Standard printers generally comprise a printhead mounted to a carriage that moves across a print area in a scanning direction at high speed, while a print medium is conveyed through the print area along a conveying direction transverse to the scanning direction of the printhead. The rapid movement of the printhead may introduce some print defects, but also allow various techniques for mitigating the impact of print defects caused by misplaced or irregular print dots. In particular, different print modes can be employed involving different numbers of passes of the printhead over the print medium, with the highest quality print modes being close to defect free.
In contrast, a page wide array printer has a nozzle array that extends across the width of a page. In this way, in at least one example a moving carriage is not needed, and therefore a page wide array printer may not exhibit the types of print defects associated with the movement of a printhead. A page wide array printer also, however, may lack the flexibility of a printer with a scanning head when addressing print defects caused by missing, misplaced or irregular print dots.
Various features of the present disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the present disclosure, and wherein:
The print bar 110 extends across the print area over the full width of the print medium 125 in a direction transverse to the conveying direction. As the print medium 125 passes through the print area adjacent the print bar 110, ink is ejected from the print bar 110 onto the print medium 125 in accordance with drive signals supplied by a print driver 150.
A print controller 160 is connected to the print driver 150, memory 170, a network interface 180 and a user interface 190. The memory 170 stores both control routines and image data. The network interface 180 enables the page wide array printer 100 to receive data from a remote network device (not shown) via a telecommunications network. The user interface 190 includes at least one input device, such as a touchscreen or a keyboard, to enable a user to enter data directly into the page wide array printer 100. In addition, the user interface 190 includes at least one output device, such as a screen or indicator lights, to enable the page wide array printer 100 to convey information directly to a user.
Print quality relates to the accuracy with which a printer reproduces image data in a printed image. Various print techniques are known to improve print quality, but come at a cost of either slower printing or the use of more ink. Accordingly, a printer is often operated at a print quality below the maximum available print quality for that printer.
Some print defects are to be expected from any printer. Although the number and severity of the print defects may often be reduced by servicing and/or repair of the printer, some defects that are effectively inherent to the printer will remain after such servicing and/or repair. A challenge therefore arises in evaluating whether the print quality is likely to be improved by servicing and/or repair prior to incurring the cost of servicing and/or repair. In this example, the memory 170 stores a routine for a diagnostic print mode, which can be initiated by the user via the user interface 190, to allow a user to make an assessment of whether print quality is likely to be improved by servicing and/or repair.
In contrast to printers with a scanning printhead, the print bar 110 of the page wide array printer may be fixed in position with respect to the platen. As such, the entirety of an image may be printed in a single pass of the print medium in the conveying direction past the array of nozzles 210 of the print bar 110. However, despite all calibrations, checks and maintenance routines, single pass printing may show some level of print defects depending on the image content. At least some of the print defects occurring in a page wide array printer can be classified in three main groups:
It can be difficult for a user to assess whether a page wide array printer is performing at a print quality that is within specification, for which servicing or repair may serve no useful purpose, or outside of specification, for which servicing or repair may be useful. If this assessment is incorrectly performed, the page wide array printer may be subjected to repair or servicing that is does not enhance print quality. Also, an incorrect assessment may result in user dissatisfaction.
For a standard printer with a scanning printhead, image quality may be assessed by printing color bands at the highest quality print mode, for which printing can be assumed to be error free. If any print defects are visible in these color bands, then the printer may have some form of operational error and therefore may need to be serviced or repaired. Such an approach would be difficult for a page wide array printer as defect free printing is generally not achievable.
A page wide array printer, however, may have the advantage that there is no moving carriage on which the printhead is mounted and the print medium is conveyed at a constant speed e.g., in the range 1-20 inches (about 2.5 to 50) centimeters per second) past the print bar 110. Thus, the printed images output by a single die may have repeatable print quality. By utilizing a print technique that avoids simultaneous printing by adjacent dies so that there is minimal (or even no) induced airflows between dies, a high level of repeatability can be achieved with a minimal number of print defects. By way of example, this repeatable print quality within a single die is used in a print diagnostic mode for the evaluation of print quality as follows.
