The invention relates to a vessel and more particularly to a pressure vessel having a hollow inner shell formed from a moldable material, an intermediate shell formed over the inner shell, and an outer shell formed over the intermediate shell, the outer shell impregnated with a ceramifying material adapted to form a ceramic layer around the outer layer when exposed to thermal energy.
Fuel cells have been proposed as a power source for electric vehicles and other applications. In proton exchange membrane (PEM) type fuel cells, hydrogen is supplied as a fuel to an anode of the fuel cell and oxygen is supplied as an oxidant to a cathode of the fuel cell. A plurality of fuel cells is stacked together in a fuel cell stack to form a fuel cell system. The fuel and oxidant are typically stored in pressurized hollow vessels such as fuel tanks, for example, disposed on an undercarriage of the vehicle.
A typical pressurized vessel 10 is illustrated in
The inner shell 12 of the vessel 10 is typically formed over an exterior portion of, or on an interior portion of, a finish facilitating fluid communication with an interior of the vessel 10. In
To minimize the effects of thermal energy on the inner shell(s) of typical vessels, a metal shell is formed around the outer shell of the vessel. Formation of such metal shells is labor intensive, increases weight, and maximizes both the assembly and material costs of the vessels.
It would be desirable to develop a hollow pressure vessel adapted to minimize the effect of thermal energy on the vessel, while also minimizing the assembly and material costs thereof.
Concordant and congruous with the present invention, a hollow pressure vessel adapted to minimize the effect of thermal energy on the vessel, while also minimizing the assembly and material costs thereof, has surprisingly been discovered.
In one embodiment, a vessel comprises an inner shell formed from a moldable material and forming a cavity therein; an intermediate shell formed over said inner shell; and an outer shell formed over said intermediate shell, said outer shell impregnated with a ceramifying material.
In another embodiment, a vessel comprises an inner shell formed from a moldable material and forming a cavity therein; an intermediate shell formed from a carbon fiber formed over said inner shell; and an outer shell formed from a glass fiber impregnated with a ceramifying material, wherein the ceramifying material is adapted to form a ceramic layer around said outer shell when exposed to thermal energy.
In another embodiment, a vessel comprises a hollow inner shell formed from a moldable material and forming a cavity therein; a first shell; a second shell formed between said first shell and said outer shell; and a ceramic shell formed over and penetrating into said first shell, said ceramic shell formed from a ceramifying material impregnated in the material of said first shell, wherein said ceramifying material forms said ceramic shell when exposed to thermal energy.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
a is a perspective view of a vessel partially in section as known in the art;
b is an enlarged fragmentary cross-sectional view of the vessel of highlighted by circle b in
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.
The pressurized fluid may be any fluid such as hydrogen gas and oxygen gas, a liquid, and both a liquid and a gas, for example.
The inner shell 312 of the vessel 310 is a hollow container adapted to store the pressurized fluid. As shown, the inner shell 312 is formed from a layer of polymer material, but the inner shell 312 may be formed from multiple layers, as desired. The inner shell 312 may be formed by blow molding, extrusion blow molding, rotational molding, or any other suitable process. In the embodiment shown, the inner shell 312 has a substantially cylindrical shape. However, the inner shell 312 may have any shape, as desired. Like the vessel 10, a first end (not shown) of the inner shell 312 can receive at least a portion of a boss (not shown). The inner shell 312 may be formed from a plastic such as polyethylene, PET, ethylene vinyl alcohol, or an ethylene vinyl acetate terpolymer. The inner shell 312 may also be formed from other moldable materials such as a metal, a glass, and the like.
The intermediate shell 314 of the vessel 310 is disposed on the inner shell 312 between the inner shell 312 and the outer shell 316. The intermediate shell 314 has a substantially cylindrical shape. As shown, the intermediate shell 314 substantially abuts the inner shell 312. The intermediate shell 314 may be formed from any moldable material such as a metal and a plastic, for example, or the intermediate shell 314 may be formed with a filament winding process. If the intermediate shell 314 is formed by a filament winding process, the intermediate shell 314 may be formed from a carbon fiber, a glass fiber, a composite fiber, a fiber having a resin coating, and the like, for example. It is understood that the material used to form the intermediate shell 314 may be selected based on the process used to affix the intermediate shell 314 to the inner shell 312, the use of the vessel 310, and the properties of the fluid to be stored in the vessel 310.
The outer shell 316 of the vessel 310 is disposed over at least a portion of the intermediate shell 314. The outer shell 316 has a substantially cylindrical shape. As shown in
The ceramifying material 322 is a compound including a matrix, at least one refractory mineral, and a flux. The ceramifying material 322 may selectively also include a functional additive. In the embodiment shown in
In use, the vessel 310 is coupled to a fuel-cell powered vehicle. It is understood that vessel 310 may be coupled to a vehicle powered by any means. When the vessel 310 is under ordinary operating conditions and in ambient temperatures, the vessel 310 as described above. However, when the vessel 310 is exposed to thermal energy having a temperature from about 150 degrees Celsius to about 300 degrees Celsius, the polymer matrix degrades. As the polymer matrix degrades and when the vessel 310 is exposed to thermal energy from about 300 degrees Celsius and about 1000 degrees Celsius, the refractory mineral enters a liquid phase and forms a porous ceramic shell 324, a process known as ceramification, as shown in
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.