This application is related to and claims priority to PCT International Application No. PCT/US2018/063643, filed Dec. 3, 2018, for “LOGIC CIRCUITRY,” and to PCT International Application No. PCT/US2019/026145, filed Apr. 5, 2019, for “LOGIC CIRCUITRY,” which claims priority to PCT International Application No. PCT/US2018/063631, filed Dec. 3, 2018, to International Application No. PCT/US2018/063624, filed Dec. 3, 2018, to International Application No. PCT/US2018/063630, filed Dec. 3, 2018, to International Application No. PCT/US2018/063638, filed Dec. 3, 2018, and to International Application No. PCT/US2018/063643, filed Dec. 3, 2018.
Some types of printing utilize liquid. For example, some types of printing extrude liquid onto media or material to produce a printed product (e.g., two-dimensional (2D) printed content, three-dimensional (3D) printed objects). In some examples, a print head may be utilized to extrude ink onto paper to print text and/or images. In some examples, a print head may be utilized to extrude fusing agent onto material in order to form a 3D printed object.
Some issues arise in the context of utilizing print liquid. Print liquid is a fluid for printing. Examples of print liquid include ink and fusing agent. In some examples, accurately sensing an amount of print liquid remaining in a reservoir may be difficult due to issues like liquid bridging, environmental conditions, and water vapor transmission rates. An inaccurately sensed liquid level may lead to changing the reservoir more often than necessary, wasting print liquid, and/or increasing printing expense. Accordingly, it may be beneficial to provide more delivered print liquid, a more reliable sensed print liquid level, and/or less ink supply changes.
A sensor or sensors may be utilized to increase print liquid level sensing accuracy. The sensor(s) may be housed in a print liquid supply unit. A print liquid supply unit is a container that holds print liquid. In some examples, a print liquid supply unit may be referred to as a print liquid container, a cartridge, a supply, print liquid supply cartridge, etc. The print liquid may be supplied to a printer. For example, four print liquid supplies may be utilized for a printer, which may include black, cyan, magenta, and yellow print liquid supplies. This may allow print liquid supplies with colors to be replaced individually. For example, a print liquid color that is used more often may be replaced individually without replacing remaining print liquid of another color or colors.
In some examples, print liquid supply units may be constructed of thermoplastics. Thermoplastics may be injection molded and may be compatible with high volume manufacturing and/or assembly methods. It may be beneficial for the construction materials (e.g., materials to construct components of the print liquid supply) to be compatible with the print liquid, to be robust to environmental conditions during shipping/handling, and/or to provide target water vapor transmission rates such that print quality is maintained over the life of the print liquid supply unit. In some examples, print liquid supply units may be constructed from thermoplastics such as polypropylene (PP), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polyethylene terephthalate (PET), polycarbonate (PC), and/or blends thereof. Some thermoplastics may be compatible with high volume assembly methods such as ultrasonic welding, vibration welding, and/or laser welding. In some examples, welding (e.g., laser welding) may be capable of creating waterproof joint seals to contain the print liquid. As used herein, “welding,” “weld,” and variations thereof may denote laser welding, ultrasonic welding, and/or vibration welding. Other approaches for joining components may be excluded from the term “welding” (and variations thereof) in some examples.
Welding may be beneficial because plastic parts may be joined via high speed melting. For example, welding may not include utilizing another bonding agent or additional parts. Issues may arise when attempting to pass an electrical connection through a welded joint. For example, a sensor may be housed in a print liquid supply unit and may utilize a conductor that passes through a welded joint. Some examples of the techniques described herein may include providing an electrical connection through a joint (e.g., a joint that is at least partially welded) using double-sided pressure sensitive adhesive (PSA) gaskets, elastomeric gaskets, and/or various glue joints. In some examples, the electrical connection may pass through a separate seal that does not pass through the welded joint.
Throughout the drawings, identical reference numbers may designate similar, but not necessarily identical, elements. Similar numbers may indicate similar elements. When an element is referred to without a reference number, this may refer to the element generally, without necessary limitation to any particular Figure. The figures are not necessarily to scale, and the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
In the example illustrated in
The first housing component 102 may be welded to the second housing component 104 along a supply joint 106. The supply joint 106 is an interface between the first housing component 102 and the second housing component 104. In some examples, the first housing component 102 may be welded to the second housing component 104 along the supply joint 106 using laser welding, ultrasonic welding, and/or vibration welding. In some examples, welding may be applied along the entire supply joint 106. In other examples, welding may be applied along a portion (e.g., not the entire path) of the supply joint 106.
Welding may cause a phase change in the material of the first housing component 102 and/or the second housing component 104. For example, the second housing component 104 may have an opening on one side of the second housing component 104 to be closed with the first housing component 102 to make a waterproof seal for the print liquid. In some examples, the first housing component 102 and the second housing component 104 may be made of polypropylene material and may be joined using laser welding.
In some examples, the first housing component 102 may be press-fit to the second housing component 104 via a post or posts that serve to align the first housing component 102 and keep it on the second housing component 104 as the print liquid supply unit 100 enters a welder. Pressure may be applied to the print liquid supply unit 100. For example, a clamp may be applied to the first housing component 102 while the second housing component 104 is supported. A laser beam may be passed through the first housing component 102 to the underlying supply joint 106 geometry below. The second housing component 104 may absorb a portion (e.g., a majority) of the energy, which may cause the material of the second housing component 104 (along the supply joint 106, for example) to melt. The pressure and phase change of the material may cause the first housing component 102 to join to the second housing component 104. In some examples, because the print liquid supply unit 100 is under pressure, the print liquid supply unit 100 may collapse slightly, which may cause the material along the supply joint 106 to widen.
A conductor 108 may be situated through the supply joint 106. For example, the conductor 108 may be situated through the supply joint 106 from an outside of the print liquid supply unit 100 to an inside of the print liquid supply unit 100. In some examples, the inside of the print liquid supply unit 100 may contain print liquid. In some examples, the conductor 108 may be coupled to a sensor for the interior of the print liquid supply unit 100. In some examples, the conductor 108 may be coupled to an electrical interface (e.g., electrical connection pad(s)) for the exterior of the print liquid supply unit 100. The electrical interface may be utilized to communicate with a printer in some examples.
