thermoplastic K and extends up to the mouth 5 of the blank, in the area of its shoulder 3. The metal insert 6 has an internal thread 6.1 for screwing in a closure element (not shown), in particular a valve. The metal insert 6 can extend up to the transition of the shoulder 3 into the body 1, notwithstanding the illustration in
In order to produce a reliable non-positive connection between the metal insert 6 and the plastic K, the metal insert 6 has openings 6.2 at least in the area of the shoulder 3, which may additionally be undercut as shown in the detail “X” (
As a function of the internal pressure to which the pressure tank blank is subjected later, after the filling, it can be advisable to similarly reinforce the floor 2, which is fundamentally less in danger of breaking and/or bursting, as shown by dashed lines, using a metal spherical cap 7. The metal spherical cap 7 has openings 7.2 corresponding to the opening 6.2 of the metal insert 6 for the close connection to the plastic K, for the passage of a corresponding small quantity of the plastic K to create connection points similar to that described above.
The final pressure tank differs from the blank shown in
The blank of
The tube 10 can be single-layer or can comprise multiple, coextruded layers of different thermoplastic. The diameter of the thermoplastic tube 10 is typically somewhat less than the diameter of the later blank in the area of its body 1.
Referring to
The embodiment of the pressure tank blank shown in
To produce the blank, the metal spherical cap 8 is introduced from below into the blow mold using a long blow pin 14. The blow pin 14 can be raised and lowered like the blow pin 13 in
The floor area of an embodiment of the blank which is simplified in relation to
An alternative method for the production of the pressure tank blank is illustrated in
The blow mold is constructed symmetrically to the mold partition line. Only the upper area is shown in the half section. A first or left independent mold upper part 21a, which translates laterally (being movable in the same direction), is situated above a first or left movable mold half 20a on the entry side of the plastic tube 10. A first or left independently movable slide 22a, which is located above the first mold upper part 21a, also translates laterally (moving in the same direction). The first movable slide 22a includes suction openings 23.
Similarly, the blow mold includes a second or right independent mold upper part 21b disposed over a second or right movable mold half 20b, and a second or right movable slide 22b located over the second mold upper part 21b.
In
After the extrusion of a sufficient length of the tube, the first slide 22a and its counterpart second slide 22b move together to the diameter of the tube, cf.
The blow mold is moved into a separate blowing station in
Referring to
At this point, support air is applied to the core rod 24 (indicated by arrow L), and, as shown in
Using a correspondingly lengthened core rod 24 and suitable holding means on the end, the same method is also possible for producing a blank having a reinforced floor and additional threaded nipple according to
The blank can also be produced similarly to
Number | Date | Country | Kind |
---|---|---|---|
102009015964.9 | Apr 2009 | DE | national |