The field of this invention is a printed circuit board containing solid-state, thin-film secondary and primary electrochemical devices, including, for example, batteries, between and/or within its layers.
Typical electrochemical devices comprise, for example, multiple electrically active layers such as an anode, a cathode, an electrolyte, a substrate and current collectors. Some layers, such as, for example, an anode layer comprising lithium, are comprised of materials that are very environmentally sensitive. The substrate may, for example, not be a separate battery element but instead may be provided by a semiconducting surface or a conductive or insulating packaging surface of a semiconductor device or printed circuit board (PCB) to which the battery is attached. Such batteries require an encapsulation to protect the environmentally sensitive material. Some schemes encapsulate the sensitive layers of electrochemical devices, such as encapsulation with gold foil. Other schemes encapsulate the device with a pouch made of metal and plastic, for example, that seals around the perimeter of the device.
The applicants' earlier filed patents and patent applications provide certain battery and encapsulation designs and techniques, including U.S. Pat. No. 6,916,679 and US Published Patent Applications US 2006/286448 A1, US 2007/184345 A1, US 2007/202395 A1, US 2007/264564 A1, US 2008/261107 A1, US 2008/0286651, and U.S. Patent App Ser. No. 61/179,953, which are herein incorporated by reference in their entirety. These patents and applications provide, for example, types of batteries that, when incorporated with a printed circuit board, may provide a benefit.
Space on the surface of a printed circuit board (PCB), rigid or flexible, is very limited and is thus at a premium. Therefore, there is a need to incorporate electrochemical cells, such as batteries, with the design of PCBs more efficiently, to save and better utilize the PCB surface space.
The various embodiments of the present invention improve upon the prior art and other various art by improving the practicality of implementing a combined electrochemical cell, such as a thin film battery, in combination with products such as a semiconductor device or a PCB. In certain exemplary embodiments of the present invention a fully encapsulated and preferably heat, pressure and moisture resilient cell may be incorporated within a PCB. The PCB and cell may be integrated to allow the cell to withstand the stressful environments in which it may be exposed during PCB fabrication. Various embodiments provide internal and/or external access to the cell via gaps, voids, pockets, spaces or other designs.
In certain exemplary embodiments of the present invention, electrochemical devices may be incorporated into PCBs or semiconductor devices in their fully encapsulated state. However, the integration of an electrochemical device into a PCB protects the electrochemical device against physically, chemically, and biologically harmful environments. Furthermore, integration of an electrochemical device into a PCB may add more functionality to the PCB and may render the PCB more valuable as a basic power-equipped electronic building block for many electronic applications.
In certain exemplary embodiments of the present invention, one can save space on the PCB surface by inserting electronic modules and components, such as electrochemical cells, including thin-film batteries, into a printed circuit board instead of, for example, on the surface of a PCB as disclosed, for example, in U.S. patent application Ser. No. 11/748,471.
One may also consider that using the PCB three-dimensionally, or in other words integrating an electrochemical device into a PCB instead of attaching the electronic device to the surface of the PCB, increases the functional electronic density per unit footprint.
Inserting electronic modules and components into the PCB may also be advantageous by, for example, limiting the total cross-sectional thickness of the functionalized or loaded PCBs. Limiting the thickness of the PCBs may be preferred, for example, for geometrical reasons, because some applications of integrated PCBs have limited volume and thickness. Limiting the thickness of the PCBs may also be preferred for mechanical reasons, for example, to reduce the momentum of a mechanical body in conjunction with vibration, centrifugal forces and acceleration, among others and instead place the given mass of that body closer to its center of gravity. For example, lengthy capacitors (that have a long height axis in comparison to their diameter because, for example, of their long terminal feet) mounted onto PCBs may be sensitive to long-term vibration that may cause the capacitors to be electrically disconnected from the PCB.
Inserting an electronic component into, rather than onto, a PCB may increase the robustness of this electronic component against external chemical, physical and biological factors. For example, the PCB surrounding an electronic component may serve as an added encapsulation or protection layer against high humidity, moisture, water, oxygen, corrosion by acids and bases, solvents, UV radiation, temporary extreme (high or low) temperatures, scratching objects, mechanical shock and micro-organism attack.
Additionally, providing an electrochemical cell or thin-film battery to connect to an electronic circuit already inserted into a PCB may simplify the production of this type of electronic component and prevent human error in attaching or soldering electronic components to PCBs. Therefore, a PCB with integrated electrochemical cell or thin-film battery may be used as a basic, power source equipped building block for electronic circuitry that simplifies and compacts consumer and mini/micro-electronics.
The goal of certain exemplary embodiments of the present invention, for example, is to avoid limiting the lateral extension of the electrochemical cell embedded in a PCB to only a sub-region of the PCB surface. Instead the cell may, for example, extend beyond the edges of the PCB as shown in the drawings. This extension may, for example, provide easy access to a contact or contact region of the cell.
Another goal of certain exemplary embodiments of the present invention is to embed a cell into a PCB with, for example, at least one electrically conducting layer above or below the cell, as opposed to using a PCB with all electrically insulating layers, as shown in certain exemplary figures. An embodiment, for example, that includes a battery with a metal substrate terminal and metal encapsulation terminal may be preferred over a design that includes insulating layers above and below an energy cell, such as a thin film battery.
Another goal of certain exemplary embodiments of the present invention is to avoid the need to fill in any potential gaps around the embedded cell and instead, for example, allow void space in that region. This void may, for example, allow access or contact with the cell or certain portions of the cell.
Yet another goal of certain exemplary embodiments of the present invention is to avoid requiring a printed circuit board structure using multiple electrically insulating layers to embed the cell. Instead, for example, the cell may be embedded in a single-layer printed circuit board. This embodiment may be preferred because, for example, it may be simplified and thinner than other embodiments.
There are many benefits to, for example inserting a cell or thin-film battery into a PCB. First, there are architectural benefits that protect the cell against certain chemical, physical and biological impact factors. Second, such a technique may be more cost-effective than providing the PCB and the electrochemical cell or thin-film battery as separate items wherein a customer in the product fabrication or integration chain would be able to attach the electrochemical cell or thin-film battery only at the surface of the PCB.
An exemplary embodiment of the present invention includes a printed circuit board comprising a layer stack having two electrically insulating layers comprising conductor traces, wherein each of said electrically insulating layers having a perimeter and an electrochemical cell inserted between said layers wherein a portion of said electrochemical cell extends laterally beyond the perimeter of one of said insulating layers.
Another exemplary embodiment of the present invention includes a printed circuit board comprising a layer stack having two electrically insulating layers including conductor traces and an electrically conducting layer and an electrochemical cell inserted in said layer stack wherein said electrochemical cell is embedded between said electrically conducting layer and electrically insulating layers of said layer stack.
Another exemplary embodiment of the present invention includes a printed circuit board comprising a layer stack having a plurality of, for example two, electrically insulating layers including conductor traces, a plurality of, for example two, electrically conducting layers and an electrochemical cell inserted in said layer stack wherein said electrochemical cell is embedded between said electrically conducting layers.
Another exemplary embodiment of the present invention includes a printed circuit board comprising a layer stack having a plurality of, for example two, electrically insulating layers including conductor traces, an electrochemical cell inserted in said layer stack and a gap located at an edge of said electrochemical cell.
Another exemplary embodiment of the present invention includes a printed circuit hoard comprising one electrically insulating layer including conductor traces and an electrochemical cell located within the interior of said electrically insulating layer.
Another exemplary embodiment of the present invention includes a battery fabricated between the layers of, for example, a PCB. The battery may, for example, include a first electrical contact, a bonding layer coupled with the first electrical contact and a first embedded conductor, at least one battery cell structure in selective electrical contact with the first electrical contact via the first embedded conductor, which may be formed or disposed within a PCB.
The bonding layer coupled with the PCB may have more than one conductor, such as an optional, second embedded conductor, which in turn creates an optional, selective electrical contact of the PCB with said first electrical contact. The bonding layer and the at least one battery cell structure may be sandwiched within a PCB.
The first electrical contact may include, for example, an encapsulate metal. The bonding layer may be an adhesive material, an insulating material, a plastic, a polymeric material, glass and/or fiberglass. An insulating reinforcement layer may be embedded within the bonding layer. Such a reinforcement layer may be selectively conductive. The conductor may be, for example, a tab, a wire, a metal strip, a metal ribbon, multiple wires, multiple metal strips, multiple metal ribbons, a wire mesh, perforated metal, a metal coating applied to the adhesive layer or a disk. The conductor may be woven within the bonding layer and the bonding layer may include a slit within which the embedded conductor is woven.
The battery cell structure may include an anode, an electrolyte, a cathode and a barrier layer. The cathode may, for example, not be annealed at all, annealed at lower temperatures or annealed at higher temperatures by using convection furnaces, rapid thermal anneal methods or by a laser annealing and/or crystallization process.
Another exemplary embodiment of the present invention includes a method of manufacturing a thin film battery comprising, in no particular order, the steps of creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure within a pocket formed in, for example, a PCB, and coupling the battery cell structure with the PCB. Optionally, the bonding layer may be made selectively conductive at an additional location at which the selectively conductive bonding layer creates an electrical contact between the first contact layer and the PCB. Yet another exemplary embodiment of the present invention includes a method of manufacturing a thin film battery comprising, in no particular order, the steps of creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell with the first contact layer as well, coupling the bonding layer with an interior surface within a PCB, and coupling a second side of the battery cell structure with the bonding layer.
Examples of this exemplary embodiment may include creating a battery cell structure with anode, cathode and electrolyte layers, embedding at least one conductor within the bonding layer, weaving at least one conductive wire through the bonding layer wherein selective portions of the conductive wire are exposed, heating the bonding layer and compressing the conductor within the bonding layer, and insulating the battery with an insulating material. This exemplary embodiment may include providing an insulating reinforcement layer embedded within the bonding layer. The reinforcement layer may be selectively conductive.
Yet another exemplary embodiment of the present invention includes a battery within, for example, a PCB wherein the first side of the battery cell structure is at least in direct mechanical contact with an interior surface of the PCB. This exemplary embodiment includes a first electrical contact, a bonding layer coupled with a first electrical contact and a first embedded conductor, at least one battery cell structure in selective electrical contact with the first electrical contact via the first embedded conductor, the bonding layer coupled with the first electrical contact and comprising a second embedded conductor that is in selective electrical contact with the first electrical contact and the printed circuit board. The bonding layer and the at least one battery cell structure are sandwiched between the first contact layer and within a PCB.
Another exemplary embodiment of the present invention includes a battery within, for example, a PCB wherein the battery cell structure is mechanically separated by at least the bonding layer (and not in direct mechanical contact with the interior PCB surfaces). The exemplary embodiment includes a first electrical contact, a bonding layer coupled with the first electrical contact and a first embedded conductor, at least one battery cell structure in selective electrical contact with the first electrical contact via said first embedded conductor, the bonding layer coupled with the PCB and having an optional, second embedded conductor in the bonding layer, which in turn creates an optional, selective electrical contact of the PCB with the first electrical contact. The bonding layer and the at least one battery cell structure are sandwiched between the first contact layer and an interior surface of a PCB.
In another exemplary embodiment of the present invention, a method of manufacturing a thin film battery includes creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure with an interior surface of a layer of for example, a PCB and coupling a second side of the battery cell stricture with the bonding layer.
In yet another exemplary embodiment of the present invention, a method of manufacturing a thin film battery includes creating a selectively conductive bonding layer, coupling the bonding layer with a first contact layer, coupling a first side of a battery cell structure with the first contact layer, coupling a second side of the battery cell structure with the selectively conductive bonding layer and coupling the bonding layer within the layers of, for example, a PCB.
Another exemplary embodiment of the present invention includes an electrical connection between the battery cell and the PCB. The electrical connection between the battery cell and the interior surfaces of layers within, for example, a PCB can be made by direct physical contact or by wire bonding.
In another exemplary embodiment of the present invention, prior to its integration within the PCB or conductive or insulating surface within a PCB, the battery may be fabricated as a discrete device and then integrated as a whole together with its substrate and its encapsulation inside of the semiconducting device.
Another embodiment of the present invention includes the electrical connection between a multi-battery cell stack within the PCB through the interior of the PCB to the surface of the PCB.