The conductor 108 may be a material that is able to conduct electricity or electrical signals. For example, the conductor 108 may be a metal wire or ribbon. In some examples, multiple conductors 108 may be situated through the supply joint 106.
The conductor 108 may be sealed in the supply joint 106 with a sealing material 110. The sealing material 110 is a material that provides a waterproof seal. For example, the sealing material 110 may prevent the print liquid from leaking from the inside of the print liquid supply unit 100 to the outside of the print liquid supply unit 100, while allowing the conductor 108 (or conductors 108) to pass through the supply joint 106. In some examples, the sealing material 110 may isolate and/or protect the conductor 108 from the print liquid. In some examples, a protective layer or layers may be utilized in combination with a sealing material or materials. For example, an overmolded protective layer or layers may be utilized to house a conductor or conductor(s) 108 and a sealing material 110 may be utilized to seal the supply joint 106 at the conductor(s) 108. In some examples, the protective layer or layers may not be sealing material. For instance, a protective layer or layers may house a conductor or conductors, and a sealing material may be applied outside of (e.g., on or around) the protective layer or layers to seal the supply joint around the protective material and conductor(s). In some examples, the protective layer(s) may be plastic, rubber, elastomeric material, adhesive(s), film(s), etc. In some examples, the protective layer or layers may be sealing material.
Some examples of the sealing material 110 may include plastic, rubber, elastomeric material, thermoplastic elastomer (TPE), and/or pressure sensitive adhesive (PSA). For instance, examples of the sealing material 110 include pressure sensitive adhesive gaskets, elastomeric gaskets, adhesives, layers, films, etc. In some examples, the sealing material 110 may be flexible or rigid. In some examples, the sealing material 110 may be transmissive or non-transmissive. A transmissive sealing material 110 may allow welding (e.g., laser welding, ultrasonic welding, vibration welding) to be performed through the sealing material 110. For example, transmissive plastic, transmissive rubber, or transmissive thermoplastic elastomer may allow the transmission of a welding laser beam through the sealing material 110. In some examples, the sealing material 110 may have a melting temperature that is greater than a melting temperature of material along the supply joint 106. Using a sealing material 110 with a greater melting temperature may allow welding techniques to be performed while reducing or eliminating damage to the seal and/or the conductor 108. In some examples, the sealing material 110 may be compatible with the print liquid. For example, the sealing material 110 may not significantly degrade in the presence of print liquid and/or may not negatively impact the quality of the print liquid.
In some examples, welding may be performed with a weld (e.g., ultrasonic weld, laser weld) that is not applied along a portion of the supply joint 106 with the sealing material 110. For instance, the sealing material 110 may be non-transmissive and the weld may not be applied over the sealing material 110 to avoid damaging the sealing material 110 and/or conductor(s) 108.
In some examples, the sealing material 110 may be an overmolded protective layer or layers on the conductor 108 or conductors 108. For example, a conductor 108 or conductors 108 may be embedded within (e.g., sandwiched between) the sealing material 110.
In some examples, a strain sensor or a pressure sensor may be utilized to detect a condition (e.g., pressure and/or structural condition) in the print liquid container. For instance, the print liquid container may include a pressure chamber in some examples. The pressure chamber is a device that changes structure based on pressure. The pressure chamber may be expandable and collapsible. An example of a pressure chamber is a bag. In some examples, the pressure chamber may be utilized to regulate pressure (e.g., to avoid over-pressurization and/or under-pressurization due to altitude and/or temperature variations) inside of the print liquid container. In some examples, the pressure chamber may be expanded (e.g., inflated) in order to purge print liquid from a print head for servicing. In some examples, the strain sensor may be utilized to detect structural deflection of the print liquid container due to expansion of the pressure chamber. In some examples, the pressure sensor may be utilized to detect a pressure change in the print liquid container due to the expansion of the pressure chamber.
The method 300 may also include welding 304 the print liquid container lid to a print liquid container body. The electrical conductor may be situated in a joint between the print liquid container lid and the print liquid container body. The electrical conductor may be sealed in the joint with sealing material. In some examples, the sealing material may include pressure-sensitive adhesive, a gasket, elastomeric material, or other sealant (e.g., non-elastomeric sealant). Some examples of sealants may include 1 or 2 part epoxy type sealants. Some epoxy type sealants may not be elastomeric in liquid form or after curing.
In some examples, the method 300 may include applying the sealing material by installing the sealing material in the print liquid container lid and/or the print liquid container body before welding the print liquid container lid to the print liquid container body. For example, a gasket or double-sided pressure sensitive adhesive may be applied to the print liquid container lid. Another gasket or double-sided pressure sensitive adhesive may be applied to the print liquid container body. After installing the sealing material in the print liquid container lid and/or in the print liquid container body, the print liquid container lid may be welded to the print liquid container body. In some examples, welding the print liquid container lid to the print liquid container body may include performing ultrasonic welding or laser welding between the print liquid container lid and the print liquid container body while avoiding welding a region of the electrical conductor in the joint.
In some examples, the method 300 may include applying the sealing material by injecting the sealing material into the joint via a port or ports. For example, the print liquid container lid may be welded to the print liquid container body before applying the sealing material. For instance, the electrical conductor, the digital liquid level sensor and/or the strain sensor or pressure sensor may be installed in the print liquid container lid, and the print liquid container lid may be welded to the print liquid container body using laser welding or ultrasonic welding. After welding, the sealing material (e.g., adhesive or sealant) may be injected into a port or ports in the print liquid container lid and/or the print liquid container body.
In some examples, electrical connector protective material may be a compressible (e.g., elastomeric) non-transmissive sealing material. For example, the electrical connector protective material may be compressible rubber and/or thermoplastic elastomer that is non-transmissive and/or that has a melting temperature that is too low to withstand welding (e.g., laser and/or ultrasonic welding). In some examples, sealing may be performed around the electrical connector using elastomeric material to create the seal (instead of adding gaskets and/or pieces of pressure sensitive adhesive, for instance). In some examples, the electrical connector and/or sensor may be installed with an electrical connector in the joint. The print liquid container lid may be welded to the print liquid container body. Laser and/or ultrasonic welding may be performed while omitting welding in a region over the electrical connector protective material to avoid damaging the protective material. As the print liquid container lid collapses during welding, the compression may seal the material around the electrical connector, to the print liquid container lid, to the print liquid container body, and/or to the material on both sides of the joint that interfaces with the electrical connector.
