The present disclosure is directed to pressure vacuum relief valves and, more particularly, a pressure vacuum relief valve that provides monitoring capabilities.
Storage containers, such as storage tanks, vessels, conduits, and the like, can be utilized to store various fluids (e.g., oil, gas, etc.). The internal vapor pressure of these storage containers may vary based on various factors, such as, for example, the amount of fluid in the storage container, the temperature of the fluid in the storage container, the volatility of the fluid in the storage tank, and the temperature outside the storage container. Pressures above or below certain thresholds may, however, damage the storage container. For example, positive pressures or vacuum over-pressures may cause the storage container to collapse. Pressures above certain thresholds can also lead to excess emissions and product loss, while pressures below certain thresholds can compromise the quality of the fluid stored in the container (as this increases the likelihood that contaminants will be pulled in from the atmosphere).
Pressure vacuum relief valves, which are also known as breather vents, tank vents, and pressure vacuum release vents, can be installed on a storage container to relieve undesirably high or undesirably low pressures in the storage container that can occur as a result of any the above-noted factors. Pressure vacuum relief valves are, however, difficult to monitor because they are often installed on top of storage containers. As such, it can be difficult to assess whether a pressure vacuum relief valve, when installed on a storage container, is the appropriate size for that storage container and is operating properly. An incorrectly sized pressure vacuum relief valve will tend to be overactive (e.g., opening when it does not need to, opening and closing more frequently than necessary), and will likely wear out prematurely. An overactive pressure vacuum relief valve is also more likely to produce vapor emissions causing product loss and/or emissions that are odorous, explosive, and/or toxic, which are undesirable in view of various environmental regulations and may be potentially harmful to operators and other equipment.
In accordance with a first exemplary aspect, a valve assembly is provided. The valve assembly is adapted to be coupled to a storage container to relieve vacuum and over pressure conditions in the storage container. The valve assembly includes a body having a first port, a second port, and a third port, the first port adapted to be in fluid communication with the storage container. The body includes a first valve seat disposed adjacent the second port. The valve assembly includes a first control assembly including a first valve stem and a first closure element coupled to the first valve stem. The first closure member is movable relative to the first valve seat in response to changes in pressure in the container. The valve assembly also includes a mounting bracket coupled to a portion of the body. The mounting bracket has a body and an aperture extending through the body. The valve assembly further includes a monitoring device disposed within the aperture of the mounting bracket and proximate to a portion of the first control assembly. The monitoring device is configured to obtain data indicative of the operation of the valve assembly.
In accordance with a second exemplary aspect, a valve assembly is provided. The valve assembly is adapted to be coupled to a storage container to relieve vacuum and over pressure conditions in the storage container. The valve assembly includes a body having a first port, a second port, and a third port, the first port adapted to be in fluid communication with the storage container, the second port adapted to be in fluid communication with the atmosphere or an outlet connection, the third port adapted to be in fluid communication with the atmosphere, the body including a first valve seat disposed adjacent the second port and a second valve seat adjacent the third port. The valve assembly also includes first and second control assemblies. The first control assembly includes a first valve stem and a first closure element coupled to the first valve stem, the first closure member being movable relative to the first valve seat to relieve over pressure in the storage container. The second control assembly includes a second valve stem and a second closure member coupled to the second valve stem, the second closure member being movable relative to the second valve seat to relieve a vacuum pressure in the storage container. The valve assembly also includes a mounting bracket coupled to a portion of the body, the mounting bracket having a body and an aperture extending through the body. The valve assembly further includes a monitoring device slidably disposed within the aperture of the mounting bracket and proximate to a portion of the first or second control assembly, the monitoring device being configured to obtain data indicative of the operation of the valve assembly.