The present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications described herein, as these may vary. The terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. The singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures.
All patents and other publications identified are incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason.
According to certain embodiments of the present invention, first embedded conductor 407 and second embedded conductor 508 may be, for example, placed within bonding layers in many different ways. For example, embedded conductors may consist of different materials such as a metal tab, a metal wire, a metal strip, a metal ribbon, multiple metal wires, multiple metal strips, multiple metal ribbons, a metal wire mesh, perforated metal foil, perforated metal, a metal coating applied to the adhesive layer, a metallic disk, a metallically coated fiberglass or combinations thereof may be used. First embedded conductor 407 and second embedded conductor 508 may provide electrical conduction between cell 102 and a cell contact. A bonding layer may provide insulation between the electrical contact and PCB 101. Embedded conductors 407 and 508 may be woven or placed within the bonding layer through slits, holes or other means. Embedded conductors 407 and 508 may be, for example, disks embedded within the bonding layer.
In another exemplary embodiment of the present invention, a reinforcement layer may be placed within the bonding layer. For example, a fiberglass material may cover half of one surface of the bonding layer, may be woven through the bonding layer and/or may cover the other half of the bonding layer. Such a layer of fiberglass without a conductive coating would insulate the electrochemical device and other materials. The fiberglass may be coated in a localized area with a conductive material. Such conductive coatings can coat the fiberglass area on the top and bottom surface of the bonding layer. The fiberglass may conduct between the upper contact and the cell. Conductive material may be disposed on the fiberglass using ink jet, silk screen, plasma deposition, e-beam deposition, spray and/or brush methods. The reinforcement layer may include materials other than fiberglass, such as, for example, Kevlar®, plastic or glass.
In another exemplary embodiment of the present invention, the electrical contact may have selective contact with the battery cell structure through holes in the bonding layer. The bonding layer and the battery cell structure may be, for example, pressed together to create a contact. Alternatively, the layers may make contact with one another by applying, for example, conductive glues or inks, solder, welding, wirebond, anisotropic conductive film or lithium in or near the hole in the bonding layer.
Embedded conductors 407 and 508 and/or the electrical contact may consist of, for example, gold, platinum, stainless steel, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper zirconium, niobium, molybdenum, hafnium, tantalum, tungsten, aluminum, indium, tin, silver, carbon, bronze, brass, beryllium, or oxides, nitrides, carbides, and alloys thereof. The electrical contact may consist of a metal foil, stainless steel or any other metallic substance that has a requisite amount of conductivity. The metal foil may comprise a solderable alloy such as copper, nickel or tin. The electrical contact may be, for example, less than 100 microns thick, less than 50 microns thick or less than 25 microns thick.
Electrochemical cell 102 shown in exemplary embodiments of the present invention may include a cathode, an anode and an electrolyte. For example, the cathode may comprise LiCoO2, the anode may comprise Lithium and the electrolyte may comprise LIPON. Other electrochemical devices may be used as needed.
Electrochemical cell 102 may be coupled with the interior layers or surfaces of PCB 101 in a number of ways. In an exemplary embodiment of the present invention, electrochemical cell 102, for example, may be coupled with the interior layers of PCB 101 using, for example, glue, solder, welding, wirebond or anisotropic conductive film. Glue may be any material that may adhere electrochemical cell 102 to PCB 101, such as cement glue or resin glue. Glue may create a mechanical and/or a chemical bond between electrochemical cell 102 to PCB 101. Glue may also include chemically bonding electrochemical cell 102 to PCB 101 without introducing another material or layer. Glue may be electrically conducting, semi-conducting or insulating.
In certain exemplary embodiments of the present invention, the interior layers of a PCB, including the conductive or insulating interior layer surface of PCB 101, act as a substrate for the electrochemical cell. Electrochemical cell 102 may be deposited or otherwise positioned on the layer surface of PCB 101. Electrochemical cell 102 may also be coupled to the interior layer surface of PCB 101 using, for example, glue, solder, welding, wirebond or anisotropic conductive film.
In an exemplary embodiment of the present invention, a LiCoO2 cathode layer may be deposited on the interior layer of, for example, PCB 101. Deposition techniques known in the art include, but are not limited to, reactive or non-reactive RF magnetron sputtering, reactive or non-reactive pulsed DC magnetron sputtering, reactive or non-reactive DC diode sputtering, reactive or non-reactive thermal (resistive) evaporation, reactive or non-reactive electron beam evaporation, ion-beam assisted deposition, plasma enhanced chemical vapor deposition, spin coating, ink-jetting, thermal spray deposition and dip coating. As part of the fabrication process, for example, the cathode may be annealed using a thermal anneal at low temperatures (e.g. <400° C.), thermal anneal at high temperatures (e.g. >400° C.), rapid thermal anneal or by using convection furnaces. Another or an alternative post-deposition anneal may include laser annealing to improve the crystallization of the LiCoO2 layer to fine-tune and optimize its chemical properties, such as its electrochemical potential, energy, power performance and reversible lattice parameters on electrochemical and thermal cycling.
Following deposition of the cathode layer, an electrolyte may be deposited on the cathode, followed by an anode, using any of many processes known to someone of ordinary skill in the art. A metal encapsulate layer may be formed on the electrochemical cell itself instead of using embedded conductor 407 and/or embedded conductor 508 as shown, for example, in
Exposed surfaces of portions of an embedded cell, as in various exemplary embodiments of the present invention, which otherwise may provide an access port or peep hole, may be filled in and/or covered with insulating material or with conductive material that is subsequently covered with insulating material or an insulating layer. The hole or void may be covered or filled to reduce or eliminate direct external access to the cell.
Electrochemical devices other than those shown in the various exemplary embodiments of the present invention shown in
Examples of methods used to deposit LiCoO2 are disclosed in U.S. Patent Publication No. 2007/0125638, which is incorporated herein by reference in its entirety.
The layers of PCBs in various exemplary embodiments of the present invention, including the conductive or insulating surfaces of the PCBs, may be part of any integrated circuit that may include memory devices, processors or other logic circuits.
PCBs in various exemplary embodiments of the present invention may include a flexible circuit board which may include, for example, multiple circuit board layers. The multiple circuit board layers may include or not include traces, single or double sided, semi-rigid, a film and/or a polyimide film, such as, for example, Kapton®.
In certain embodiments of the present invention, the layers of PCBs in various exemplary embodiments of the present invention may act as an encapsulate for the electrochemical cell such as, for example, a thin film battery.
Exemplary embodiments of the present invention may also include multiple electrochemical devices stacked upon each other, multiple PCBs stacked upon each other and/or multiple layers within a PCB having either conductive or insulating surfaces or layers.
Exemplary embodiments of the present invention may also include multiple electrochemical devices stacked upon electrical contacts.
Exemplary embodiments of the present invention provide alternative methods to encapsulate the chemically and mechanically sensitive layers of electrochemical devices. Exemplary embodiments of the present invention also avoid problems related to temperature changes causing the gas within the metal and plastic pouches encapsulating the electrochemical device to expand and/or contract and the seals of the metal and plastic pouches from blowing out.
Exemplary embodiments of the present invention also provide a rechargeable secondary battery directly fabricated within one or more PCBs. Such batteries provide power during times when the circuit is powered off and are quickly and easily recharged when power resumes. Critical circuitry may benefit from localized power provided by such batteries. The exemplary embodiments also provide for less expensive and more reliable encapsulation and better approaches to providing electrically conductive contacts, including encapsulation that is substantially thinner than known encapsulation methods. The exemplary embodiments also provide flexible integrated circuits and/or flexible printed circuit boards with thin film flexible batteries coupled thereon.
The electrochemical device may comprise a discrete device (e.g., fully packaged with its own substrate and own encapsulation) in a PCB. For example, prior to its integration into the PCB, the electrochemical device may be fabricated as a discrete device, and then integrated into the PCB with its substrate and encapsulation as a whole.