In a second procedure 432, electrical conductors 428 are installed on the print liquid container lid 418b (over the first sealing material 422, for example). The electrical conductors 428 are coupled to a sensor 426. The sensor 426 may include digital liquid level sensor and/or a strain sensor or pressure sensor. The sensor 426 may also be installed on the print liquid container lid 418b. For example, a carrier that supports the sensor 426 may be installed on posts 424 of the lid 418b.
In a third procedure 434, second sealing material 440 is applied to a print liquid container body 438a. The second sealing material 440 may be applied in a joint area. Examples of the second sealing material 440 may include a gasket or double-sided pressure sensitive adhesive.
In a fourth procedure 436, the print liquid container lid 418c may be welded to (e.g., assembled with) the print liquid container body 438b. For example, welding the print liquid container lid 418c to the print liquid container body 438b may include performing ultrasonic welding or laser welding between the print liquid container lid 418c and the print liquid container body 438b while avoiding welding a region 442 of the electrical conductor in the joint. In some examples, the welding (e.g., laser or ultrasonic welding) may be performed using compression from the joint collapse to seal the joint with the sealing materials 422, 440 (e.g., gaskets and/or double-side pressure sensitive adhesives) while omitting welding the region 442 above sealing materials 422, 440 to avoid damaging the sealing materials 422, 440 and/or the electrical conductors 428. The compression may seal the sealing materials 422, 440 around the electrical conductors 428, to the print liquid container lid 418c, to the print liquid container body 438b, and/or to the material on both sides of the joint that interfaces with the sealing materials 422, 440.
The procedures 430, 432, 434, 436 described in connection with
In a second procedure 554, the print liquid container lid 548b may be welded to the print liquid container body 556. For example, welding the print liquid container lid 548b to the print liquid container body 556 may include performing ultrasonic welding or laser welding between the print liquid container lid 548b and the print liquid container body 556. In some examples, the welding may be performed over the electrical conductors 546. In some examples, the welding (e.g., laser or ultrasonic welding) may be performed while omitting welding a region above the electrical conductors 546 to avoid damaging or the electrical conductors 546. Whether the welding is performed over the electrical conductors 546 may depend on connector transmissivity.
In some examples, sealing material may be applied by injecting the sealing material into the joint 545 via a port or ports. In the diagram illustrated in
In some examples, the supply joint 668a may be sealed using laser welding, ultrasonic welding, vibration welding, and/or adhesive, etc. In some examples, the electrical conductor 670a and/or a container property sensor 672a carrier 673a may be sealed to the print liquid container component 664 (e.g., print liquid container lid) with adhesive, gaskets, and/or pressure sensitive adhesive, etc.
In some examples, a slot 674a in the container wall 676a below the joint 668a may be used to seal the container property sensor 672a to the print liquid container component 664. For example, the electrical conductor 670a (e.g., electrical connector) may be passed through the slot 674a in the container wall 676a. In some examples, this may be accomplished by rotating the electrical conductor 670a with the top edge of the electrical connector passing through the slot 674a and then rotating the electrical conductor 670a such that the back side of the container property sensor 672a carrier 673a may be sealed to the inside of the print liquid container component 664. In some examples, the electrical conductor 670a (e.g., electrical connection) may be rotated upward toward the bottom of the lid to avoid interfering with the sealing procedure of the joint 668a. After the joint 668a is sealed, the electrical conductor 670a (e.g., electrical connector) may be passed through an opening 678a above the joint to route the electrical conductor 670a to a position on the print liquid container component 664 (e.g., print liquid container lid). As can be observed, the container wall 676a may include an interior recess for installing the container property sensor 672a (from the interior, for instance).
In some examples, the conductor 670a (e.g., connector) may be passed through the slot 674a first. Then, the back of the container property sensor 672a carrier 673a may be sealed to the interior recess of the print liquid container component 664. Then, the joint 668a may be sealed (e.g., the print liquid container lid may be sealed to a print liquid container body). Then, the conductor 670a (e.g., connector) may be passed through the opening 678a.
In some examples, a container property sensor may be installed in a recess in the container wall from the outside of the print liquid container component. This approach may simplify the assembly because the joint may be sealed first, and then the container property sensor carrier may be sealed to the print liquid container component (e.g., print liquid container lid) on the exterior. Then, the electrical conductor (e.g., electrical connector) may be passed through the opening above the joint.
In some examples, an electrical conductor 670b may not pass through a joint 668b. In some examples, a print liquid container may include a container property sensor 672b. The container property sensor 672b may include a liquid level sensor (e.g., digital liquid level sensor), temperature sensor, strain sensor, and/or pressure sensor. In some examples, the container property sensor 672b may be provided on a substrate (e.g., silicon substrate), which may be supported by a carrier 673b. The container property sensor 672b may be connected to a container wall 676b. In some examples, the container property sensor 672b may be indirectly connected to the container wall. For instance, the container property sensor 672b may be provided on a substrate, which is supported by the carrier 673b, which carrier 673b may be adhered or welded (e.g., sealed) to the wall. Accordingly, a container property sensor 672b may be connected to a container wall 676b of the print liquid container component 666. The container property sensor 672b may include a strain sensor or a pressure sensor that is connected to the container wall 676b. In some examples, the container property sensor 672b may include a digital liquid level sensor. The electrical conductor 670b may be coupled to the property sensor 672b. The electrical conductor 670b may pass through a slot 674b in the container wall 676b. The slot 674b may be distanced from the joint 668b of container shells. For example, the illustrated liquid container component 666 may be part of a container shell (e.g., a print liquid container lid). The joint 668b may be joined to a counterpart container shell (e.g., a print liquid container body). In some examples, an electrical conductor 670b may bypass the joint 668b and utilize a secondary seal around the electrical conductor 670b (e.g., flexible conductor) and/or the container property sensor 672b.
In some examples, the supply joint 668b may be sealed using laser welding, ultrasonic welding, vibration welding, and/or adhesive, etc. In some examples, the electrical conductor 670b and/or a container property sensor 672b carrier 673b may be sealed to the print liquid container component 666 (e.g., print liquid container lid) with adhesive, gaskets, and/or pressure sensitive adhesive, etc.