In accordance with a third exemplary aspect, a mounting assembly is provided. The mounting assembly is for use in operably coupling a monitoring device to a valve assembly adapted to be coupled to a storage container to relieve vacuum and over pressure conditions in the storage container. The mounting assembly includes a mounting bracket adapted to be coupled to a portion of a body of the valve assembly, the mounting bracket having a body and an aperture extending through the body. The mounting assembly also includes a mounting tube configured to be slidably disposed within the aperture of the mounting bracket, the mounting tube adapted to receive a monitoring device. The monitoring device is configured to obtain data indicative of the operation of the valve assembly.
In further accordance with any one or more of the foregoing first, second, or third exemplary aspects, a valve assembly and/or a mounting assembly may include any one or more of the following further preferred forms.
In one preferred form, when the pressure in the container is less than a vacuum pressure threshold, such that vacuum conditions exist in the storage container, the first closure member sealingly contacts the first valve seat such that the second port is closed and fluid flows in through the third port, out of the first port, and into the container. When the pressure in the container is greater than an overpressure threshold, such that over pressure conditions exist in the storage container, the first closure member is spaced away from the first valve seat such that the second port is open and fluid flows out of the container, into the first port, and through the second port.
In another preferred form, the body includes a second valve seat disposed adjacent the third port, and the valve assembly further includes a second control assembly. The second control assembly includes a second valve stem and a second closure element coupled to the second valve stem, the second closure member being movable relative to the second valve seat in response to changes in pressure in the container.
In another preferred form, when the pressure in the container is less than a vacuum pressure threshold, such that vacuum conditions exist in the storage container, the first closure member sealingly contacts the first valve seat and the second closure member moves away from the second valve seat, such that the second port is closed, the third port is open, and fluid flows in through the third port, out of the first port, and into the container. When the pressure in the container is greater than an overpressure threshold, such that over pressure conditions exist in the storage container, the second closure member sealingly contacts the second valve seat and the first closure member is spaced away from the first valve seat, such that the third port is closed, the second port is open, and fluid flows out of the container, into the first port, and through the second port.
In another preferred form, the valve assembly includes a screen coupled to the body to fluidly couple the second port to the atmosphere. When the pressure in the container is greater than the overpressure threshold, fluid can flow out of the container, into the first port, through the second port, and out of the valve assembly to the atmosphere via the screen.
In another preferred form, the valve assembly includes a flange adapted to be coupled to a pipe to couple the second port to downstream piping. When the pressure in the container is greater than the overpressure threshold, fluid can flow out of the container, into the first port, through the second port, and out of the valve assembly to the downstream piping.
In another preferred form, the monitoring device is communicatively coupled to a wireless transmitter, which is communicatively coupled to a controller remotely located from the valve assembly. The monitoring device is configured to transmit the obtained data to the controller via the wireless transmitter.
In another preferred form, the monitoring device includes a proximity switch disposed proximate to the first valve stem and configured to obtain data indicative of the operation of the first valve stem.
In another preferred form, the valve assembly includes a hood coupled to the body. The mounting bracket is coupled to a top portion of the hood.
In another preferred form, the hood defines an aperture proximate to an upper end of the first valve stem. The monitoring device is configured to be disposed in the aperture proximate to the upper end of the first valve stem and is configured to obtain data indicative of the position of the first valve stem.
In another preferred form, the valve assembly includes a mounting tube slidably disposed within the aperture of the mounting bracket, the monitoring device being partially disposed in the mounting tube.
In another preferred form, the second port is adapted to be in fluid communication with the atmosphere, and the valve assembly further includes a screen coupled the body to fluidly couple the second port to the atmosphere. When the pressure in the storage container is greater than the overpressure threshold, fluid can flow out of the container, into the first port, through the second port, and out of the valve assembly to the atmosphere via the screen.
In another preferred form, the second port is adapted to be in fluid communication with the outlet connection, and the valve assembly further includes a flange adapted to be coupled to a pipe to couple the second port to downstream piping. When the pressure in the container is greater than the overpressure threshold, fluid can flow out of the container, into the first port, through the second port, and out of the valve assembly to the downstream piping.