Embodiments of the present invention described herein are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described herein, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims. The present invention covers such variations provided that they come within the scope of the appended claims and their equivalents.
This application is a divisional of pending U.S. patent application Ser. No. 12/873,953 filed on Sep. 1, 2010, which claims priority to provisional patent application No. 61/238,889, Sep. 1, 2009, entitled, “PRINTED CIRCUIT BOARD WITH INTEGRATED THIN FILM BATTERY”, which is expressly incorporated fully herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
712316 | Loppe et al. | Oct 1902 | A |
2970180 | Urry | Jan 1961 | A |
3309302 | Heil | Mar 1967 | A |
3616403 | Collins et al. | Oct 1971 | A |
3790432 | Fletcher et al. | Feb 1974 | A |
3797091 | Gavin | Mar 1974 | A |
3850604 | Klein | Nov 1974 | A |
3939008 | Longo et al. | Feb 1976 | A |
4082569 | Evans, Jr. | Apr 1978 | A |
4111523 | Kaminow et al. | Sep 1978 | A |
4127424 | Ullery, Jr. | Nov 1978 | A |
4226924 | Kimura et al. | Oct 1980 | A |
4283216 | Brereton | Aug 1981 | A |
4318938 | Barnett et al. | Mar 1982 | A |
4328297 | Bilhorn | May 1982 | A |
4395713 | Nelson et al. | Jul 1983 | A |
4437966 | Hope et al. | Mar 1984 | A |
4442144 | Pipkin | Apr 1984 | A |
4467236 | Kolm et al. | Aug 1984 | A |
4481265 | Ezawa et al. | Nov 1984 | A |
4518661 | Rippere | May 1985 | A |
4555456 | Kanehori et al. | Nov 1985 | A |
4572873 | Kanehori et al. | Feb 1986 | A |
4587225 | Tsukuma et al. | May 1986 | A |
4619680 | Nourshargh et al. | Oct 1986 | A |
4645726 | Hiratani et al. | Feb 1987 | A |
4664993 | Sturgis et al. | May 1987 | A |
4668593 | Sammells | May 1987 | A |
RE32449 | Claussen | Jun 1987 | E |
4672586 | Shimohigashi et al. | Jun 1987 | A |
4710940 | Sipes, Jr. | Dec 1987 | A |
4728588 | Noding et al. | Mar 1988 | A |
4740431 | Little | Apr 1988 | A |
4756717 | Sturgis et al. | Jul 1988 | A |
4785459 | Baer | Nov 1988 | A |
4826743 | Nazri | May 1989 | A |
4865428 | Corrigan | Sep 1989 | A |
4878094 | Balkanski | Oct 1989 | A |
4903326 | Zakman et al. | Feb 1990 | A |
4915810 | Kestigian et al. | Apr 1990 | A |
4964877 | Keister et al. | Oct 1990 | A |
4977007 | Kondo et al. | Dec 1990 | A |
4978437 | Wirz | Dec 1990 | A |
5006737 | Fay | Apr 1991 | A |
5019467 | Fujiwara | May 1991 | A |
5019468 | Miyabayashi | May 1991 | A |
5030331 | Sato | Jul 1991 | A |
5035965 | Sangyoji et al. | Jul 1991 | A |
5055704 | Link et al. | Oct 1991 | A |
5057385 | Hope et al. | Oct 1991 | A |
5085904 | Deak et al. | Feb 1992 | A |
5096852 | Hobson | Mar 1992 | A |
5100821 | Fay | Mar 1992 | A |
5107538 | Benton et al. | Apr 1992 | A |
5110694 | Nagasubramanian et al. | May 1992 | A |
5110696 | Shokoohi et al. | May 1992 | A |
5119269 | Nakayama | Jun 1992 | A |
5119460 | Bruce et al. | Jun 1992 | A |
5124782 | Hundt et al. | Jun 1992 | A |
5147985 | DuBrucq | Sep 1992 | A |
5153710 | McCain | Oct 1992 | A |
5169408 | Biggerstaff et al. | Dec 1992 | A |
5171413 | Arntz et al. | Dec 1992 | A |
5173271 | Chen et al. | Dec 1992 | A |
5174876 | Buchal et al. | Dec 1992 | A |
5180645 | More | Jan 1993 | A |
5187564 | McCain | Feb 1993 | A |
5196041 | Tumminelli et al. | Mar 1993 | A |
5196374 | Hundt et al. | Mar 1993 | A |
5200029 | Bruce et al. | Apr 1993 | A |
5202201 | Meunier et al. | Apr 1993 | A |
5206925 | Nakazawa et al. | Apr 1993 | A |
5208121 | Yahnke et al. | May 1993 | A |
5217828 | Sangyoji et al. | Jun 1993 | A |
5221891 | Janda et al. | Jun 1993 | A |
5225288 | Beeson et al. | Jul 1993 | A |
5227264 | Duval et al. | Jul 1993 | A |
5237439 | Misono et al. | Aug 1993 | A |
5252194 | Demaray et al. | Oct 1993 | A |
5262254 | Koksbang et al. | Nov 1993 | A |
5273608 | Nath | Dec 1993 | A |
5287427 | Atkins et al. | Feb 1994 | A |
5296089 | Chen et al. | Mar 1994 | A |
5300461 | Ting | Apr 1994 | A |
5302474 | Shackle et al. | Apr 1994 | A |
5303319 | Ford et al. | Apr 1994 | A |
5306569 | Hiraki | Apr 1994 | A |
5307240 | McMahon | Apr 1994 | A |
5309302 | Vollmann | May 1994 | A |
5314765 | Bates | May 1994 | A |
5326652 | Lake | Jul 1994 | A |
5326653 | Chang | Jul 1994 | A |
5338624 | Gruenstern et al. | Aug 1994 | A |
5338625 | Bates et al. | Aug 1994 | A |
5342709 | Yahnke et al. | Aug 1994 | A |
5355089 | Treger et al. | Oct 1994 | A |
5360686 | Peled et al. | Nov 1994 | A |
5362579 | Rossoll et al. | Nov 1994 | A |
5381262 | Arima et al. | Jan 1995 | A |
5387482 | Anani | Feb 1995 | A |
5401595 | Kagawa et al. | Mar 1995 | A |
5401688 | Yamaji et al. | Mar 1995 | A |
5403680 | Otagawa et al. | Apr 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5411592 | Ovshinsky et al. | May 1995 | A |
5419982 | Tura et al. | May 1995 | A |
5427669 | Drummond | Jun 1995 | A |
5435826 | Sakakibara et al. | Jul 1995 | A |
5437692 | Dasgupta et al. | Aug 1995 | A |
5445856 | Chaloner-Gill | Aug 1995 | A |
5445906 | Hobson et al. | Aug 1995 | A |
5448110 | Tuttle et al. | Sep 1995 | A |
5449576 | Anani | Sep 1995 | A |
5455126 | Bates et al. | Oct 1995 | A |
5457569 | Liou et al. | Oct 1995 | A |
5458995 | Behl et al. | Oct 1995 | A |
5464692 | Huber | Nov 1995 | A |
5464706 | Dasgupta et al. | Nov 1995 | A |
5470396 | Mongon et al. | Nov 1995 | A |
5472795 | Atita | Dec 1995 | A |
5475528 | LaBorde | Dec 1995 | A |
5478456 | Humpal et al. | Dec 1995 | A |
5483613 | Bruce et al. | Jan 1996 | A |
5493177 | Muller et al. | Feb 1996 | A |
5498489 | Dasgupta et al. | Mar 1996 | A |
5499207 | Miki et al. | Mar 1996 | A |
5501918 | Gruenstern et al. | Mar 1996 | A |
5504041 | Summerfelt | Apr 1996 | A |
5512147 | Bates et al. | Apr 1996 | A |
5512387 | Ovshinsky | Apr 1996 | A |
5512389 | Dasgupta et al. | Apr 1996 | A |
5538796 | Schaffer et al. | Jul 1996 | A |
5540742 | Sangyoji et al. | Jul 1996 | A |
5547780 | Kagawa et al. | Aug 1996 | A |
5547782 | Dasgupta et al. | Aug 1996 | A |
5552242 | Ovshinsky et al. | Sep 1996 | A |
5555127 | Abdelkader et al. | Sep 1996 | A |
5561004 | Bates et al. | Oct 1996 | A |
5563979 | Bruce et al. | Oct 1996 | A |
5565071 | Demaray et al. | Oct 1996 | A |
5567210 | Bates et al. | Oct 1996 | A |
5569520 | Bates | Oct 1996 | A |
5582935 | Dasgupta et al. | Dec 1996 | A |
5591520 | Migliorini et al. | Jan 1997 | A |
5597660 | Bates et al. | Jan 1997 | A |
5597661 | Takeuchi et al. | Jan 1997 | A |
5599355 | Nagasubramanian et al. | Feb 1997 | A |
5601952 | Dasgupta et al. | Feb 1997 | A |
5603816 | Demaray et al. | Feb 1997 | A |
5607560 | Hirabayashi et al. | Mar 1997 | A |
5607789 | Treger et al. | Mar 1997 | A |
5612152 | Bates et al. | Mar 1997 | A |
5612153 | Moulton et al. | Mar 1997 | A |
5613995 | Bhandarkar et al. | Mar 1997 | A |
5616933 | Li | Apr 1997 | A |
5618382 | Mintz et al. | Apr 1997 | A |
5625202 | Chai | Apr 1997 | A |
5637418 | Brown et al. | Jun 1997 | A |
5643480 | Gustavsson et al. | Jul 1997 | A |
5644207 | Lew et al. | Jul 1997 | A |
5645626 | Edlund et al. | Jul 1997 | A |
5645960 | Scrosati et al. | Jul 1997 | A |
5654054 | Tropsha et al. | Aug 1997 | A |
5654984 | Hershbarger et al. | Aug 1997 | A |
5658652 | Sellergren | Aug 1997 | A |
5660700 | Shimizu et al. | Aug 1997 | A |
5665490 | Takeuchi et al. | Sep 1997 | A |
5667538 | Bailey | Sep 1997 | A |
5677784 | Harris | Oct 1997 | A |
5679980 | Summerfelt | Oct 1997 | A |
5681666 | Treger et al. | Oct 1997 | A |
5686360 | Harvey, III et al. | Nov 1997 | A |
5689522 | Beach | Nov 1997 | A |
5693956 | Shi et al. | Dec 1997 | A |
5702829 | Paidassi et al. | Dec 1997 | A |
5705293 | Hobson | Jan 1998 | A |
5716728 | Smesko | Feb 1998 | A |
5718813 | Drummond et al. | Feb 1998 | A |
5719976 | Henry et al. | Feb 1998 | A |
5721067 | Jacobs et al. | Feb 1998 | A |
RE35746 | Lake | Mar 1998 | E |
5731661 | So et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5742094 | Ting | Apr 1998 | A |
5755938 | Fukui et al. | May 1998 | A |
5755940 | Shindo | May 1998 | A |
5757126 | Harvey, III et al. | May 1998 | A |
5762768 | Goy et al. | Jun 1998 | A |
5763058 | Isen et al. | Jun 1998 | A |
5771562 | Harvey, III et al. | Jun 1998 | A |
5776278 | Tuttle et al. | Jul 1998 | A |
5779839 | Tuttle et al. | Jul 1998 | A |
5790489 | O'Connor | Aug 1998 | A |
5792550 | Phillips et al. | Aug 1998 | A |
5805223 | Shikakura et al. | Sep 1998 | A |
5811177 | Shi et al. | Sep 1998 | A |
5814195 | Lehan et al. | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5831262 | Greywall et al. | Nov 1998 | A |
5834137 | Zhang et al. | Nov 1998 | A |
5841931 | Foresi et al. | Nov 1998 | A |
5842118 | Wood, Jr. | Nov 1998 | A |
5845990 | Hymer | Dec 1998 | A |
5847865 | Gopinath et al. | Dec 1998 | A |
5849163 | Ichikawa et al. | Dec 1998 | A |
5851896 | Summerfelt | Dec 1998 | A |
5853830 | McCaulley et al. | Dec 1998 | A |
5855744 | Halsey et al. | Jan 1999 | A |
5856705 | Ting | Jan 1999 | A |
5864182 | Matsuzaki | Jan 1999 | A |
5865860 | Delnick | Feb 1999 | A |
5870273 | Sogabe et al. | Feb 1999 | A |
5874184 | Takeuchi et al. | Feb 1999 | A |
5882721 | Delnick | Mar 1999 | A |
5882946 | Otani | Mar 1999 | A |
5889383 | Teich | Mar 1999 | A |
5895731 | Clingempeel | Apr 1999 | A |
5897522 | Nitzan | Apr 1999 | A |
5900057 | Buchal et al. | May 1999 | A |
5909346 | Malhotra et al. | Jun 1999 | A |
5916704 | Lewin et al. | Jun 1999 | A |
5923964 | Li | Jul 1999 | A |
5930046 | Solberg et al. | Jul 1999 | A |
5930584 | Sun et al. | Jul 1999 | A |
5942089 | Sproul et al. | Aug 1999 | A |
5948215 | Lantsmann | Sep 1999 | A |
5948464 | Delnick | Sep 1999 | A |
5948562 | Fulcher et al. | Sep 1999 | A |
5952778 | Haskal et al. | Sep 1999 | A |
5955217 | Lerberghe | Sep 1999 | A |