In some examples, a slot 674b in the container wall 676b below the joint 668b may be used to seal the container property sensor 672b carrier 673a to the print liquid container component 666. For example, the electrical conductor 670b (e.g., electrical connector) may be passed through the slot 674b in the container wall 676b. In this example, a smaller slot 674b may be utilized to pass through the container wall 672b. In some examples, the electrical conductor 670a (e.g., electrical connector) may be passed through the slot 674b below the joint 668b. The joint 668b may be sealed. Then, the electrical conductor 670a (e.g., electrical connector) may be passed through the opening 678b above the joint 668b. The slot 674b may be sealed. For example, the slot 674b below the joint 668b may be sealed to the print liquid container component (e.g., print liquid container lid).
In some examples, the conductor 670b (e.g., connector) may be passed through the slot 674b first. Then, the joint 668b may be sealed (e.g., the print liquid container lid may be sealed to a print liquid container body). Then, the conductor 670a (e.g., connector) may be passed through the opening 678b. Then, the slot 674b may be sealed to the conductor 670b (e.g., connector).
In some examples, an exterior recess or relief may be implemented for an electrical conductor 670a-b, such that the electrical conductor 670a-b may be flush with the exterior surface of the print liquid container component 664, 666. In some examples, a cover (e.g., cosmetic label, sticker, etc.) may be placed over the electrical conductor 670a-b (e.g., electrical connector) and/or the container property sensor 672a-b carrier 673a-b on the exterior.
While some of the examples are described herein in terms of laser welding through a transmissive thin flexible, elastomeric (e.g., compressive) or rigid electrical conductor, other techniques may be utilized in accordance with the disclosure. For example, some electrical conductor seals that may not be transmissive may be sealed in the joint using ultrasonic or vibration welding instead of laser welding.
Some examples of the techniques described herein may be beneficial. For example, some of the approaches and/or structures for passing a conductor or connector through a joint or through a container wall may be compatible with mass production approaches. The ability to use different materials to seal the conductor or connector may enable using materials that are compatible with different print liquids.
The front end 781 may have a print liquid outlet 785 through which the print liquid can be supplied to a printer, for example by insertion of a fluid pen of the printer therein. The print liquid outlet 785 may be provided closer to the bottom than to the top of the front end 781.
A gas inlet 786 may be provided on the front end 781 also, to enable gas such as air to be supplied to the cartridge, for example by insertion of a fluid pen of the printer therein. The gas inlet 786 may be positioned above the print liquid outlet 785.
A first wall 788 having an internal side 789 and an external side 790 may be provided to delimit a recess 791. In the example shown, the recess 791 extends from the first wall 788 across the entire width of the front end 781. The first wall 788 thus overhangs a notched corner of the housing. The external side 790 of the first wall 788 may be part of the first side 783 of the housing 780. Electrical connection pads 792 are exposed on the internal side of the first wall, as shown also in
In the example of
In some examples, the print liquid supply cartridge 1000 may include a conductor or conductors that are situated through a joint of the print liquid supply cartridge 1000. For example, a first conductor may be a serial data line and/or a second conductor may be a clock line. In some examples, a third conductor may be a power line and/or a fourth conductor may be a ground line. In some examples, the conductor or conductors may be coupled to the electrical connection pad or pads 792. The electrical connection pad(s) 792 may be situated in the recess 791.
In some examples, the electrical connection pad(s) 792 and the conductor(s) may be supported by a housing component. For example, the electrical connection pad(s) and the conductor(s) may be supported by the first housing component 102 (e.g., lid) described herein. For instance, the electrical connection pad(s) and the conductor(s) may be supported by the first wall 788, which may be a first wall 788 of a first housing component. In some examples, the print liquid supply cartridge 1000 includes a sensor or sensors. In some examples, the sensor(s) may be supported by the first housing component and/or the first wall 788.