In another preferred form, the monitoring device is communicatively coupled to a wireless transmitter, which is communicatively coupled to a controller remotely located from the valve assembly. The monitoring device is configured to transmit the obtained data to the controller via the wireless transmitter.
In another preferred form, the monitoring device includes a proximity switch disposed proximate to the first valve stem and configured to obtain data indicative of the operation of the first valve stem.
In another preferred form, the monitoring device is disposed in the aperture proximate to an upper end of the first valve stem or an upper end of the second valve stem. The monitoring device is configured to obtain data indicative of the position of the first valve stem or the second valve stem.
In another preferred form, the monitoring device and/or the mounting tube is/are field removable.
Although the following text sets forth a detailed description of one or more exemplary embodiments of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. Accordingly, the following detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention, as describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent. It is envisioned that such alternative embodiments would still fall within the scope of the claims defining the invention.
The pressure vacuum relief valve 100, hereinafter the PVRV 100, illustrated in
As best shown in
With reference still to
As shown in
As shown in
With continued reference to
As shown in
The components of the first control assembly 124 are assembled and coupled to the body 104 via a guide assembly. As shown in
As shown in
With continued reference to
With continued reference to
As shown in
Upon initial installation of the PVRV 100, and so long as the internal pressure within the storage container is within a normal range (i.e., the internal pressure is above a minimum or vacuum pressure threshold and is below a maximum pressure threshold or design set point), such that pressure or vacuum relief is not needed, the PVRV 100 is passive. When the PVRV 100 is passive, the first closure element 136, particularly the pallet disc 174, sealingly contacts the first valve seat 132, and the second closure element 236, particularly the pallet disc 284, sealingly contacts the second valve seat 182, as illustrated in
When, however, the internal pressure within the storage container falls outside of the normal range, the PVRV 100 is configured to activate and provide pressure or vacuum relief, thereby returning the internal pressure back to a pressure within the normal range. This is because the first control assembly 124, particularly the first closure element 136, and the second control assembly 128, particularly the second closure element 186, are movable responsive to increases or decreases in pressure in the storage container outside of the normal range.
More specifically, when the internal pressure within the storage container falls below the minimum or vacuum pressure threshold (e.g., the value of the atmospheric pressure surrounding the storage container), which may, for example, occur during cold weather, the PVRV 100 is configured to provide vacuum relief, as illustrated in
On the other hand, when the internal pressure within the storage container rises above the maximum pressure threshold (e.g., a pre-determined safety set point for the storage container), which may, for example, occur during warm weather, the PVRV 100 is configured to provide pressure relief, as illustrated in
It will of course be appreciated that the PVRV 100 can vary and still fall within the intended scope of the present disclosure. While the PVRV 100 is configured for vent-to-atmosphere applications, the PVRV 100 can instead be configured for pipe-away applications. In other examples, the body 104 can be constructed differently. For example, the size and/or shape of the body 104 can vary, the body 104, the ports 114, 116, and 118 can be arranged differently, and/or the body 104 can include an additional flange for fluid connection with a pipe or other outlet connection (e.g., when the PVRV 100 is configured for pipe-away applications). The first and/or second control assemblies 124, 128 can also vary. If desired, the valve seats 132, 232 can vary in shape and/or size and/or can be retained within the body 104 in a different manner (e.g., by a different component). Moreover, the closure elements 136, 236 can vary in shape and/or size and/or can take the form of a plug, disk, or other suitable closure element. The valve stems 140, 240 can vary in shape and/or size and/or need not be integrally formed with the closure elements 136, 236. When the PVRV 100 is configured to pipe-away applications, the PVRV 100 need not include the shield 130, particularly the screen 153, as the PVRV 100 would no longer vent air to atmosphere. The components of the first and second control assemblies 124, 128 can also be coupled to one another and/or to the body 104 in a different manner. Further yet, it will be appreciated that pressure relief and vacuum relief can be accomplished in a different manner than described. For example, pressure relief and vacuum relief can be accomplished using only one control assembly instead of two separate control assemblies 124, 128 as illustrated herein.