5961672 | Skotheim et al. | Oct 1999 | A |
5961682 | Lee et al. | Oct 1999 | A |
5966491 | DiGiovanni | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5973913 | McEwen et al. | Oct 1999 | A |
5977582 | Flemming et al. | Nov 1999 | A |
5982144 | Johnson et al. | Nov 1999 | A |
5985484 | Young et al. | Nov 1999 | A |
5985485 | Ovshinsky et al. | Nov 1999 | A |
6000603 | Koskenmaki et al. | Dec 1999 | A |
6001224 | Drummond et al. | Dec 1999 | A |
6004660 | Topolski et al. | Dec 1999 | A |
6007945 | Jacobs et al. | Dec 1999 | A |
6013949 | Tuttle | Jan 2000 | A |
6019284 | Freeman et al. | Feb 2000 | A |
6023610 | Wood, Jr. | Feb 2000 | A |
6024844 | Drummond et al. | Feb 2000 | A |
6025094 | Visco et al. | Feb 2000 | A |
6028990 | Shahani et al. | Feb 2000 | A |
6030421 | Gauthier et al. | Feb 2000 | A |
6033768 | Muenz et al. | Mar 2000 | A |
6042965 | Nestler et al. | Mar 2000 | A |
6045626 | Yano et al. | Apr 2000 | A |
6045652 | Tuttle et al. | Apr 2000 | A |
6045942 | Miekka et al. | Apr 2000 | A |
6046081 | Kuo | Apr 2000 | A |
6046514 | Rouillard et al. | Apr 2000 | A |
6048372 | Mangahara et al. | Apr 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6051296 | McCaulley et al. | Apr 2000 | A |
6052397 | Jeon et al. | Apr 2000 | A |
6057557 | Ichikawa | May 2000 | A |
6058233 | Dragone | May 2000 | A |
6071323 | Kawaguchi | Jun 2000 | A |
6075973 | Greeff et al. | Jun 2000 | A |
6077106 | Mish | Jun 2000 | A |
6077642 | Ogata et al. | Jun 2000 | A |
6078791 | Tuttle et al. | Jun 2000 | A |
6080508 | Dasgupta et al. | Jun 2000 | A |
6080643 | Noguchi et al. | Jun 2000 | A |
6093944 | VanDover | Jul 2000 | A |
6094292 | Goldner et al. | Jul 2000 | A |
6096569 | Matsuno et al. | Aug 2000 | A |
6100108 | Mizuno et al. | Aug 2000 | A |
6106933 | Nagai et al. | Aug 2000 | A |
6110531 | Paz De Araujo | Aug 2000 | A |
6115616 | Halperin et al. | Sep 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6118426 | Albert et al. | Sep 2000 | A |
6120890 | Chen et al. | Sep 2000 | A |
6129277 | Grant et al. | Oct 2000 | A |
6133670 | Rodgers et al. | Oct 2000 | A |
6137671 | Staffiere | Oct 2000 | A |
6144916 | Wood, Jr. et al. | Nov 2000 | A |
6146225 | Sheats et al. | Nov 2000 | A |
6148503 | Delnick et al. | Nov 2000 | A |
6156452 | Kozuki et al. | Dec 2000 | A |
6157765 | Bruce et al. | Dec 2000 | A |
6159635 | Dasgupta et al. | Dec 2000 | A |
6160373 | Dunn et al. | Dec 2000 | A |
6162709 | Raoux et al. | Dec 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6168884 | Neudecker et al. | Jan 2001 | B1 |
6169474 | Greeff et al. | Jan 2001 | B1 |
6175075 | Shiotsuka et al. | Jan 2001 | B1 |
6176986 | Watanabe et al. | Jan 2001 | B1 |
6181283 | Johnson et al. | Jan 2001 | B1 |
6192222 | Greeff et al. | Feb 2001 | B1 |
6197167 | Tanaka | Mar 2001 | B1 |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6204111 | Uemoto et al. | Mar 2001 | B1 |
6210544 | Sasaki | Apr 2001 | B1 |
6210832 | Visco et al. | Apr 2001 | B1 |
6214061 | Visco et al. | Apr 2001 | B1 |
6214660 | Uemoto et al. | Apr 2001 | B1 |
6218049 | Bates et al. | Apr 2001 | B1 |
6220516 | Tuttle et al. | Apr 2001 | B1 |
6223317 | Pax et al. | Apr 2001 | B1 |
6228532 | Tsuji et al. | May 2001 | B1 |
6229987 | Greeff et al. | May 2001 | B1 |
6232242 | Hata et al. | May 2001 | B1 |
6235432 | Kono et al. | May 2001 | B1 |
6236793 | Lawrence et al. | May 2001 | B1 |
6242128 | Tura et al. | Jun 2001 | B1 |
6242129 | Johnson | Jun 2001 | B1 |
6242132 | Neudecker et al. | Jun 2001 | B1 |
6248291 | Nakagama et al. | Jun 2001 | B1 |
6248481 | Visco et al. | Jun 2001 | B1 |
6248640 | Nam | Jun 2001 | B1 |
6249222 | Gehlot | Jun 2001 | B1 |
6252564 | Albert et al. | Jun 2001 | B1 |
6258252 | Miyasaka et al. | Jul 2001 | B1 |
6261917 | Quek et al. | Jul 2001 | B1 |
6264709 | Yoon et al. | Jul 2001 | B1 |
6265652 | Kurata et al. | Jul 2001 | B1 |
6268695 | Affinito | Jul 2001 | B1 |
6271053 | Kondo | Aug 2001 | B1 |
6271793 | Brady et al. | Aug 2001 | B1 |
6271801 | Tuttle et al. | Aug 2001 | B2 |
6280585 | Obinata | Aug 2001 | B1 |
6280875 | Kwak et al. | Aug 2001 | B1 |
6281142 | Basceri | Aug 2001 | B1 |
6284406 | Xing et al. | Sep 2001 | B1 |
6287986 | Mihara | Sep 2001 | B1 |
6289209 | Wood, Jr. | Sep 2001 | B1 |
6290821 | McLeod | Sep 2001 | B1 |
6290822 | Fleming et al. | Sep 2001 | B1 |
6291098 | Shibuya et al. | Sep 2001 | B1 |
6294722 | Kondo et al. | Sep 2001 | B1 |
6296949 | Bergstresser et al. | Oct 2001 | B1 |
6296967 | Jacobs et al. | Oct 2001 | B1 |
6296971 | Hara | Oct 2001 | B1 |
6300215 | Shin | Oct 2001 | B1 |
6302939 | Rabin | Oct 2001 | B1 |
6306265 | Fu et al. | Oct 2001 | B1 |
6316563 | Naijo et al. | Nov 2001 | B2 |
6323416 | Komori et al. | Nov 2001 | B1 |
6324211 | Ovard et al. | Nov 2001 | B1 |
6325294 | Tuttle et al. | Dec 2001 | B2 |
6329213 | Tuttle et al. | Dec 2001 | B1 |
6339236 | Tomii et al. | Jan 2002 | B1 |
6340880 | Higashijima et al. | Jan 2002 | B1 |
6344366 | Bates | Feb 2002 | B1 |
6344419 | Forster et al. | Feb 2002 | B1 |
6344795 | Gehlot | Feb 2002 | B1 |
6350353 | Gopalraja et al. | Feb 2002 | B2 |
6351630 | Wood, Jr. | Feb 2002 | B2 |
6356230 | Greeff et al. | Mar 2002 | B1 |
6356694 | Weber | Mar 2002 | B1 |
6356764 | Ovard et al. | Mar 2002 | B1 |
6358810 | Domfest et al. | Mar 2002 | B1 |
6360954 | Bamardo | Mar 2002 | B1 |
6361662 | Chiba et al. | Mar 2002 | B1 |
6365300 | Ota et al. | Apr 2002 | B1 |
6365319 | Heath et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6369316 | Plessing et al. | Apr 2002 | B1 |
6372383 | Lee et al. | Apr 2002 | B1 |
6372386 | Cho et al. | Apr 2002 | B1 |
6373224 | Goto et al. | Apr 2002 | B1 |
6375780 | Tuttle et al. | Apr 2002 | B1 |
6376027 | Lee et al. | Apr 2002 | B1 |
6379835 | Kucherovsky et al. | Apr 2002 | B1 |
6379842 | Mayer | Apr 2002 | B1 |
6379846 | Terahara et al. | Apr 2002 | B1 |
6380477 | Curtin | Apr 2002 | B1 |
6384573 | Dunn | May 2002 | B1 |
6387563 | Bates | May 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6392565 | Brown | May 2002 | B1 |
6394598 | Kaiser | May 2002 | B1 |
6395430 | Cho et al. | May 2002 | B1 |
6396001 | Nakamura | May 2002 | B1 |
6398824 | Johnson | Jun 2002 | B1 |
6399241 | Hara et al. | Jun 2002 | B1 |
6402039 | Freeman et al. | Jun 2002 | B1 |
6402795 | Chu et al. | Jun 2002 | B1 |
6402796 | Johnson | Jun 2002 | B1 |
6409965 | Nagata et al. | Jun 2002 | B1 |
6413284 | Chu et al. | Jul 2002 | B1 |
6413285 | Chu et al. | Jul 2002 | B1 |
6413382 | Wang et al. | Jul 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6413676 | Munshi | Jul 2002 | B1 |
6414626 | Greeff et al. | Jul 2002 | B1 |
6416598 | Sircar | Jul 2002 | B1 |
6420961 | Bates et al. | Jul 2002 | B1 |
6422698 | Kaiser | Jul 2002 | B2 |
6423106 | Bates | Jul 2002 | B1 |
6423776 | Akkapeddi et al. | Jul 2002 | B1 |
6426163 | Pasquier et al. | Jul 2002 | B1 |
6432577 | Shul et al. | Aug 2002 | B1 |
6432584 | Visco et al. | Aug 2002 | B1 |
6433380 | Shin | Aug 2002 | B2 |
6433465 | McKnight et al. | Aug 2002 | B1 |
6436156 | Wandeloski et al. | Aug 2002 | B1 |
6437231 | Kurata et al. | Aug 2002 | B2 |
6444336 | Jia et al. | Sep 2002 | B1 |
6444355 | Murai et al. | Sep 2002 | B1 |
6444368 | Hikmet et al. | Sep 2002 | B1 |
6444750 | Touhsaent | Sep 2002 | B1 |
6459418 | Comiskey et al. | Oct 2002 | B1 |
6459726 | Ovard et al. | Oct 2002 | B1 |
6466771 | Wood, Jr. | Oct 2002 | B2 |
6475668 | Hosokawa et al. | Nov 2002 | B1 |
6480699 | Lovoi | Nov 2002 | B1 |
6481623 | Grant et al. | Nov 2002 | B1 |
6488822 | Moslehi | Dec 2002 | B1 |
6494999 | Herrera et al. | Dec 2002 | B1 |
6495283 | Yoon et al. | Dec 2002 | B1 |
6497598 | Affinito | Dec 2002 | B2 |
6500287 | Azens et al. | Dec 2002 | B1 |
6503661 | Park et al. | Jan 2003 | B1 |
6503831 | Speakman | Jan 2003 | B2 |
6506289 | Demaray et al. | Jan 2003 | B2 |
6511516 | Johnson et al. | Jan 2003 | B1 |
6511615 | Dawes et al. | Jan 2003 | B1 |
6517968 | Johnson et al. | Feb 2003 | B2 |
6522067 | Graff et al. | Feb 2003 | B1 |
6524466 | Bonaventura et al. | Feb 2003 | B1 |
6524750 | Mansuetto | Feb 2003 | B1 |
6525976 | Johnson | Feb 2003 | B1 |
6528212 | Kusumoto et al. | Mar 2003 | B1 |
6529827 | Beason et al. | Mar 2003 | B1 |
6533907 | Demaray et al. | Mar 2003 | B2 |
6537428 | Xiong et al. | Mar 2003 | B1 |
6538211 | St. Lawrence et al. | Mar 2003 | B2 |
6541147 | McLean et al. | Apr 2003 | B1 |
6548912 | Graff et al. | Apr 2003 | B1 |
6551745 | Moutsios et al. | Apr 2003 | B2 |
6558836 | Whitacre et al. | May 2003 | B1 |
6562513 | Takeuchi et al. | May 2003 | B1 |
6563998 | Farah et al. | May 2003 | B1 |
6569564 | Lane | May 2003 | B1 |
6569570 | Sonobe et al. | May 2003 | B2 |
6570325 | Graff et al. | May 2003 | B2 |
6572173 | Muller | Jun 2003 | B2 |
6573652 | Graff et al. | Jun 2003 | B1 |
6576546 | Gilbert et al. | Jun 2003 | B2 |
6579728 | Grant et al. | Jun 2003 | B2 |
6582480 | Pasquier et al. | Jun 2003 | B2 |
6582481 | Erbil | Jun 2003 | B1 |
6582852 | Gao et al. | Jun 2003 | B1 |
6589299 | Missling et al. | Jul 2003 | B2 |
6593150 | Ramberg et al. | Jul 2003 | B2 |
6599662 | Chiang et al. | Jul 2003 | B1 |
6600905 | Greeff et al. | Jul 2003 | B2 |
6602338 | Chen et al. | Aug 2003 | B2 |
6603139 | Tessler et al. | Aug 2003 | B1 |
6603391 | Greeff et al. | Aug 2003 | B1 |
6605228 | Kawaguchi et al. | Aug 2003 | B1 |
6608464 | Lew et al. | Aug 2003 | B1 |
6608470 | Oglesbee et al. | Aug 2003 | B1 |
6610440 | LaFollette et al. | Aug 2003 | B1 |
6615614 | Makikawa et al. | Sep 2003 | B1 |
6616035 | Ehrensvard et al. | Sep 2003 | B2 |
6618829 | Pax et al. | Sep 2003 | B2 |
6620545 | Goenka et al. | Sep 2003 | B2 |
6621012 | Crockett et al. | Sep 2003 | B2 |
6622049 | Penner et al. | Sep 2003 | B2 |
6632563 | Krasnov et al. | Oct 2003 | B1 |
6637906 | Knoerzer et al. | Oct 2003 | B2 |
6637916 | Mullner | Oct 2003 | B2 |
6639578 | Comiskey et al. | Oct 2003 | B1 |