In some examples, the print liquid supply cartridge 1000 may include a print liquid interface or interfaces. A print liquid interface is an interface for the passage of print liquid. Examples of a print liquid interface may include the print liquid outlet 785 and the print liquid inlet 787, which may be included in the front end 781 of the print liquid supply cartridge.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2018/063624 | Dec 2018 | WO | international |
PCT/US2018/063630 | Dec 2018 | WO | international |
PCT/US2018/063631 | Dec 2018 | WO | international |
PCT/US2018/063638 | Dec 2018 | WO | international |
PCT/US2018/063643 | Dec 2018 | WO | international |
PCT/US2019/026145 | Apr 2019 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/042465 | 7/18/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/117322 | 6/11/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4074284 | Dexter et al. | Feb 1978 | A |
4506276 | Kyser et al. | Mar 1985 | A |
4639738 | Young et al. | Jan 1987 | A |
4734787 | Hayashi | Mar 1988 | A |
5001596 | Hart | Mar 1991 | A |
5045811 | Lewis | Sep 1991 | A |
5079570 | Mohr et al. | Jan 1992 | A |
5142909 | Baughman | Sep 1992 | A |
5329254 | Takano | Jul 1994 | A |
5438351 | Trenchard et al. | Aug 1995 | A |
5471176 | James et al. | Nov 1995 | A |
5583544 | Stamer et al. | Dec 1996 | A |
5680960 | Keyes et al. | Oct 1997 | A |
5682184 | Stephany et al. | Oct 1997 | A |
5699091 | Bullock | Dec 1997 | A |
5731824 | Kneezel et al. | Mar 1998 | A |
5751323 | Swanson | May 1998 | A |
5757406 | Kaplinsky | May 1998 | A |
5777646 | Barinaga | Jul 1998 | A |
5788388 | Cowger et al. | Aug 1998 | A |
5861780 | Fukuda | Jan 1999 | A |
5975688 | Kanaya et al. | Nov 1999 | A |
6068363 | Saito | May 2000 | A |
6098457 | Poole | Aug 2000 | A |
6151039 | Hmelar et al. | Nov 2000 | A |
6164766 | Erickson | Dec 2000 | A |
6175929 | Hsu et al. | Jan 2001 | B1 |
6219933 | Taniguchi | Apr 2001 | B1 |
6299273 | Anderson | Oct 2001 | B1 |
6312074 | Walker | Nov 2001 | B1 |
6341853 | Scheffelin et al. | Jan 2002 | B1 |
6386693 | Michele | May 2002 | B1 |
6402299 | DeMeerleer | Jun 2002 | B1 |
6412901 | Su et al. | Jul 2002 | B2 |
6431670 | Schantz et al. | Aug 2002 | B1 |
6456802 | Phillips | Sep 2002 | B1 |
6457355 | Philipp | Oct 2002 | B1 |
6494553 | Donahue et al. | Dec 2002 | B1 |
6494568 | Hou et al. | Dec 2002 | B2 |
6598963 | Yamamoto et al. | Jul 2003 | B1 |
6641240 | Hsu et al. | Nov 2003 | B2 |
6641243 | Anderson et al. | Nov 2003 | B2 |
6648434 | Walker et al. | Nov 2003 | B2 |
6685290 | Farr et al. | Feb 2004 | B1 |
6736497 | Jung | May 2004 | B2 |
6796644 | Anderson, Jr. et al. | Sep 2004 | B1 |
6802581 | Hasseler et al. | Oct 2004 | B2 |
6802602 | Sakai et al. | Oct 2004 | B2 |
6811250 | Buchanan et al. | Nov 2004 | B2 |
6902256 | Anderson et al. | Jun 2005 | B2 |
6908179 | Pan et al. | Jun 2005 | B2 |
6959599 | Feldstein et al. | Nov 2005 | B2 |
6966222 | Carson et al. | Nov 2005 | B2 |
6969137 | Maeda | Nov 2005 | B2 |
7039734 | Sun et al. | May 2006 | B2 |
7077506 | Chen | Jul 2006 | B2 |
7171323 | Shipton et al. | Jan 2007 | B2 |
7240130 | Larson | Jul 2007 | B2 |
7260662 | Moriwaki et al. | Aug 2007 | B2 |
7328115 | Shipton et al. | Feb 2008 | B2 |
7380042 | Wang et al. | May 2008 | B2 |
7458656 | Smith | Dec 2008 | B2 |
7533960 | Yasuda et al. | May 2009 | B2 |
7547082 | Lee et al. | Jun 2009 | B2 |
7630304 | Larson et al. | Dec 2009 | B2 |
7686423 | Sato et al. | Mar 2010 | B2 |
7740347 | Silverbrook et al. | Jun 2010 | B2 |
7775638 | Hirosawa et al. | Aug 2010 | B2 |
7841712 | Muyskens et al. | Nov 2010 | B2 |
7886197 | Wegman | Feb 2011 | B2 |
7890690 | Naderi et al. | Feb 2011 | B2 |
7970042 | Lexmark | Jun 2011 | B2 |
8040215 | Zakriti | Oct 2011 | B2 |
8161224 | Laurencin et al. | Apr 2012 | B2 |
8215018 | Morita et al. | Jul 2012 | B2 |
8220910 | Wanibe | Jul 2012 | B2 |
8224602 | Lory et al. | Jul 2012 | B2 |
8289788 | Asauchi | Oct 2012 | B2 |
8331581 | Pennock | Dec 2012 | B2 |
8348377 | Asauchi | Jan 2013 | B2 |
8350628 | George et al. | Jan 2013 | B1 |
8364859 | Sato | Jan 2013 | B2 |
8386657 | Adkins et al. | Feb 2013 | B2 |
8393718 | Kida et al. | Mar 2013 | B2 |
8393721 | Katoh et al. | Mar 2013 | B2 |
8429437 | Asauchi | Apr 2013 | B2 |
8432421 | Muraki et al. | Apr 2013 | B2 |
8438919 | Phillips et al. | May 2013 | B2 |
8454137 | Price et al. | Jun 2013 | B2 |
8556394 | Chen | Oct 2013 | B2 |
8558577 | Soriano Fosas et al. | Oct 2013 | B1 |
8562091 | Sabanovic et al. | Oct 2013 | B2 |
8591012 | Yoshino et al. | Nov 2013 | B2 |
8608276 | Oohashi et al. | Dec 2013 | B2 |
8621116 | Fister et al. | Dec 2013 | B2 |
8651614 | Sakamoto | Feb 2014 | B2 |
8651643 | Harvey | Feb 2014 | B2 |
8721059 | Kodama et al. | May 2014 | B2 |
8721203 | Ehrhardt, Jr. | May 2014 | B2 |
8752943 | Hirano | Jun 2014 | B2 |