As described above, pressure vacuum relief valves, such as the PVRV 100, are installed on top of storage containers, and are therefore difficult to access and monitor while in operation, which can lead to a whole host of problems. Accordingly, the present disclosure provides a monitoring device that can be coupled to the PVRV 100 to monitor the operation of the PVRV 100. The monitoring device disclosed herein is operably and removably coupled to the body 104 of the PVRV 100 via a mounting assembly (e.g., a tube and bracket assembly). In turn, the monitoring device can obtain data associated with the operation of the PVRV 100. Specifically, the monitoring device can obtain data indicative of the usage of the PVRV 100, such as, for example, data indicative of whether the PVRV 100 is open (i.e., providing relief) or closed, the degree that the PVRV 100 is open or closed, how often the state of the PVRV 100 changes (between being open and closed), the amount of fluid flowing through the PVRV 100, the noise due to the PVRV 100, and/or any other data that may be useful in analyzing the PVRV 100. The monitoring device, which is preferably coupled to a process control network (e.g., a remotely located controller for a process control network) via a wired and/or wireless coupling (e.g., a wireless transmitter), can transmit the obtained data to and/or receive data (e.g., operational instructions) from the process control network (e.g., the remotely located controller) via the coupling. This allows the PVRV 100 to be remotely monitored by the process controller and/or operators within the process control network.
The proximity switch 320 is generally configured to detect targets (e.g., magnets) that are coupled to an object (e.g., a valve stem) to determine one or more operational parameters of the object, such as the position of the valve stem. In this example, the proximity switch 320 is configured to detect a target (e.g., a magnet) coupled to the first valve stem 140 or the second valve stem 240 to determine the position of the valve stem 140, 240. In turn, the proximity switch 320 can transmit, via the conduit 332, any obtained data to the wireless transmitter 336 for distribution to the process control network (e.g., to a remotely located controller). The proximity switch 320 can likewise receive data (e.g., instructions) from the wireless transmitter via the conduit 332.
In other examples, the proximity switch 320 can be configured to detect a target coupled to a different portion of the PVRV 100 (e.g., a different portion of the first control assembly 124 or the second control assembly 128) to determine similar or different operational parameters (e.g., the position of the closure element 136, 236). The monitoring device 320 can also take the form of a different switch (e.g., a limit switch), a sensor (e.g., a flow sensor, a noise sensor, an optical sensor, an ultrasonic sensor), or another type of device suitable for monitoring the operation of components in a process control environment. When the monitoring device 320 takes on a different form, the monitoring device 320 can obtain similar or different data (e.g., flow data, noise data, etc.) indicative of the operation of the PVRV 100, thereby allowing similar or different operational aspects of the PVRV 100 to be remotely monitored.
As illustrated in
In other examples, the mounting assembly 350 can vary and still fall within the intended scope of the present disclosure. The mounting bracket 354 can have a different shape (e.g., a cylindrical shape) and/or can have a different size. The tube 358 can have a different shape (e.g., a rectangular shape) and/or can have a different size. For example, the tube 358 can define a smaller or larger hollow interior 389 (e.g., to accommodate a different sized or shaped monitoring device 320) and/or can have a different length (e.g., can be shorter or longer), depending on the desired application. When the tube 358 varies in shape and/or size, the first aperture 370 of the mounting bracket 354 can similarly vary in shape and/or size.
It will be appreciated that the bracket 354 can be coupled to the hood 144 before or after the monitoring device 320 is disposed within the tube 358. Regardless, when the bracket 354 is coupled to the hood 144 and the monitoring device 320 is disposed within the tube 358, the tube 358, which carries the monitoring device 320, is slidably coupled to the mounting bracket 354. More specifically, the tube 358 is inserted into and through the aperture 370 of the bracket 354. The first end 387 of the tube 358 is inserted into the opening 192 formed in the hood 144, such that the first end 324 of the monitoring device 320 is disposed proximate to the upper end 180 of the first valve stem 140. It will be appreciated that the position of the tube 358, and thus the monitoring device 320, can be adjusted, relative to the upper end 180 of the first valve stem 140 and the mounting bracket 354 by sliding the tube 358 toward or away from the upper end 180 of the first valve stem 140. This facilitates an easily and field adjustable monitoring device 320.