6642895 | Zurcher et al. | Nov 2003 | B2 |
6645675 | Munshi | Nov 2003 | B1 |
6650000 | Ballantine et al. | Nov 2003 | B2 |
6650942 | Howard et al. | Nov 2003 | B2 |
6662430 | Brady et al. | Dec 2003 | B2 |
6664006 | Munshi | Dec 2003 | B1 |
6673484 | Matsuura | Jan 2004 | B2 |
6673716 | D'Couto et al. | Jan 2004 | B1 |
6674159 | Peterson et al. | Jan 2004 | B1 |
6677070 | Kearl | Jan 2004 | B2 |
6683244 | Fujimori et al. | Jan 2004 | B2 |
6683749 | Daby et al. | Jan 2004 | B2 |
6686096 | Chung | Feb 2004 | B1 |
6693840 | Shimada et al. | Feb 2004 | B2 |
6700491 | Shafer | Mar 2004 | B2 |
6706449 | Mikhaylik et al. | Mar 2004 | B2 |
6709778 | Johnson | Mar 2004 | B2 |
6713216 | Kugai et al. | Mar 2004 | B2 |
6713389 | Speakman | Mar 2004 | B2 |
6713987 | Krasnov et al. | Mar 2004 | B2 |
6723140 | Chu et al. | Apr 2004 | B2 |
6730423 | Einhart et al. | May 2004 | B2 |
6733924 | Skotheim et al. | May 2004 | B1 |
6737197 | Chu et al. | May 2004 | B2 |
6737789 | Radziemski et al. | May 2004 | B2 |
6741178 | Tuttle | May 2004 | B1 |
6750156 | Le et al. | Jun 2004 | B2 |
6752842 | Luski et al. | Jun 2004 | B2 |
6753108 | Hampden-Smith et al. | Jun 2004 | B1 |
6753114 | Jacobs et al. | Jun 2004 | B2 |
6760520 | Medin et al. | Jul 2004 | B1 |
6764525 | Whitacre et al. | Jul 2004 | B1 |
6768246 | Pelrine et al. | Jul 2004 | B2 |
6768855 | Bakke et al. | Jul 2004 | B1 |
6770176 | Benson et al. | Aug 2004 | B2 |
6773848 | Nortoft et al. | Aug 2004 | B1 |
6780208 | Hopkins et al. | Aug 2004 | B2 |
6797428 | Skotheim et al. | Sep 2004 | B1 |
6797429 | Komastu | Sep 2004 | B1 |
6805998 | Jensen et al. | Oct 2004 | B2 |
6805999 | Lee et al. | Oct 2004 | B2 |
6818356 | Bates | Nov 2004 | B1 |
6822157 | Fujioka | Nov 2004 | B2 |
6824922 | Park et al. | Nov 2004 | B2 |
6827826 | Demaray et al. | Dec 2004 | B2 |
6828063 | Park et al. | Dec 2004 | B2 |
6828065 | Munshi | Dec 2004 | B2 |
6830846 | Kramlich et al. | Dec 2004 | B2 |
6835493 | Zhang et al. | Dec 2004 | B2 |
6838209 | Langan et al. | Jan 2005 | B2 |
6846765 | Imamura et al. | Jan 2005 | B2 |
6852139 | Zhang et al. | Feb 2005 | B2 |
6855441 | Levanon | Feb 2005 | B1 |
6861821 | Masumoto et al. | Mar 2005 | B2 |
6863699 | Krasnov et al. | Mar 2005 | B1 |
6866901 | Burrows et al. | Mar 2005 | B2 |
6866963 | Seung et al. | Mar 2005 | B2 |
6869722 | Kearl | Mar 2005 | B2 |
6884327 | Pan et al. | Apr 2005 | B2 |
6886240 | Zhang et al. | May 2005 | B2 |
6890385 | Tsuchiya et al. | May 2005 | B2 |
6896992 | Kearl | May 2005 | B2 |
6899975 | Watanabe et al. | May 2005 | B2 |
6902660 | Lee et al. | Jun 2005 | B2 |
6905578 | Moslehi et al. | Jun 2005 | B1 |
6906436 | Jenson et al. | Jun 2005 | B2 |
6911667 | Pichler et al. | Jun 2005 | B2 |
6916679 | Snyder et al. | Jul 2005 | B2 |
6921464 | Krasnov et al. | Jul 2005 | B2 |
6923702 | Graff et al. | Aug 2005 | B2 |
6924164 | Jensen | Aug 2005 | B2 |
6929879 | Yamazaki | Aug 2005 | B2 |
6936377 | Wensley et al. | Aug 2005 | B2 |
6936381 | Skotheim et al. | Aug 2005 | B2 |
6936407 | Pichler | Aug 2005 | B2 |
6949389 | Pichler et al. | Sep 2005 | B2 |
6955986 | Li | Oct 2005 | B2 |
6962613 | Jenson | Nov 2005 | B2 |
6962671 | Martin et al. | Nov 2005 | B2 |
6964829 | Utsugi et al. | Nov 2005 | B2 |
6982132 | Goldner et al. | Jan 2006 | B1 |
6983535 | Crockett et al. | Jan 2006 | B2 |
6986965 | Jenson et al. | Jan 2006 | B2 |
6994933 | Bates | Feb 2006 | B1 |
7022431 | Shchori et al. | Apr 2006 | B2 |
7033406 | Weir et al. | Apr 2006 | B2 |
7045246 | Simburger et al. | May 2006 | B2 |
7045372 | Ballantine et al. | May 2006 | B2 |
7056620 | Krasnov et al. | Jun 2006 | B2 |
7073723 | Fürst et al. | Jul 2006 | B2 |
7095372 | Soler Castany et al. | Aug 2006 | B2 |
7129166 | Speakman | Oct 2006 | B2 |
7131189 | Jenson | Nov 2006 | B2 |
7144654 | LaFollette et al. | Dec 2006 | B2 |
7144655 | Jenson et al. | Dec 2006 | B2 |
7157187 | Jenson | Jan 2007 | B2 |
7158031 | Tuttle | Jan 2007 | B2 |
7162392 | Vock et al. | Jan 2007 | B2 |
7183693 | Brantner et al. | Feb 2007 | B2 |
7186479 | Krasnov et al. | Mar 2007 | B2 |
7188410 | Crockett et al. | Mar 2007 | B2 |
7194801 | Jenson et al. | Mar 2007 | B2 |
7198832 | Burrows et al. | Apr 2007 | B2 |
7202825 | Leizerovich et al. | Apr 2007 | B2 |
7220517 | Park et al. | May 2007 | B2 |
7230321 | McCain | Jun 2007 | B2 |
7247408 | Skotheim et al. | Jul 2007 | B2 |
7253494 | Mino et al. | Aug 2007 | B2 |
7265674 | Tuttle | Sep 2007 | B2 |
7267904 | Komatsu et al. | Sep 2007 | B2 |
7267906 | Mizuta et al. | Sep 2007 | B2 |
7273682 | Park et al. | Sep 2007 | B2 |
7274118 | Jenson et al. | Sep 2007 | B2 |
7288340 | Iwamoto | Oct 2007 | B2 |
7316867 | Park et al. | Jan 2008 | B2 |
7323634 | Speakman | Jan 2008 | B2 |
7332363 | Edwards | Feb 2008 | B2 |
7335441 | Luski et al. | Feb 2008 | B2 |
RE40137 | Tuttle et al. | Mar 2008 | E |
7345647 | Rodenbeck | Mar 2008 | B1 |
7348099 | Mukai et al. | Mar 2008 | B2 |
7389580 | Jenson et al. | Jun 2008 | B2 |
7400253 | Cohen | Jul 2008 | B2 |
7410730 | Bates | Aug 2008 | B2 |
RE40531 | Graff et al. | Oct 2008 | E |
7466274 | Lin et al. | Dec 2008 | B2 |
7468221 | LaFollette et al. | Dec 2008 | B2 |
7494742 | Tarnowski et al. | Feb 2009 | B2 |
7670724 | Chan et al. | Mar 2010 | B1 |
7848715 | Boos | Dec 2010 | B2 |
7858223 | Visco et al. | Dec 2010 | B2 |
8010048 | Brommer et al. | Aug 2011 | B2 |
8056814 | Martin et al. | Nov 2011 | B2 |
20010005561 | Yamada et al. | Jun 2001 | A1 |
20010027159 | Kaneyoshi | Oct 2001 | A1 |
20010031122 | Lackritz et al. | Oct 2001 | A1 |
20010032666 | Jenson | Oct 2001 | A1 |
20010033952 | Jenson et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010041294 | Chu et al. | Nov 2001 | A1 |
20010041460 | Wiggins | Nov 2001 | A1 |
20010052752 | Ghosh et al. | Dec 2001 | A1 |
20010054437 | Komori et al. | Dec 2001 | A1 |
20010055719 | Akashi et al. | Dec 2001 | A1 |
20020000034 | Jenson | Jan 2002 | A1 |
20020001746 | Jenson | Jan 2002 | A1 |
20020001747 | Jenson | Jan 2002 | A1 |
20020004167 | Jenson et al. | Jan 2002 | A1 |
20020009630 | Gao et al. | Jan 2002 | A1 |
20020019296 | Freeman et al. | Feb 2002 | A1 |
20020028377 | Gross | Mar 2002 | A1 |
20020033330 | Demaray et al. | Mar 2002 | A1 |
20020037756 | Jacobs et al. | Mar 2002 | A1 |
20020066539 | Muller | Jun 2002 | A1 |
20020067615 | Muller | Jun 2002 | A1 |
20020071989 | Verma et al. | Jun 2002 | A1 |
20020076133 | Li et al. | Jun 2002 | A1 |
20020091929 | Ehrensvard | Jul 2002 | A1 |
20020093029 | Ballantine et al. | Jul 2002 | A1 |
20020106297 | Ueno et al. | Aug 2002 | A1 |
20020110733 | Johnson | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020134671 | Demaray et al. | Sep 2002 | A1 |
20020139662 | Lee | Oct 2002 | A1 |
20020140103 | Kloster et al. | Oct 2002 | A1 |
20020159243 | Murasko et al. | Oct 2002 | A1 |
20020161404 | Schmidt | Oct 2002 | A1 |
20020164441 | Amine et al. | Nov 2002 | A1 |
20020170821 | Sandlin et al. | Nov 2002 | A1 |
20020170960 | Ehrensvard et al. | Nov 2002 | A1 |
20030019326 | Han et al. | Jan 2003 | A1 |
20030022487 | Yoon et al. | Jan 2003 | A1 |
20030024994 | Ladyansky | Feb 2003 | A1 |
20030029493 | Plessing | Feb 2003 | A1 |
20030030589 | Zurcher et al. | Feb 2003 | A1 |
20030035906 | Memarian et al. | Feb 2003 | A1 |
20030036003 | Shchori et al. | Feb 2003 | A1 |
20030042131 | Johnson | Mar 2003 | A1 |
20030044665 | Rastegar et al. | Mar 2003 | A1 |
20030048635 | Knoerzer et al. | Mar 2003 | A1 |
20030063883 | Demaray et al. | Apr 2003 | A1 |
20030064292 | Neudecker et al. | Apr 2003 | A1 |
20030068559 | Armstrong et al. | Apr 2003 | A1 |
20030076642 | Shiner et al. | Apr 2003 | A1 |
20030077914 | Le et al. | Apr 2003 | A1 |
20030079838 | Brcka | May 2003 | A1 |
20030091904 | Munshi | May 2003 | A1 |
20030095463 | Shimada et al. | May 2003 | A1 |
20030097858 | Strohhofer et al. | May 2003 | A1 |
20030109903 | Berrang et al. | Jun 2003 | A1 |
20030127319 | Demaray et al. | Jul 2003 | A1 |
20030134054 | Demaray et al. | Jul 2003 | A1 |
20030141186 | Wang et al. | Jul 2003 | A1 |
20030143853 | Celii et al. | Jul 2003 | A1 |
20030146877 | Mueller | Aug 2003 | A1 |
20030152829 | Zhang et al. | Aug 2003 | A1 |
20030162094 | Lee et al. | Aug 2003 | A1 |
20030173207 | Zhang et al. | Sep 2003 | A1 |
20030173208 | Pan et al. | Sep 2003 | A1 |
20030174391 | Pan et al. | Sep 2003 | A1 |
20030175142 | Milonopoulou et al. | Sep 2003 | A1 |
20030178623 | Nishiki et al. | Sep 2003 | A1 |
20030178637 | Chen et al. | Sep 2003 | A1 |
20030180610 | Felde et al. | Sep 2003 | A1 |
20030185266 | Henrichs | Oct 2003 | A1 |
20030231106 | Shafer | Dec 2003 | A1 |
20030232248 | Iwamoto et al. | Dec 2003 | A1 |
20040008587 | Siebott et al. | Jan 2004 | A1 |
20040015735 | Norman | Jan 2004 | A1 |
20040023106 | Benson et al. | Feb 2004 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040029311 | Snyder et al. | Feb 2004 | A1 |
20040038050 | Saijo et al. | Feb 2004 | A1 |
20040043557 | Haukka et al. | Mar 2004 | A1 |
20040048157 | Neudecker et al. | Mar 2004 | A1 |
20040058237 | Higuchi et al. | Mar 2004 | A1 |
20040072067 | Minami et al. | Apr 2004 | A1 |
20040077161 | Chen et al. | Apr 2004 | A1 |
20040078662 | Hamel et al. | Apr 2004 | A1 |
20040081415 | Demaray et al. | Apr 2004 | A1 |
20040081860 | Hundt et al. | Apr 2004 | A1 |
20040085002 | Pearce | May 2004 | A1 |
20040101761 | Park et al. | May 2004 | A1 |
20040105644 | Dawes | Jun 2004 | A1 |
20040106038 | Shimamura et al. | Jun 2004 | A1 |
20040106045 | Ugaji | Jun 2004 | A1 |
20040106046 | Inda | Jun 2004 | A1 |
20040118700 | Schierle-Arndt et al. | Jun 2004 | A1 |
20040126305 | Chen et al. | Jul 2004 | A1 |
20040151986 | Park et al. | Aug 2004 | A1 |
20040161640 | Salot | Aug 2004 | A1 |
20040175624 | Luski et al. | Sep 2004 | A1 |
20040188239 | Robison et al. | Sep 2004 | A1 |
20040209159 | Lee et al. | Oct 2004 | A1 |