8864277 | Rice et al. | Oct 2014 | B2 |
8876257 | Harada et al. | Nov 2014 | B2 |
8888207 | Furness, III | Nov 2014 | B2 |
8892798 | Tailliet et al. | Nov 2014 | B2 |
8898358 | DeCesaris et al. | Nov 2014 | B2 |
8978487 | Fergusson et al. | Mar 2015 | B2 |
8990467 | Saito | Mar 2015 | B2 |
9079414 | Lester et al. | Jul 2015 | B2 |
9108448 | Bergstedt | Aug 2015 | B1 |
9132656 | Nicholson, III et al. | Sep 2015 | B2 |
9137093 | Abraham | Sep 2015 | B1 |
9176921 | Fister et al. | Nov 2015 | B2 |
9194734 | Mehrer | Nov 2015 | B2 |
9213396 | Booth et al. | Dec 2015 | B1 |
9213927 | Ahne et al. | Dec 2015 | B1 |
9254661 | Otaka et al. | Feb 2016 | B2 |
9298908 | Booth et al. | Mar 2016 | B1 |
9370934 | Asauchi et al. | Jun 2016 | B2 |
9400204 | Schoenberg | Jul 2016 | B2 |
9413356 | McKinley | Aug 2016 | B1 |
9413359 | Stirk | Aug 2016 | B2 |
9454504 | Evans | Sep 2016 | B2 |
9483003 | Thacker, III | Nov 2016 | B2 |
9487017 | Ge et al. | Nov 2016 | B2 |
9496884 | Azenkot et al. | Nov 2016 | B1 |
9511596 | Anderson et al. | Dec 2016 | B2 |
9561662 | Ward et al. | Feb 2017 | B2 |
9582443 | Switzer et al. | Feb 2017 | B1 |
9599500 | Ge et al. | Mar 2017 | B2 |
9619663 | Refstrup | Apr 2017 | B2 |
9671820 | Maruyama et al. | Jun 2017 | B2 |
9734121 | Pitigoi-Aron et al. | Aug 2017 | B2 |
9738087 | Kato | Aug 2017 | B2 |
9746799 | Jeran | Aug 2017 | B2 |
9770914 | Harvey et al. | Sep 2017 | B2 |
9776412 | Ge et al. | Oct 2017 | B2 |
9789697 | Knierim et al. | Oct 2017 | B1 |
9796178 | Maxfield | Oct 2017 | B2 |
9852282 | Jeran et al. | Dec 2017 | B2 |
9876794 | Adkins et al. | Jan 2018 | B2 |
9895917 | Corvese et al. | Feb 2018 | B2 |
9914306 | Jeran | Mar 2018 | B2 |
9922276 | Fister et al. | Mar 2018 | B2 |
9994036 | Angulo Navarro et al. | Jun 2018 | B2 |
10031882 | Srivastava et al. | Jul 2018 | B2 |
10052878 | Benneton | Aug 2018 | B2 |
10107667 | Cumbie et al. | Oct 2018 | B2 |
10146608 | Giovannini et al. | Dec 2018 | B2 |
10155379 | Ng et al. | Dec 2018 | B2 |
10214018 | Nozawa et al. | Feb 2019 | B2 |
10214019 | Campbell-Brown et al. | Feb 2019 | B2 |
10259230 | Asauchi | Apr 2019 | B2 |
10279594 | Horade | May 2019 | B2 |
10338838 | Olarig | Jul 2019 | B2 |
10471725 | Esterberg | Nov 2019 | B2 |
10875318 | Gardner | Dec 2020 | B1 |
10894423 | Gardner | Jan 2021 | B2 |
11034157 | Gardner | Jun 2021 | B2 |
20010029554 | Namba | Oct 2001 | A1 |
20010033316 | Eida | Oct 2001 | A1 |
20020012016 | Wilson | Jan 2002 | A1 |
20020012616 | Zhou et al. | Jan 2002 | A1 |
20020033855 | Kubota et al. | Mar 2002 | A1 |
20020109761 | Shimizu et al. | Aug 2002 | A1 |
20020129650 | Zimmermann | Sep 2002 | A1 |
20020154181 | Kubota et al. | Oct 2002 | A1 |
20030009595 | Collins | Jan 2003 | A1 |
20030018300 | Duchon et al. | Jan 2003 | A1 |
20030071862 | Tsukada et al. | Apr 2003 | A1 |
20030202024 | Corrigan | Oct 2003 | A1 |
20040021711 | Hasseler | Feb 2004 | A1 |
20040036733 | Kubota et al. | Feb 2004 | A1 |
20040085382 | Kosugi et al. | May 2004 | A1 |
20040155913 | Kosugi et al. | Aug 2004 | A1 |
20040252146 | Naka | Dec 2004 | A1 |
20050010910 | Lindhorst et al. | Jan 2005 | A1 |
20050093910 | Im | May 2005 | A1 |
20050125105 | Halstead | Jun 2005 | A1 |
20050126282 | Maatuk | Jun 2005 | A1 |
20050185595 | Lee | Aug 2005 | A1 |
20050229699 | Chai et al. | Oct 2005 | A1 |
20060007253 | Kosugi | Jan 2006 | A1 |
20060007295 | Ueda | Jan 2006 | A1 |
20060072952 | Plunkett et al. | Apr 2006 | A1 |
20060110199 | Walmsley et al. | May 2006 | A1 |
20060181583 | Usuda | Aug 2006 | A1 |
20060181719 | Aoki et al. | Aug 2006 | A1 |
20060221386 | Brooks et al. | Oct 2006 | A1 |
20060244795 | Hayasaki et al. | Nov 2006 | A1 |
20060268030 | Walmsley et al. | Nov 2006 | A1 |
20060274103 | Kim | Dec 2006 | A1 |
20060290723 | Jeong et al. | Dec 2006 | A1 |
20070024650 | Reinter et al. | Feb 2007 | A1 |
20070068249 | Eguchi | Mar 2007 | A1 |
20070088816 | Hrustemovic et al. | Apr 2007 | A1 |
20070115307 | Smith | May 2007 | A1 |
20070146409 | Kubota et al. | Jun 2007 | A1 |
20070247497 | Buchanan | Oct 2007 | A1 |
20080024555 | Kimura | Jan 2008 | A1 |
20080041152 | Schoenberg | Feb 2008 | A1 |
20080107151 | Khadkikar et al. | May 2008 | A1 |
20080129779 | Walmsley et al. | Jun 2008 | A1 |
20080143476 | Cheung et al. | Jun 2008 | A1 |
20080165232 | Yuen | Jul 2008 | A1 |
20080192074 | Dubois | Aug 2008 | A1 |
20080211838 | Zhang | Sep 2008 | A1 |
20080246626 | Sheafor et al. | Oct 2008 | A1 |
20080298455 | Ilia et al. | Dec 2008 | A1 |
20080307134 | Geissler et al. | Dec 2008 | A1 |
20090013779 | Usui | Jan 2009 | A1 |
20090021766 | Yamazaki | Jan 2009 | A1 |
20090177823 | Chao | Jul 2009 | A1 |
20090179678 | Hardin | Jul 2009 | A1 |
20090290005 | Wanibe | Nov 2009 | A1 |
20090309941 | Price | Dec 2009 | A1 |
20100082271 | McCann et al. | Apr 2010 | A1 |