In other examples, the mounting bracket 354 can be coupled to the hood 144 in a different manner (e.g., via a magnetic connection). The tube 358 can also be coupled to the mounting bracket 354 in a different manner (e.g., via a hook and latch mechanism, via a magnetic connection). Moreover, the mounting assembly 350 can instead be used to operably couple the monitoring device 320 to a different portion of the first control assembly 124, to the second control assembly 128 (e.g., to the second valve stem 240 of the PVRV 100), or to another portion of the PVRV 100. To this end, the mounting bracket 354 can be secured to a different portion of the PVRV 100, such as, for example, within the PVRV 100, to the lid 234 of the second control assembly 128, or to some other component. Moreover, two mounting assemblies 350 can be used to operably couple two monitoring devices 320 to the body 104 of the PVRV. For example, one mounting assembly 350 can be used to operably couple one monitoring device 320 to the first valve stem 140, while another mounting assembly 350 can be used to operably couple another monitoring device 320 to the second valve stem 240.
It should be appreciated that the monitoring device 320 and the components of the mounting assembly 350 are field removable and replaceable. For example, the mounting tube 358 can be quickly and easily removed and replaced with a new mounting tube 358. Moreover, it should also be appreciated that existing pressure vacuum relief valves can be retrofitted to include the monitoring device 320 via the mounting assembly 350. Finally, it should be appreciated that the mounting assembly 350 can be used in connection with pressure vacuum relief valves other than the PVRV 100, thereby allowing the monitoring device 320 or other monitoring devices to be used in connection other pressure vacuum relief valves. For example, the mounting assembly 350 can be used in connection with other pressure vacuum relief valves manufactured by Emerson Process Management, such as, for example, the ENARDO Series 800-SO pressure vacuum vent, the ENARDO Series 900-SO pressure vacuum vent, the ENARDO Series ES-900-SO pressure vacuum vent, the ENARDO Series ES-900-SO pressure vacuum vent, the ENARDO Series 450 pressure vacuum relief valve, the ENARDO Series 550 pressure vacuum relief valve, the ENARDO Series 850 pressure vacuum relief valve, the ENARDO Series 850/MVC pressure vacuum relief valve, the ENARDO Series 860 vacuum relief valve, and the ENARDO Series 960 vacuum relief valve. The mounting assembly 350 can be coupled to other pressure vacuum relief valves in a similar manner (e.g., using guide rods of those valves) or in a different manner.
With the monitoring device 320 arranged in the described manner, the monitoring device 320, which in this example is a proximity switch, can detect a target (e.g., a magnet) coupled to the first valve stem 140 (e.g., the upper end 180) to monitor the position of the first valve stem 140. Accordingly, the monitoring device 320 can detect when the PVRV 100, particularly the pressure relief assembly 124, is open or closed, as well the degree to which the PVRV 100, particularly the pressure relief assembly 124, is open or closed. For example, when the PVRV 100 provides pressure relief to the storage container, such that the first closure element 136 and the first valve stem 140 move upward, or away from the first valve seat 132 (see
With reference still to
In other examples, the monitoring device 400 can be a different monitoring device (e.g., a limit switch, a flow sensor, a noise sensor, etc.). When the monitoring device 400 takes on a different form, the monitoring device 400 can obtain similar or different data (e.g., flow data, noise data, etc.) indicative of the operation of the PVRV 100. In other examples, the monitoring device 400 can be operably coupled to the second valve stem 240 using the mounting assembly 350 or another mounting assembly. Alternatively, the PVRV 100 need not include the monitoring device 400 (i.e., the PVRV 100 can only include the monitoring device 300 and/or different monitoring devices).