20040212276 | Brantner et al. | Oct 2004 | A1 |
20040214079 | Simburger et al. | Oct 2004 | A1 |
20040219434 | Benson et al. | Nov 2004 | A1 |
20040245561 | Sakashita et al. | Dec 2004 | A1 |
20040258984 | Ariel et al. | Dec 2004 | A1 |
20040259305 | Demaray et al. | Dec 2004 | A1 |
20050000794 | Demaray et al. | Jan 2005 | A1 |
20050006768 | Narasimhan et al. | Jan 2005 | A1 |
20050048802 | Zhang et al. | Mar 2005 | A1 |
20050070097 | Barmak et al. | Mar 2005 | A1 |
20050072458 | Goldstein | Apr 2005 | A1 |
20050079418 | Kelley et al. | Apr 2005 | A1 |
20050095506 | Klaassen | May 2005 | A1 |
20050105231 | Hamel et al. | May 2005 | A1 |
20050110457 | LaFollette et al. | May 2005 | A1 |
20050112461 | Amine et al. | May 2005 | A1 |
20050118464 | Levanon | Jun 2005 | A1 |
20050130032 | Krasnov et al. | Jun 2005 | A1 |
20050133361 | Ding et al. | Jun 2005 | A1 |
20050141170 | Honda et al. | Jun 2005 | A1 |
20050142447 | Nakai et al. | Jun 2005 | A1 |
20050147877 | Tarnowski et al. | Jul 2005 | A1 |
20050158622 | Mizuta et al. | Jul 2005 | A1 |
20050170736 | Cok | Aug 2005 | A1 |
20050175891 | Kameyama et al. | Aug 2005 | A1 |
20050176181 | Burrows et al. | Aug 2005 | A1 |
20050181280 | Ceder et al. | Aug 2005 | A1 |
20050183946 | Pan et al. | Aug 2005 | A1 |
20050189139 | Stole | Sep 2005 | A1 |
20050208371 | Kim et al. | Sep 2005 | A1 |
20050239917 | Nelson et al. | Oct 2005 | A1 |
20050255828 | Fisher | Nov 2005 | A1 |
20050266161 | Medeiros et al. | Dec 2005 | A1 |
20050271796 | Neudecker | Dec 2005 | A1 |
20060019504 | Taussig | Jan 2006 | A1 |
20060021214 | Jenson et al. | Feb 2006 | A1 |
20060021261 | Face | Feb 2006 | A1 |
20060040177 | Onodera et al. | Feb 2006 | A1 |
20060046907 | Rastegar et al. | Mar 2006 | A1 |
20060054496 | Zhang et al. | Mar 2006 | A1 |
20060057283 | Zhang et al. | Mar 2006 | A1 |
20060057304 | Zhang et al. | Mar 2006 | A1 |
20060063074 | Jenson et al. | Mar 2006 | A1 |
20060071592 | Narasimhan et al. | Apr 2006 | A1 |
20060155545 | Jayne | Jul 2006 | A1 |
20060201583 | Michaluk et al. | Sep 2006 | A1 |
20060210779 | Weir et al. | Sep 2006 | A1 |
20060222954 | Skotheim et al. | Oct 2006 | A1 |
20060231837 | Wuchse et al. | Oct 2006 | A1 |
20060234130 | Inda | Oct 2006 | A1 |
20060237543 | Goto et al. | Oct 2006 | A1 |
20060255435 | Fuergut et al. | Nov 2006 | A1 |
20060286448 | Snyder et al. | Dec 2006 | A1 |
20070009802 | Lee et al. | Jan 2007 | A1 |
20070021156 | Hoong et al. | Jan 2007 | A1 |
20070023275 | Tanase et al. | Feb 2007 | A1 |
20070037058 | Visco et al. | Feb 2007 | A1 |
20070053139 | Zhang et al. | Mar 2007 | A1 |
20070087230 | Jenson et al. | Apr 2007 | A1 |
20070091543 | Gasse et al. | Apr 2007 | A1 |
20070125638 | Zhang et al. | Jun 2007 | A1 |
20070141468 | Barker | Jun 2007 | A1 |
20070148065 | Weir et al. | Jun 2007 | A1 |
20070148553 | Weppner | Jun 2007 | A1 |
20070151661 | Mao et al. | Jul 2007 | A1 |
20070164376 | Burrows et al. | Jul 2007 | A1 |
20070166612 | Krasnov et al. | Jul 2007 | A1 |
20070184345 | Neudecker et al. | Aug 2007 | A1 |
20070196682 | Visser et al. | Aug 2007 | A1 |
20070202395 | Snyder et al. | Aug 2007 | A1 |
20070205513 | Brunnbauer et al. | Sep 2007 | A1 |
20070210459 | Burrows et al. | Sep 2007 | A1 |
20070222681 | Greene et al. | Sep 2007 | A1 |
20070224951 | Gilb et al. | Sep 2007 | A1 |
20070229228 | Yamazaki et al. | Oct 2007 | A1 |
20070235320 | White et al. | Oct 2007 | A1 |
20070264564 | Johnson et al. | Nov 2007 | A1 |
20070278653 | Brunnbauer et al. | Dec 2007 | A1 |
20070298326 | Angell et al. | Dec 2007 | A1 |
20080003496 | Neudecker et al. | Jan 2008 | A1 |
20080008936 | Mizuta et al. | Jan 2008 | A1 |
20080014501 | Skotheim et al. | Jan 2008 | A1 |
20080057397 | Skotheim et al. | Mar 2008 | A1 |
20080084678 | Burhance et al. | Apr 2008 | A1 |
20080150829 | Lin et al. | Jun 2008 | A1 |
20080213672 | Skotheim et al. | Sep 2008 | A1 |
20080233708 | Hisamatsu | Sep 2008 | A1 |
20080254575 | Fuergut et al. | Oct 2008 | A1 |
20080261107 | Snyder et al. | Oct 2008 | A1 |
20080263855 | Li et al. | Oct 2008 | A1 |
20080286651 | Neudecker et al. | Nov 2008 | A1 |
20080318101 | Kim et al. | Dec 2008 | A1 |
20090041994 | Ockenfuss | Feb 2009 | A1 |
20090092903 | Johnson et al. | Apr 2009 | A1 |
20090124201 | Meskens | May 2009 | A1 |
20090129040 | Hsu | May 2009 | A1 |
20090181303 | Neudecker et al. | Jul 2009 | A1 |
20090302226 | Schieber et al. | Dec 2009 | A1 |
20090308936 | Nitzan et al. | Dec 2009 | A1 |
20090312069 | Peng et al. | Dec 2009 | A1 |
20100001079 | Martin et al. | Jan 2010 | A1 |
20100032001 | Brantner | Feb 2010 | A1 |
20100086853 | Venkatachalam et al. | Apr 2010 | A1 |
20110267235 | Brommer et al. | Nov 2011 | A1 |
20110304430 | Brommer et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1415124 | Apr 2003 | CN |
1532984 | Sep 2004 | CN |
19824145 | Dec 1999 | DE |
10252308 | Apr 2004 | DE |
19627543 | Oct 2004 | DE |
10 2005 014 427 | Sep 2006 | DE |
10 2006 054 309 | Nov 2006 | DE |
10 2008 016 665 | Oct 2008 | DE |
10 2007 030604 | Jan 2009 | DE |
0 510 883 | Oct 1992 | EP |
0 639 655 | Feb 1995 | EP |
0 652 308 | May 1995 | EP |
0 820 088 | Jan 1998 | EP |
1 068 899 | Jan 2001 | EP |
0 867 985 | Feb 2001 | EP |
1 092 689 | Apr 2001 | EP |
1 189 080 | Mar 2002 | EP |
1 713 024 | Oct 2006 | EP |
2 861 218 | Apr 2005 | FR |
2806198 | Sep 2011 | FR |
55-009305 | Jan 1980 | JP |
56-076060 | Jun 1981 | JP |
56-156675 | Dec 1981 | JP |
60-068558 | Apr 1985 | JP |
61-269072 | Nov 1986 | JP |
62-267944 | Nov 1987 | JP |
63-290922 | Nov 1988 | JP |
2000-162234 | Nov 1988 | JP |
2-054764 | Feb 1990 | JP |
H02-121383 | May 1990 | JP |
2-230662 | Sep 1990 | JP |
03-036962 | Feb 1991 | JP |
4-058456 | Feb 1992 | JP |
4-072049 | Mar 1992 | JP |
6-010127 | Jan 1994 | JP |
6-100333 | Apr 1994 | JP |
7-233469 | May 1995 | JP |
7-224379 | Aug 1995 | JP |
08-114408 | May 1996 | JP |
10-026571 | Jan 1998 | JP |
10-239187 | Sep 1998 | JP |
11-204088 | Jul 1999 | JP |
A-H11-274735 | Oct 1999 | JP |
2000-144435 | May 2000 | JP |
2000-188099 | Jul 2000 | JP |
2000-268867 | Sep 2000 | JP |
2000251868 | Sep 2000 | JP |
2001-171812 | Jun 2001 | JP |
2001-259494 | Sep 2001 | JP |
2001-297764 | Oct 2001 | JP |
2001-328198 | Nov 2001 | JP |
2002-140776 | May 2002 | JP |
2002-344115 | Nov 2002 | JP |
2003-17040 | Jan 2003 | JP |
2003-347045 | Dec 2003 | JP |
2004-071305 | Mar 2004 | JP |
2004-149849 | May 2004 | JP |
2004-158268 | Jun 2004 | JP |
2004165562 | Jun 2004 | JP |
2004-273436 | Sep 2004 | JP |
200556761 | Mar 2005 | JP |
2005-256101 | Sep 2005 | JP |
2002-026412 | Feb 2007 | JP |
7-107752 | Apr 2007 | JP |
20020007881 | Jan 2002 | KR |
20020017790 | Mar 2002 | KR |
20020029813 | Apr 2002 | KR |
20020038917 | May 2002 | KR |
20030033913 | May 2003 | KR |
20030042288 | May 2003 | KR |
20030085252 | Nov 2003 | KR |
2241281 | Nov 2004 | RU |
WO-9219090 | Oct 1992 | WO |
WO 9513629 | May 1995 | WO |
WO 9623085 | Aug 1996 | WO |
WO 9623217 | Aug 1996 | WO |
WO 9727344 | Jul 1997 | WO |
WO 9735044 | Sep 1997 | WO |
WO 9847196 | Oct 1998 | WO |
WO 9943034 | Aug 1999 | WO |
WO 9957770 | Nov 1999 | WO |
WO 0021898 | Apr 2000 | WO |
WO 0022742 | Apr 2000 | WO |
WO 0028607 | May 2000 | WO |
WO 0036665 | Jun 2000 | WO |
WO 0060682 | Oct 2000 | WO |
WO 0060689 | Oct 2000 | WO |
WO 0062365 | Oct 2000 | WO |
WO 0101507 | Jan 2001 | WO |
WO 0117052 | Mar 2001 | WO |
WO 0124303 | Apr 2001 | WO |
WO 0133651 | May 2001 | WO |
WO 0139305 | May 2001 | WO |
WO 0173864 | Oct 2001 | WO |
WO 0173865 | Oct 2001 | WO |
WO 0173866 | Oct 2001 | WO |
WO 0173868 | Oct 2001 | WO |
WO 0173870 | Oct 2001 | WO |
WO 0173883 | Oct 2001 | WO |
WO 0173957 | Oct 2001 | WO |
WO 0182390 | Nov 2001 | WO |
WO 0212932 | Feb 2002 | WO |
WO 0242516 | May 2002 | WO |
WO 0247187 | Jun 2002 | WO |
WO 02071506 | Sep 2002 | WO |
WO 02101857 | Dec 2002 | WO |
WO 03003485 | Jan 2003 | WO |
WO 03005477 | Jan 2003 | WO |
WO 03026039 | Mar 2003 | WO |
WO 03036670 | May 2003 | WO |
WO 03069714 | Aug 2003 | WO |
WO 03080325 | Oct 2003 | WO |
WO 03083166 | Oct 2003 | WO |
WO 2004012283 | Feb 2004 | WO |
WO 2004021532 | Mar 2004 | WO |
WO 2004061887 | Jul 2004 | WO |
WO 2004077519 | Sep 2004 | WO |
WO 2004086550 | Oct 2004 | WO |
WO-2004093223 | Oct 2004 | WO |
WO 2004093223 | Oct 2004 | WO |
WO 2004106581 | Dec 2004 | WO |
WO 2004106582 | Dec 2004 | WO |
WO 2005008828 | Jan 2005 | WO |
WO 2005013394 | Feb 2005 | WO |
WO 2005038957 | Apr 2005 | WO |
WO 2005067645 | Jul 2005 | WO |
WO 2005085138 | Sep 2005 | WO |
WO 2005091405 | Sep 2005 | WO |
WO 2006063308 | Jun 2006 | WO |
WO 2006085307 | Aug 2006 | WO |
WO 2007016781 | Feb 2007 | WO |
WO 2007019855 | Feb 2007 | WO |
WO 2007095604 | Aug 2007 | WO |
WO 2008036731 | Mar 2008 | WO |
Entry |
---|
Infinite Power Solutions, International Preliminary Report on Patentability. App No. PCT/US2010/047562; Mar. 6, 2012. |
Infinite Power Solutions, Notificaiton of Transmittal of the International Search Report and the Written Opinion of the International Searching authority, or the Declaration; App No. PCT/US2010/047562; Oct. 29, 2010. |
Jones and Akridge, “A thin film solid slate microbattery,” Solid State Ionics 53-56 (1992), pp. 628-634. |
Inaguma, Yoshiyuki, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Counnunications, vol. 86, No. 10, pp. 689-693 (1993). |
Guy, D., “Novel Architecture of Composite Electrode for Optimization of Lithium Battery Performance,” Journal of Power Sources 157, pp. 438-442 (2006). |
Wollenstine, J., “Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12,” Journal of Power Sources 180, pp. 582-585 (2008). |
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 811-820 (2005). |
Hill, R. et al., “Large Area Deposition by Mid-Frequency AC Sputtering,” Society of Vacuum Coaters, 41st Annual Tech. Conference Proceedings. 197-202 (1998). |