As shown in
The page wide array printer also prints, at S2, reference image data corresponding to a series of bands 410a-410d, collectively color bands 410, extending in a second direction transverse to the array of nozzles, with each band 410 being printed using the nozzles of a single die. The color bands 410 are arranged to avoid adjacent nozzles on different dies printing at the same time, to minimize induced airflows between dies. The image data for these bands 410 correspond to a defect free band deliberately modified to include within the image data artefacts corresponding to print quality defects. In this example, the image data for each band 410 in the reference image include simulated print defects for a respective different print quality, so that each band 410 forms a reference image for a corresponding print quality. The reference image data are printed using the highest quality printing settings available for the page wide array printer, generally corresponding to a slow conveying speed of the print medium.
The user may then be able to compare the color band 420 of the check image with the color bands 410 of the reference images to evaluate the print quality. In particular, the user may evaluate the color band 420 of the check image and the color bands 410 of the reference images to identify the reference image whose apparent print quality (i.e. assuming the artefacts in the printed reference image corresponding to the simulated print defects in the image data to be real print defects) most closely resembles that of the check image. In this example, this evaluation may be carried out by eye by the user. In other words, through visual comparison of the color band 420 of the check image and the color bands 410 of the reference images, the user makes a qualitative assessment as to which of the color bands 410 of the reference images appears to have the closest print quality to that of the color band 420 of the check image. This qualitative assessment may take account of both the number of print defects and the noticeability of each print defect.
In one example, if the reference image which appears closest in print quality to the check image corresponds to a print quality that is within specified performance for the printer, no further action is taken. If, however, that reference image corresponds to a print quality that is outside of specified performance for the printer, repair or servicing may usefully take place.
A user can then rotate the printed check image and compare the rotated check image to the reference image. In this example, this comparison involves a qualitative evaluation by eye between the rotated check image and the reference image. If the print quality of the printed check image appears to the user to be worse than the apparent print quality of the printed reference image (assuming the simulated print defects in the printed reference image are real print defects), then repair or servicing may be useful.
In another example, reference color bands can be printed corresponding to a series of print quality levels, so that the printed check image can be compared with printed reference images of different qualities.
The reference image and the check image can be printed in any order.
The print evaluation techniques described above may allow print quality for a page wide array printer to be evaluated without any external tooling or equipment. This evaluation can be useful as user feedback and also for prevention of unnecessary servicing or repair.
Although the print evaluation techniques are well suited for page wide array printers, the print evaluation techniques can be utilized in other printers by printing the reference images using a print mode corresponding to a high print quality such that the printed image is expected to be defect free, and printing the check image at lower quality.
It will be appreciated that the reference image data and the check image data may be stored in image files (for example, bitmaps) in the memory 170 of the printer 100. Alternatively, one or both of the reference image data and the check image data may be generated by a routine stored in the memory 170 of the printer 100.
Certain system components and methods described herein may be implemented by way of non-transitory computer program code that is storable on a non-transitory storage medium.
The non-transitory storage medium can be any media that can contain, store, or maintain programs and data for use by or in connection with an instruction execution system. Machine-readable media can comprise any one of many physical media such as, for example, electronic, magnetic, optical, electromagnetic, or semiconductor media. More specific examples of suitable machine-readable media include, but are not limited to, a hard drive, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory, or a portable disc.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/064903 | 6/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/001001 | 1/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6968076 | Ouyang et al. | Nov 2005 | B1 |
8509630 | Henderson et al. | Aug 2013 | B2 |
20030193684 | Kendall et al. | Oct 2003 | A1 |
20080068639 | Satoh | Mar 2008 | A1 |
20130021398 | Mizes et al. | Jan 2013 | A1 |
20130182972 | Jing et al. | Jul 2013 | A1 |
20140348393 | Kogan | Nov 2014 | A1 |
20150062233 | Ueshima | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2422984 | Feb 2012 | EP |
2465687 | Jun 2012 | EP |
Entry |
---|
Shankar, et al. “On-line defect detection in web offset printing.” Control and Automation, 2003. ICCA'03. Proceedings. 4th International Conference on. IEEEE, 2003, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180154654 A1 | Jun 2018 | US |