The monitoring device 320 can transmit any obtained data to the wireless transmitter (or other coupling) via the conduit 332. In this example, the monitoring device 320 can transmit data indicative of the position of the first valve stem 140 to the wireless transmitter 336. Similarly, the monitoring device 400 can, via the conduit 432, transmit any obtained data to the wireless transmitter 336. In this example, the monitoring device 400 can transmit data indicative of the position of the second valve stem 240 to the wireless transmitter 336. In other examples, the monitoring device 320 and/or the monitoring device 400 can transmit other data indicative of the operation of the PVRV 100, such as, for example, data indicative of the amount of fluid flowing through the PVRV 100, the noise due to the PVRV 100, emissions released by the PVRV 100, or any other data, to the wireless transmitter 336.
The wireless transmitter 336 can, when desired, transmit any obtained data to a remotely located process controller of the process control network. The process controller, which may be, by way of example, a DeltaV™ controller sold by Emerson Process Management, can thus remotely monitor the operation of the PVRV 100. More specifically, the process controller, as well as any users of the process controller, can remotely and readily determine whether the PVRV 100 is open or closed, the degree to which the PVRV 100 is open or closed, how often the PVRV 100 opens or closes, as well as other operational information.
The process controller, and/or users of the process controller, can also analyze (e.g., aggregate, sum, integrate, compare) the data, as well as any other data obtained from components in the process control network, to assess the diagnostics of the PVRV 100 (e.g., assess whether the PVRV 100 is the appropriate size, is operating properly, is in need of maintenance, etc.). For example, if it is determined (by the process controller and/or the users of the controller) that the PVRV 100 is open (i.e., providing relief) 100% of the time, it can be determined that the PVRV 100 is not the proper size for the storage container. As another example, if it is determined that the PVRV 100 is constantly operating in the so-called “flutter zone” (i.e., it is frequently, if not constantly, oscillating), it can be determined that the PVRV 100 is not the proper size for the storage container. As yet another example, if the storage container is being filled or drained, but the data obtained from the PVRV 100 does not indicate any state change (e.g., any change in the position of the valve stem 140 or the valve stem 240), it may be determined that the storage container should be shut down for safety reasons. As a further example, the total amount of venting and/or emissions can be determined based on the obtained data (e.g., by integrating the position data).
Based on the foregoing description, it should be appreciated that the devices, systems, and methods described herein provide a mounting assembly for coupling a monitoring device to a pressure vacuum relief valve, such that the pressure vacuum relief valve can be remotely monitored. Accordingly, it is possible to remotely determine whether the pressure vacuum relief valve is operating properly, whether the pressure vacuum relief is the appropriate size, and whether the pressure vacuum relief valve is causing unacceptable product loss and/or undesirable emissions (e.g., a high level of emissions, emissions that are odorous, explosive, and/or toxic). In turn, this will enhance the safety of the pressure vacuum relief valve and provide environmental (emissions) control.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4458535 | Juergens | Jul 1984 | A |
5913330 | Jones et al. | Jun 1999 | A |
6019126 | Kelada | Feb 2000 | A |
6305412 | Steele | Oct 2001 | B1 |
20020063555 | Maddox | May 2002 | A1 |
20040168722 | Veinotte | Sep 2004 | A1 |
20080061769 | Junk | Mar 2008 | A1 |
20130264341 | Cockerham et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
S5715173 | Jan 1982 | JP |
H08166084 | Jun 1996 | JP |
2002061766 | Feb 2002 | JP |
Entry |
---|
International Search Report and Written Opinion from International Application No. PCT/US2015/060988, dated Mar. 15, 2016. |
MCG 1097 Wireless Proximity Switch, L&J engineering, Rev. MCG 1097-3A. |
Number | Date | Country | |
---|---|---|---|
20160138725 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62080802 | Nov 2014 | US |