20100138745 | McNamara | Jun 2010 | A1 |
20100205350 | Bryant-Rich | Aug 2010 | A1 |
20100220128 | Zaba | Sep 2010 | A1 |
20100248208 | Okubo et al. | Sep 2010 | A1 |
20100254202 | Asauchi | Oct 2010 | A1 |
20100257327 | Kosugi | Oct 2010 | A1 |
20100306431 | Adkins et al. | Dec 2010 | A1 |
20110009938 | Dowling | Jan 2011 | A1 |
20110029705 | Evans | Feb 2011 | A1 |
20110050793 | Kumagai et al. | Mar 2011 | A1 |
20110087914 | Files et al. | Apr 2011 | A1 |
20110113171 | Radhakrishnan et al. | May 2011 | A1 |
20110131441 | Asauchi | Jun 2011 | A1 |
20110279530 | Love | Nov 2011 | A1 |
20110285027 | Lee | Nov 2011 | A1 |
20120128379 | Takeda | May 2012 | A1 |
20120243559 | Pan | Sep 2012 | A1 |
20120284429 | Adkins et al. | Nov 2012 | A1 |
20120299989 | Prothon | Nov 2012 | A1 |
20130018513 | Metselaar | Jan 2013 | A1 |
20130054933 | Fister et al. | Feb 2013 | A1 |
20130067015 | Vasters | Mar 2013 | A1 |
20130067016 | Adkins et al. | Mar 2013 | A1 |
20130155142 | Browning et al. | Jun 2013 | A1 |
20130250024 | Kakishima | Sep 2013 | A1 |
20130295245 | Gardner et al. | Nov 2013 | A1 |
20140040517 | Fister et al. | Feb 2014 | A1 |
20140095750 | Tailliet | Apr 2014 | A1 |
20140164660 | DeCesaris et al. | Jun 2014 | A1 |
20140211241 | Rice et al. | Jul 2014 | A1 |
20140260520 | Schoenberg | Sep 2014 | A1 |
20140265049 | Burris et al. | Sep 2014 | A1 |
20140337553 | Du et al. | Nov 2014 | A1 |
20140351469 | Fister et al. | Nov 2014 | A1 |
20140354729 | Vanbrocklin | Dec 2014 | A1 |
20140372652 | Shu | Dec 2014 | A1 |
20140375321 | Ikeya | Dec 2014 | A1 |
20140375730 | Campbell-Brown | Dec 2014 | A1 |
20150028671 | Ragaini | Jan 2015 | A1 |
20150052996 | Niemann | Feb 2015 | A1 |
20150074304 | Adkins et al. | Mar 2015 | A1 |
20150089630 | Lee | Mar 2015 | A1 |
20150239254 | Muyskens et al. | Aug 2015 | A1 |
20150285526 | Smith et al. | Oct 2015 | A1 |
20150343792 | Refstrup | Dec 2015 | A1 |
20160055402 | Fister et al. | Feb 2016 | A1 |
20160098359 | Adkins et al. | Apr 2016 | A1 |
20160110535 | Booth | Apr 2016 | A1 |
20160114590 | Arpin | Apr 2016 | A1 |
20160279962 | Ishida et al. | Sep 2016 | A1 |
20160357691 | Ahne | Dec 2016 | A1 |
20160364305 | Pitigou-Aron | Dec 2016 | A1 |
20160368273 | Ishikawa | Dec 2016 | A1 |
20170032135 | Refstrup | Feb 2017 | A1 |
20170050383 | Bell | Feb 2017 | A1 |
20170100941 | Kuribayashi | Apr 2017 | A1 |
20170144448 | Smith | May 2017 | A1 |
20170157929 | Yokoo | Jun 2017 | A1 |
20170168976 | Yost et al. | Jun 2017 | A1 |
20170169623 | Chen | Jun 2017 | A1 |
20170182786 | Angulo Navarro | Jun 2017 | A1 |
20170189011 | Stone et al. | Jul 2017 | A1 |
20170194913 | Wilson et al. | Jul 2017 | A1 |
20170230540 | Sasaki | Aug 2017 | A1 |
20170330449 | Lunardhi | Nov 2017 | A1 |
20180050537 | Bakker et al. | Feb 2018 | A1 |
20180100753 | Cumbie et al. | Apr 2018 | A1 |
20180143935 | Cox | May 2018 | A1 |
20180157943 | Fister et al. | Jun 2018 | A1 |
20180162137 | Van Brocklin et al. | Jun 2018 | A1 |
20180212593 | Usuda | Jul 2018 | A1 |
20180264808 | Bakker et al. | Sep 2018 | A1 |
20180281394 | Horade et al. | Oct 2018 | A1 |
20180281438 | Horade | Oct 2018 | A1 |
20180290457 | Ge | Oct 2018 | A1 |
20180302110 | Solan | Oct 2018 | A1 |
20180304640 | Horne | Oct 2018 | A1 |
20190004991 | Foust et al. | Jan 2019 | A1 |
20190011306 | Cumbie et al. | Jan 2019 | A1 |
20190012663 | Masters | Jan 2019 | A1 |
20190013731 | Gritti | Jan 2019 | A1 |
20190023020 | Anderson | Jan 2019 | A1 |
20190061347 | Bakker et al. | Feb 2019 | A1 |
20190064408 | Smit | Feb 2019 | A1 |
20190097785 | Elenes | Mar 2019 | A1 |
20190111694 | Cumbie et al. | Apr 2019 | A1 |
20190111695 | Anderson et al. | Apr 2019 | A1 |
20190111696 | Anderson et al. | Apr 2019 | A1 |
20190118527 | Anderson et al. | Apr 2019 | A1 |
20190126631 | Anderson et al. | May 2019 | A1 |
20190137316 | Anderson | May 2019 | A1 |
20190138484 | De Santiago Dominguez et al. | May 2019 | A1 |
20190217628 | Horade et al. | Jul 2019 | A1 |
20190226930 | Cumbie | Jul 2019 | A1 |
20190240985 | Ge | Aug 2019 | A1 |
20200159689 | Koshisaka | May 2020 | A1 |
20210334392 | Panshin | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
2014202104 | May 2014 | AU |
2507422 | Jan 2002 | CA |
2603934 | Feb 2004 | CN |
2734479 | Oct 2005 | CN |
201761148 | Mar 2011 | CN |
102231054 | Nov 2011 | CN |
203651218 | Jun 2014 | CN |
102736627 | Dec 2014 | CN |
103879149 | Jun 2015 | CN |
105760318 | Jul 2016 | CN |
107209743 | Sep 2017 | CN |
108819486 | Nov 2018 | CN |
209014461 | Jun 2019 | CN |
3712699 | Mar 1989 | DE |
0015954 | Jun 1984 | EP |
0720916 | Jul 1996 | EP |
1285764 | Feb 2003 | EP |
0994779 | Apr 2003 | EP |
1314565 | May 2003 | EP |
1238811 | Dec 2006 | EP |
1800872 | Jun 2007 | EP |
1389531 | Jul 2007 | EP |
1164022 | Jul 2008 | EP |
1524120 | Sep 2008 | EP |