Macák, Karol et al, “Ionized Sputter Deposition Using an Extremely High Plasma Density Pulsed Mapleton Discharge,” J. Vac. Sci. Technol. A 18(4):1533-37 (2000). |
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 817-820 (John Wiley & Sons, Inc. Publication, 2005). |
Lamb, W.B., “Designing Nonfoil Containing Skins for VIP Applications,” DuPont VIA Symposium Presentation, 35 Pages (1999). |
Lange, M.R. et al, “High Gain Ultra-Short Length Phosphate glass Erbium-Doped Fiber Amplifier Material,” OSA Optical Fiber Communications (OFC), 3 Pages (2002). |
Laporta, P. et al, “Diode-pumped cw bulk Er: Yb: glass laser,” Optics Letters 16(24):1952-1954 (1991). |
Laurent-Lund, C. et al., “PECVD Grown Multiple Core Planar Waveguides with Extremely Low Interface Reflections and Losses,” IEEE Photonics Tech. Lett. 10(10):1431-1433 (1998). |
Lee, B.H. et al., “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silion,” Appl. Phys. Lett. 74(21):3143-3145 (1999). |
Lee, K.K. et al., “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77(11):1617-1619 (2000). |
Love, J.D. et al., “Quantifying Loss Minimisation in Single-Mode Fibre Tapers,” Electronics Letters 22(17)912-914 (1986). |
Mardare, D. and Rusu, G.I., “On the structure of Titanium Oxide Thin Films,” Andalele Stiintifice Ale Universitatii IASI, Romania, pp. 201-208 (1999). |
Marques, P.V.S. et al., “Planar Silica-on-Silicon Waveguide Lasers Based in Two Layers Core Devices,” 10th European Conference on Integrated Optics, Session WeB2, pp. 79-82 (2001). |
Mattox “Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters,” Albuquerque, New Mexico 660f and 692ff, Noyes Publications (1998). |
Meijerink, A. et al, “Luminescence of Ag+ in Crystalline and Glassy Srb4O7,” J. Physics Chem. Solids 54(8):901-906 (1993). |
Mesnaoui, M. et al, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3—AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29:1001-1013 (1992). |
Mitomi, O. et al., “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling,” IEEE J. Quantum Electronics 30(8): 1787-1793 (1994). |
Mizuno, Y. et al “Temperature dependence of oxide decomposition on titanium surfaces in UHV,” J. Vac. Sci & Tech. A. 20(5): 1716-1721 (2002). |
Neudecker, B. et al., “Li9SiAlOs: a lithium ion electrolyte for voltages above 5.4 V,” 143(7) J. Electrochem. Soc. 2198-203 (1996). |
Ohkubo, H. et al., Polarization-Insensitive Arrayed-Waveguide Grating Using Pure SiO2 Cladding, Fifth Optoelectronics and Communication Conference (OECC 2000) Technical Digest, pp. 366-367 (2000). |
Ohmi, S. et al., “Rare earth mental oxides for high-K fate insulator,” VLSI Design 2004, 1 Page (2004). |
Ohno, H. et al., “Electrical conductivity of a sintered pellet of octalithium zirconate,” 132 J. Nucl. Mat. 222-30 (1985). |
Ohtsuki, T., et al., “Gain Characteristics of high concentration Er3+-doped phosphate glass waveguide,” J. Appl. Phys. 78(6):3617-3621 (1995). |
Ono, H. et al., “Design of a Low-loss Y-branch Optical Waveguide,” Fifth Optoelectronic and Communications Conference (OECC 2000) Technical Digest, pp. 502-503 (2000). |
Padmini, P. et al. “Realization of High Tunability Barium Strontium Titanate Thin Films by rf Megnetron Sputtering,” Appl. Phys. Lett. 75(20):3186-3188 (1999). |
Pan, T. et al., “Planar Er3+-doped aluminosilicate waveguide amplifier with more than 10 dB gain across C-band,” Optical Society of America, 3 pages (2000). |
Park et al., “Characteristics of Pt Thin Film on the Conducting Ceramics TiO and Ebonex (Ti4O7) as Electrode Materials,” Thin Solid Films 258: 5-9 (1995). |
Peters, D.P. et al., “Formation mechanism of silver nanocrystals made by ion irradiation of Na+—Ag+ ion-exchanged sodalime silicate glass,” Nuclear Instruments and Methods in Physics Research B 168:237-244 (2000). |
Rajarajan, M. et al., “Numerical Study of Spot-Size Expanders fro an Efficient OEIC to SMF Coupling,” IEEE Photonics Technology Letters 10(8): 1082-1084 (1998). |
Ramaswamy, R.V. et al., “Ion-Exchange Glass Waveguides: A Review,” J. Lightwave Technology 6(6): 984-1002 (1988). |
Roberts, S.W. et al., “The Photoluminescence of Erbium-doped Silicon Monoxide,” University of Southampton , Department of Electronics and Computer Science Research Journal, 7 pages (1996). |
Saha et al., “Large Reduction of Leakage Current by Graded-Layer La Doping in (Ba0.5,Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett. 79(1): 111-113 (Jul. 2001). |
Sanyo Vacuum Industries Co., Ltd. Products Infor, TiOz, (2003), 1 page, http://www.sanyovae.co.jp/Englishweb/products?ETiO2.htm. |
Sarro, P., “Silicon Carbide as a New MEMS Technology,” Sensors and Actuators 82, 210-218 (2000). |
Schermer, R. et al., “Investigation of Mesa Dielectric Waveguides,” Proceedings of the OSA Integrated Photonics Research Topical Meeting and Exhibit, Paper No. IWB3, 3 pages (2001). |
Schiller, S. et al., “PVD Coating of Plastic Webs and Sheets with High Rates on Large Areas,” European Materials Research Society 1999 Spring Meeting, Jun. 1-4, 1999, Strasbourg, France, 13 pages (1999). |
Scholder, V. et al., “Über Zirkonate, Hafnate and Thorate von Barium, Strontium, Lithium and Natrium,” Zeitschrift für Anorganische und Allgemeine Chemie, Band 362, pp. 149-168 (1968). |
Scholl, R., “Power Supplies for Pulsed Plasma Technologies: State-of-the-Art and Outlook,” Advances Energy Industries, Inc. 1-8 (1999). |
Scholl, R., “Power Systems for Reactive Sputtering of Insulating Films,” Advances Energy Industries, Inc., 1-8 (Aug. 2001). |
Second International Symposium of Polymer Surface Modification: Relevance to Adhesion, Preliminary Program, 13 pages (1999). |
Seventh International Conference on TiO2 Photocatalysis: Fundamentals & Applications, Toronto, Ontario, Canada, Final Program, 7 pages (Nov. 17-21, 2002). |
Sewell, P. et al., “Rib Waveguide Spot-Size Transformers: Modal Properties,” J Lightwave Technology 17(5):848-856 (1999). |
Shaw, D.G. et al., “Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film,” Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, pp. 240-244 (1994). |
Shin, J.C. et al. “Dielectric and Electrical Properties of Sputter Grown (Ba,Se)TiO3 Thin Films,” J. Appl. Phys. 86(l):506-513 (1999). |
Shmulovich, J. et al., “Recent progress in Erbium-doped waveguide amplifiers,” Bell Laboratories, pp. 35-37 (1999). |
Slooff, L.H. et al., “Optical properties of Erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83(1);497-503 (1998). |
Smith, R.E. et al., “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Lett. 8(8):1052-1054 (1996). |
Snoeks, E. et al., “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8): 1468-1474 (1995). |
Starner “Human-Powered Wearable Computing” 35(3&4) IBM Sys. J. 618-29 (1996)[1]. |
Strohhofer, C. and Pulman, A. “Energy transfer to Er3+ in Ag ion-exchanged glass,” FOM Institute for Atomic and Molecular Physics, 10 pages (2001). |
Sugiyama, A. et al., “Gas Permeation Through the Pinholes of Plastic Film Laminated with Aluminum Foil,” Vuoto XXVIII(1-2):51-54 (1999). |
Tervonen. A. “Challenges and opportunities for integrated optics in optical networks,” SPIE 3620:2-11 (1999). |
Ting, C.Y. et al., “Study of planarized sputter-deposited SiO2” J. Vac, Sci Technol, 15(3):1105-1112 (1978). |
Tomaszewski, H. et al., “Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering,” Thin Solid Films 287: 104-109 (1996). |
Triechel, O. and Kirchhoff, V., “The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass,” Surface and Coating Technology 123:268-272 (2000). |
Tukamoto, H. and West, A.R., “Electronic Conductivity of LiCoOs, and Its Enhancement by Magnesium Doping,” J. Electrochem. Soc 144(9):3164-3168 (1997). |
Van Dover, R.B., “Amorphous Lanthanide-Doped TiOx Dielectric Films,” Appl. Phys. Lett. 74(20):3041-3043 (1999). |
Viljanen, J. and Leppihalme, M., “Planar Optical Coupling Elements for Multimode Fibers with Two-Step Ion Migration Process,” Applied Physics 24(1):61-63 (1981). |
Villegas, M.A. et al., “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37(6):248-253 (1996). |
Von Rottkay, K. et al., “Influences of stoichiometry on electrochrotnic cerium-titanium oxide compounds,” Presented at the 11th Int'l Conference of Solid State Ionics, Honolulu, Hawaii, Nov. 19, 1997, Published in Solid State Ionics 113-115:425-430. (1998). |
Wang, B. et al., “Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem. Soc. 143:3203-13 (1996). |
Westlinder, J. et al., “Simulation and Dielectric Characterization of Reactive dc Magnetron Cosputtered (Ta2O5)1-x(TiO2)x Thin Films,” J Vac. Sci. Technol. B 20(3):855-861 (May/Jun. 2002). |
Wilkes, K.E., “Gas Permeation Through Vacuum Barrier Films and its Effect on VIP Thermal Performance,” presented at the Vacuum Insulation Panel Symp., Baltimore, Maryland, 21 pages (May 3, 1999). |
Yanagawa, H. et al., “Index-and-Dimensional Taper and Its Application to Photonic Devices,” J. Lightwave Technology 10(5):587-591(1992). |
Yoshikawa, K. et al., “Spray formed aluminum alloys for sputtering targets,” Powder Metallurgy 43(3): 198-199 (2000). |
Yu, X. et al., “A stable thin-film lithium electrolyte: lithium phosphorus oxynitride,” 144(2) J. Electrochem. Soc. 524-532 (1997). |
Zhang, H. et al., “High Dielectric Strength, High k TiO2 Films by Pulsed DC, Reactive Sputter Deposition,” 5 pages (2001). |
Campbell, S.A. et al., “Titanium dioxide (TiO2)-based gate insulators,” IBM J. Res. Develop. 43(3): 383-392 (1999). |
Chang, C.Y. and Sze, S.M. (eds.), in ULSI Technology, The McGraw-Hill Companies, Inc., New York, Chapter 4, pp. 169-170 and 226-231 (1996). |
Chen, G. et al., “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” J. Electrochemical Society 149(8): A1092-A1099 (2002). |
Choi, Y.B. et al., “Er—Al—codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering,” Optics Letters 25(4): 263-265 (2000). |
Choy et al., “Eu—Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition,” J. Mater. Res. 14(7): 3111-3114 (Jul. 1999). |
