Claims
- 1. A vacuum controlled holding apparatus for securing variably sized sheets of flexible material thereon, associated with a vacuum means for generating a vacuum force, comprising:plate means for sequentially receiving a flexible material sheet on a first surface thereof, the plate means having a plurality of vacuum ports leading to a second surface thereof, the second surface being subject to the force; gating means associated with each of the ports such that under a first condition, wherein a port is not covered by the sheet, the gating means is closed under influence of the force, and under a second condition, wherein a port is covered by the sheet, the gating means is automatically opened such that the force is exerted against the thereby holding the sheet to the first surface, the gating means including a plurality of flaps with a flap located at least partially within each port, each flap being biased to a first position opening the port and each flap including a leakage hole therethrough such that when the port is uncovered the force moves the flap to a second position closing the port and when the port is covered by a region of the sheet, the force creates a vacuum condition between the sheet and the flap via the leakage hole such that the flap moves under bias force to the first position, and the gating means including a flexible material layer mounted subjacent the plate means such that each of the flaps extends from the flexible material layer into an associated vacuum port.
- 2. A paper holddown device for printers having a vacuum force, comprising:a platen having a paper transport surface having a surface area sufficient for accommodating different sized paper thereon, a vacuum-force-side surface in communication with the vacuum force, and discrete vacuum ports coupling the surface area and vacuum-force-side surface; and a gate within each of the ports, wherein a sheet of paper on said surface covering individual ports causes a pressure differential change across an associated gate of each covered port, automatically moving the associated gate from a first position to a second position such that the vacuum force is exerted only through each covered port, wherein the platen includes a plate subjacent said paper transport surface, the plate having substantially same circumferential dimensions as the surface area, and the plate including a plurality of flaps wherein each one of said flaps is extending into a respective vacuum port adjacent thereto and forming said gate therein, each flap including a leakage means for pulling air from a vacuum port region above the flap with each of the respective ports when the flap is in the port-closed position.
- 3. The holddown as set forth in claim 2, comprising:each flap is biased toward a vacuum port open position when no vacuum force is applied and wherein a predetermined vacuum force applied moves the flap to a vacuum port closed position, the leakage means pulling air from a vacuum port inner region located between the flap and the platen surface area located above the flap when the flap is in the vacuum port closed position.
- 4. The holddown as set forth in claim 2, the plate comprising:a first member mounted subjacent the platen vacuum-force-side surface, the first member including said flaps as a plurality of cantilevered gate valves located substantially in alignment with each of the vacuum ports in the field, respectively, and wherein each of the cantilevered gate valves is located adjacent respective the vacuum ports, each of the cantilevered gate valves having a valve-open position extending partially across an aligned respective vacuum port when no vacuum force is applied to the vacuum ports, and a second member mounted subjacent the first member, the second member having a second member top surface including a plurality of recessed cavities aligned with respective the cantilevered gate valves, each recessed cavity having an aperture in proximate alignment to respective the vacuum ports and extending from the second member top surface through a second member bottom surface such that when the gate valves are in the valve-open position extending partially across an aligned respective vacuum port, the vacuum ports and the apertures form a passageway through the first member and the second member wherein each passageway is selectively substantially closed by applying the vacuum force to the second member bottom surface at a predetermined flow rate causing the cantilevered gate valves to move into the recessed cavities to a valve-closed position substantially closing the passageway.
- 5. The device as set forth in claim 4, wherein the second member further comprises:each aperture in the recessed cavity and each vacuum port proximate thereto are offset in alignment by a distance greater than a cross-dimension of the cantilevered gate valve necessary to close the aperture.
- 6. The device as set forth in claim 4, wherein the second member further comprises:means for leaking air from each cantilevered gate valve such that a vacuum condition is established both above and below the cantilevered gate valve when a respective vacuum port is covered by the sheet.
- 7. The device as set forth in claim 2, further comprising:the holddown device is a curvilinear construct.
- 8. A vacuum controlled holding apparatus for securing variably sized sheets of flexible material thereon, associated with a vacuum means for generating a vacuum force, comprising:plate means for sequentially receiving a flexible material sheet on a first surface thereof, the plate means having a plurality of vacuum ports leading to a second surface thereof, the second surface being subject to the force; gating means associated with each of the ports such that under a first condition, wherein a port is not covered by the sheet, the gating means is closed under influence of the force, and under a second condition, wherein a port is covered by the sheet, the gating means is automatically opened such that the force is exerted against the thereby holding the sheet to the first surface, the gating means including a plurality of flaps with a flap located at least partially within each port, each flap being biased to a first position opening the port and each flap including a leakage hole therethrough such that when the port is uncovered the force moves the flap to a second position closing the port and when the port is covered by a region of the sheet, the force creates a vacuum condition between the sheet and the flap via the leakage hole such that the flap moves under bias force to the first position, and each the flap being integrally molded into a wall of an associated vacuum port.
RELATED APPLICATIONS
This application is related to co-filed U.S. Pat. application Ser. No. 09/292,125, by John D. Rhodes et al. for Vacuum Control for Vacuum Holddown, and U.S. patent application Ser. No. 09/292,838, by Geoff Wotton et al. for a Vacuum Surface for Wet Dye Hard Copy Apparatus.
US Referenced Citations (26)