2237163 | Oct 2010 | EP |
1839872 | Nov 2010 | EP |
2385468 | Nov 2011 | EP |
2854063 | Jun 2019 | EP |
3208736 | Dec 2019 | EP |
2519181 | Apr 2015 | GB |
H04220353 | Aug 1992 | JP |
2001292133 | Oct 2001 | JP |
2002026471 | Jan 2002 | JP |
2003326726 | Nov 2003 | JP |
2005262458 | Sep 2005 | JP |
2009258604 | Nov 2009 | JP |
2010079199 | Apr 2010 | JP |
2011113336 | Jun 2011 | JP |
2012063770 | Mar 2012 | JP |
2013197677 | Sep 2013 | JP |
5644052 | Dec 2014 | JP |
2014534917 | Dec 2014 | JP |
2016185664 | Oct 2016 | JP |
2017196842 | Nov 2017 | JP |
2018049141 | Mar 2018 | JP |
2018136774 | Aug 2018 | JP |
2018161785 | Oct 2018 | JP |
2018531394 | Oct 2018 | JP |
20080003539 | Jan 2008 | KR |
101785051 | Oct 2017 | KR |
200707209 | Feb 2007 | TW |
201202948 | Jan 2012 | TW |
201546620 | Dec 2015 | TW |
WO-2007107957 | Sep 2007 | WO |
WO-2017174363 | Oct 2007 | WO |
WO-2008117194 | Oct 2008 | WO |
WO-2009145774 | Dec 2009 | WO |
WO-2012020443 | Feb 2012 | WO |
WO-2012054050 | Apr 2012 | WO |
WO2012054050 | Apr 2012 | WO |
WO-2012057755 | May 2012 | WO |
WO2013048430 | Apr 2013 | WO |
WO-2015116092 | Aug 2015 | WO |
WO-2016061480 | Apr 2016 | WO |
WO-2016114759 | Jul 2016 | WO |
WO-2016130157 | Aug 2016 | WO |
WO-2013048430 | May 2017 | WO |
WO-2017074334 | May 2017 | WO |
WO-2017074342 | May 2017 | WO |
WO-2017074342 | May 2017 | WO |
WO-2017184147 | Oct 2017 | WO |
WO-2017189009 | Nov 2017 | WO |
WO2017189009 | Nov 2017 | WO |
WO-2017189010 | Nov 2017 | WO |
WO2017189010 | Nov 2017 | WO |
WO-2017189011 | Nov 2017 | WO |
WO2017189011 | Nov 2017 | WO |
WO-2017189013 | Nov 2017 | WO |
WO-2018017066 | Jan 2018 | WO |
WO2018017066 | Jan 2018 | WO |
WO-2018022038 | Feb 2018 | WO |
WO-2018186847 | Oct 2018 | WO |
WO-2018199886 | Nov 2018 | WO |
WO-2018199891 | Nov 2018 | WO |
WO2018199891 | Nov 2018 | WO |
WO-2018199895 | Nov 2018 | WO |
WO-2018217185 | Nov 2018 | WO |
WO-2019017963 | Jan 2019 | WO |
WO-2019078834 | Apr 2019 | WO |
WO-2019078835 | Apr 2019 | WO |
WO-2019078839 | Apr 2019 | WO |
WO-2019078840 | Apr 2019 | WO |
WO-2019078843 | Apr 2019 | WO |
WO-2019078844 | Apr 2019 | WO |
WO-2019078845 | Apr 2019 | WO |
Entry |
---|
Epson, “Epson provides the best inks for the job,” retrieved from https://www.epson.co.nz/microsite/excellence/inks_why.asp, ast retrieved on Jul. 1, 2019, 3 pages. |
HP, “Development of the HP DeskJet 1200C Print Cartridge Platform”, Feb. 1994, 9 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2018/063624 dated Aug. 23, 2019, 13 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2018/063630 dated Aug. 22, 2019, 15 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2018/063633 dated Jul. 23, 2019, 12 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2018/063643 dated Aug. 20, 2019, 13 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2019/017511 dated Dec. 3, 2018, 12 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/CN2019/026133 dated Aug. 26, 2019, 18 pages. |
International Searching Authority “International Search Report and Written Opinion” issued in connection with PCT/US2018/063631 dated Aug. 23, 2019, 13 pages. |
Maxim Integrated Products “1-to-8 I2C Bus Switches/Multiplexers with Bus Lock-Up Detection, Isolation, and Notification” dated Sep. 2008, 22 pages. |
NXP “Introducing A10006 Secure Authenticator Tamper-Resistant Anti Counterfeit Solution”, last retrieved on Jul. 3, 2019, 29 pages. |
NXP Semiconductors N.V. “NXP 2-, 4-, and 8-channel I2C/SMBus muxes and switches PCA954x” released Apr. 1, 2014, 34 pages. |
NXP Semiconductors N.V. “PCA9641: 2-channel I2C-bus master arbiter Product data Sheet” released Oct. 23, 2014, 77 pages. |
Open Source Multi-head 3D printer for polymer metal composite component manufacturing. |
PCA954x I2C-bus multiplexer, Jul. 2008, NXP Semiconductors. |
PCA9641 I2C arbiter, Oct. 2014, NXP Semiconductors. |
The I2C-Bus Specification Version 2.1 Jan. 2000 (Year: 2000), 46 pages. |
United States Patent and Trademark Office, “Non-Final office action ,” issued in connection with U.S. Appl. No. 16/502,479, dated Dec. 11, 2019, 13 pages. |
United States Patent and Trademark Office. “Non-Final Office action,” issued in connection with U.S. Appl. No. 16/460,016, dated Sep. 12, 2019, 12 pages. |
United States Patent and Trademark Office, “Non-Final Office action,” issued in connection with U.S. Appl. No. 16/505,090, dated Sep. 10, 2019, 20 pages. |
United States Patent and Trademark Office, “Notice of allowance,” issued in connection with U.S. Appl. No. 16/460,016, dated Mar. 25, 2020, 10 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/505,090, dated Feb. 12, 2020, 9 pages. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/728,207, dated Feb. 19, 2020 19 pages. |
Number | Date | Country | |
---|---|---|---|
20210252870 A1 | Aug 2021 | US |