Cocorullo, G. et al., “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Optics Lett. 21(24): 2002-2004 (1996). |
Cooksey, K. et al., “Predicting permeability & Transmission rate for multilayer materials,” Food Technology 53(9): 60-63 (1999). |
Crowder, M.A. et al., “Low-temperature single-crystal Si TFT's fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett. 19(8): 306-308 (1998). |
Delavaux, J-M. et al., “Integrated optics erbium ytterbium amplifier system in 10Gb/s fiber transmission experiment,” 22nd European Conference on Optical Communication, Osla, I.123-I.126 (1996). |
Delmas, C. et al., “Des conducteurs ioniques pseudo-bidimensionnels Li8MO6 (M=Zr, Sn), Li7LO6 (L=Nb, Ta) et Li6In2O6,” 14 Mat. Res. Bull. 619-25 (1979). |
Distributed Energy Resources: Fuel Cells, Projects, 4 pages http://www.eere.energy.gov/der/fuel—cells/projects.html (2003). |
Dorey, R.A., “Low temperature micromoulding of functional ceramic devices,” Grant summary for GR/S84156/01 for the UK Engineering and Physical Sciences Research Council, 2 pages (2004). |
DuPont Teijin Films, Mylar 200 SBL 300, Product Information, 4 pages (2000). |
Electrometals Technologies Limited, Financial Report for 2002, Corporate Directory, Chairman's review, Review of Operations, 10 pages (2002). |
E-Tek website: FAQ, Inside E-Tek, E-TEk News, Products; http://www.etek-inc.com/, 10 pages (2003). |
Flytzanis, C. et al., “Nonlinear optics in composite materials,” in Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 323-425 (1991). |
Frazae, O. et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” Proc. London Comm. Symp. 2001, London, England, 3 pages (2001). |
Fujii, M. et al., “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals for Er3+,” Appl. Phys. Lett. 71(9): 1198-1200 (1997). |
Garcia, C. et al., “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10): 1595-1597 (2003). |
Goossens, A. et al., “Sensitization of TiO2 with p-type semiconductor polymers,” Chem. Phys. Lett. 287: 148 (1998). |
Greene, J.E. et al., “Morphological and electrical properties of rf sputtered Y2O3-doped ZrO2 thin films,” J. Vac. Sci. Tech. 13(1): 72-75 (1976). |
Han, H.-S. et al., “Optical gain at 1.54 μm in Erbium-doped Silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79(27): 4563-4570 (2001). |
Hayakawa, T. et al., “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Crystalline Solids 259: 16-22 (1999). |
Hayakawa, T. et al., “Field enhancement effect of small Ag particles on the fluorescence from Eu3+—doped SiO2 glass,” Appl. Phys. Lett. 74(11): 1513-1515 (1999). |
Hayfield, P.C.S., I Development of a New Material-Monolithic Ti4O7 Ebonix® Ceramic, Royal Society of Chemistry, Cambridge, Table of Contents, 4 pages (2002). |
Hehlen, M.P. et al., “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Physical Review B 56(15): 9302-9318 (1997). |
Hehlen, M.P. et al., “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Optics Letters 22(11); 772-774 (1997). |
Horst, F. et al., “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Top. Meeting Integrated Photonics Res. '00, Quebec, Canada, p. IThF1, 3 pages (2000). |
Howson, R.P., “The reactive sputtering of oxides and nitrides,” Pure & Appl. Chem. 66(6): 1311-1318 (1994). |
Hu, Y-W. et al., “Ionic conductivity of lithium phosphate-doped lithium orthosilicate,” 11 Mat. Res. Bull. 1227-30 (1976). |
Hubner, J. and Guldberg-Kjaer, S., “Planar Er- and Yb-doped amplifiers and lasers,” COM Technical University of Denmark, 10th European Conf. on Integrated Optics, Session WeB2, pp. 71-74 (2001). |
Hwang et al., “Characterization of sputter-deposited LiMn2O4 thin films for rechargeable rnicrobatteries,” 141(12)J. Electrochem. Soc. 3296-99 (1994). |
Hwang, M-S. et al., “The effect of pulsed magnetron sputtering on the properties of iridium tin oxide thin films,” Surface and Coatings Tech. 171:29-33 (2003). |
Im, J.S. and Sposili, R.S., “Crystalline Si films for integrated active-matrix liquid crystal displays,” MRS Bulletin, pp. 39-48 (1996). |
Im, J.S. et al., “Controlled super-lateral growth of Si-films for microstructural manipulation and optimization,” Physica Status Solidi (A) 166(2): 603-617 (1998). |
Im, J.S. et al., “Single-crystal Si films for thin-film transistor devices,” Appl. Physics Lett. 70(25): 3434-3436 (1997). |
Itoh, M. et al., “Large reduction of singlemode-fibre coupling loss in 1.5% Δ planar lightwave circuits using spot-size converters,” Electronics Letters 38(2): 72-74 (2002). |
Jackson, M.K. and Movassaghi, M., “An accurate compact EFA model,” Eur. Conf. Optical Comm., Munich, Germany, 2 pages (2000). |
Janssen, R. et al., “Photoinduced electron transfer from conjugated polymers onto nanocrystalline TiOz,” Synthet. Metal., 1 page (1999). |
Johnson, J.E. et al., “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Selected topics in Quantum Electronics 6(1): 19-25 (2000). |
Jones et al., “A Thin Film Solid State Microbattery” 53-56 Solid State Ionics 628 (1992). |
Jonsson, L.B. et al., “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films 365: 43-48 (2000). |
Kato, K. and Inoue, Y., “Recent progress on PLC hybrid integration,” SPIE 3631: 28-36 (1999). |
Kato, K. and Tohmori, Y., “PLC hybrid integration technology and its application to photonic components,” IEEE J. Selected Topics in Quantum Electronics 6(1): 4-13 (2000). |
Kelly, P.J. and Arnell, R.D., “Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering,” J. Vac. Sci. Technol. A 17(3): 945-953 (1999). |
Kelly, P.J. et al., “A novel technique for the deposition of aluminum-doped zinc oxide films,” Thin Solid Films 426(1-2): 111-116 (2003). |
Kelly, P.J. et al., “Reactive pulsed magnetron sputtering process for alumina films,” J. Vac. Sci. Technol. A 18(6): 2890-2896 (2000). |
Kik, P.G. and Polman, A., “Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2,” J. Appl. Phys. 91(1): 536-536 (2002). |
Kim at al., “Correlation Between the Microstructures and the Cycling Performance of RuO2 Electrodes for Thin-Film Microsupercapacitros,” J. Vac. Sci. Technol. B20(5): 1827-1832 (Sep. 2002). |
Kim, D-W. et al. “Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2—CuO System,” Jpn. J. Appl. Phys. 39:2696-2700 (2000). |
Kim, H-K. et al., “Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery,” J. Vac. Sci. Technol. A 22(4): 1182-1187 (2004). |
Kim, J-Y. et al. “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sci. Technol. A 19(2):429-434 (2001). |
Ladouceur, F. and Love, J.D., in: Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London, Table of Contents, 6 pages (1996). |
Ladouceur, F. et al., “Effect of side wall roughness in buried channel waveguides,” IEEE Proc. Optoelectron. l41(4):242-248 (1994). |
Lamb, W. and Zeiler, R., Designing Non-Foil Containing Skins for Vacuum Insulation Panel (VIP) Application, Vuoto XXVIII(1-2):55-58 (1999). |
Abraham, K.M. et al., “Inorganic-organic composite solid polymer electrolytes,” 147(4) J. Electrochem. Soc. 1251-56 (2000). |
Abrahams, I., “Li6Zr2O7, a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods,” 104 J. Solid State Chem. 397-403 (1993). |
Affinito, J.D. et al., “PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers,” Thin Solid Films 308-309: 19-25 (1997). |
Affinito, J.D. et al., “Polymer-oxide transparent barrier layers,” Society of Vacuum Coaters, 39th Ann. Technical Conference Proceedings, May 5-10, 1996, Philadelphia, PA, pp. 392-397 (1996). |
Alder, T. et al., “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photonics Tech. Lett. 12(8): 1016-1018 (2000). |
Almeida, V.R. et al., “Nanotaper for compact mode conversion,” Optics Letters 28(15): 1302-1304 (2003). |
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries,” 60 Solid State Tonics 357-65 (1993). |
Anh et al., “Significant Suppression of Leakage Current in (Ba,Sr)TiO3 Thin Films by Ni or Mn Doping,” J. Appl. Phys.,92(5): 2651-2654 (Sep. 2002). |
Appetecchi, G.B. et al., “Composite polymer electrolytes with improved lithium metal electrode interfacial properties,” 145(12) J. Electrochem. Soc. 4126-32 (1998). |
Asghari, M. and Dawnay, E., “ASOC™ —a manufacturing integrated optics technology,” SPIE 3620: 252-262 (Jan. 1999). |
Barbier, D. et al., “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Tech. Lett. 9:315-317 (1997). |
Barbier, D., “Performances and potential applications of erbium doped planar waveguide amplifiers and lasers,” Proc. OAA, Victoria, BC, Canada, pp. 58-63 (Jul. 21-23, 1997). |
Bates et al., “Thin-Film Lithium Batteries” in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics (T. Osaka & M. Datta eds. Gordon and Breach 2000). |
Bates, J.B. et al., “Electrical properties of amorphous ium electrolyte thin films,” 53-56 Solid State Ionics 647-54 (1992). |
Beach R.J., “Theory and optimizarion of lens ducts,” Applied Optics 35(12): 2005-2015 (1996). |
Belkind, A. et al., “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects,” 43rd Annual Technical Conference Proceedings (2000). |
Belkind, A. et al., “Using pulsed direct current power for reactive sputtering of Al2O3,” J. Vac. Sci. Technol. A 17(4): 1934-1940 (1999). |
Bestwick, T., “ASOC™ silicon integrated optics technology,” SPIE 3631: 182-190 (1999). |
Borsella, E. et al., “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Applied Physics A 71: 125-132 (2000). |
Byer, R.L., “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Selected Topics in Quantum Electronics 6(6): 911-930 (2000). |
Infinite Power Solutions, Inc., Japanese first office action for Application No. 2014-041002, (Feb. 2, 2015). |
Number | Date | Country | |
---|---|---|---|
20140076622 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61238889 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12873953 | Sep 2010 | US |
Child | 14081964 | US |