The invention relates generally to the field of swath-type printing, such as inkjet printing, and more particularly to a print mask method and controller to compensate for failed inkjet nozzles, and particularly near the edge of the image receiver.
Inkjet printing is a non-impact method for producing images by the deposition of ink droplets in a pixel-by-pixel manner onto an image-recording element in response to digital signals. There are various methods that may be utilized to control the deposition of ink droplets on the receiver member to yield the desired image. In one process, known as drop-on-demand inkjet printing, individual droplets are ejected as needed onto the recording medium to form the desired image. Common methods of controlling the ejection of ink droplets in drop-on-demand printing include piezoelectric transducers and thermal bubble formation using heated actuators. With regard to heated actuators, a heater placed at a convenient location within the nozzle or at the nozzle opening heatsink in the nozzle to form a vapor bubble that causes a drop to be ejected to the recording medium in accordance with image data. With respect to piezoelectric actuators, piezoelectric material is used in conjunction with each nozzle and this material possesses the property such that an electrical field when applied thereto induces mechanical stresses therein causing a drop to be selectively ejected from the nozzle selected for actuation. The image data provides signals to the printhead determining which of the nozzles are to be selected for ejecting an ink drop, such that each nozzle ejects an ink drop at a specific pixel location on a receiver sheet.
In another process, known as continuous inkjet printing, a continuous stream of droplets is discharged from each nozzle and deflected in an image-wise controlled manner onto respective pixel locations on the surface of the recording member, while some droplets are selectively caught and prevented from reaching the recording member. Inkjet printers have found broad applications across markets ranging from the desktop document and pictorial imaging to short run printing and industrial labeling.
A typical inkjet printer produces an image by ejecting small drops of ink from the printhead containing a spatial array of nozzles, and the ink drops land oil a receiver medium, (typically paper, coated paper, etc. and referred to generically here as paper or page or media) at selected pixel locations to form round ink dots. Normally, the drops are deposited with their respective dot centers determined by a rectilinear grid, i.e. a raster, with equal spacing in the horizontal and vertical directions. The inkjet printers may have the capability to either produce dots of the same size or of variable size. Inkjet printers with the latter capability are referred to as multitone or gray scale inkjet printers because they can produce multiple density tones at each selected pixel location on the page.
Inkjet printers may also be distinguished as being either pagewidth printers or swath printers. Examples of pagewidth printers are described in U.S. Pat. Nos. 6,364,451 B1 and 6,454,378 B1. As noted in these patents, the term “pagewidth printhead” refers to a printhead having a printing zone that prints one line at a time on a page, the line being parallel either to a longer edge or a shorter edge of the page. The line is printed as a whole as the page moves past the printhead and the printhead is typically stationary, i.e. it does not transverse the page. These printheads are characterized by having a very large number of nozzles. The referenced U.S. patents disclose that should any of the nozzles of one printhead be defective the printer may include a second printhead that is provided so that selected nozzles of the second printhead substitute for defective nozzles of the primary printhead.
A swath printer uses a printhead having a plurality of nozzles disposed in an array in one or more rows, such that the length of the array is somewhat less than the height of the page. The multiple rows can be nozzles for ejecting different ink colors or different droplet sizes. Multiple rows are also used to increase the effective nozzle density for printing by staggering the rows of nozzles along the length of the array. Because the array length is less than the height of a page, printing is done in swaths having a height, which is equal to or less than the array length. A swath is printed as the printhead traverses across a page to be printed in a traversal direction, which is substantially perpendicular to the array length. The printhead traversal direction is also referred to as the fast scan direction. After the swath is completed, the paper is advanced along a paper movement axis, which is perpendicular to the printhead traversal direction. The paper movement axis is also called the slow scan direction. The distance of paper advance is set to be less than or equal to the swath height in order to allow every pixel location on the page to be printed in successive swaths. For fastest printing throughput, all pixels to be printed in the region traversed by the printhead are printed during a single pass, and the page advance is set to the swath height. However, in many applications it is found that print quality is improved if a subset of pixels is printed in each pass, and multiple passes are used to print each region. In multi-pass printing, the page advance distance is set to be less than the swath height.
There are many techniques present in the prior art that describe methods of controlling the printer including “print masking.” The term “print masking” generally refers to printing subsets of the image pixels in multiple passes of the printhead relative to a receiver medium. The print mask indicates which pixels have permission to be printed during a given pass of the printhead.
When printing on a cut-sheet inkjet printer, the paper is held by (at least) two sets of rollers. The first set is made up of a long main roller below the paper and one or more rollers above. The upper rollers are tensioned against the lower roller and are free turning. The lower roller is driven to advance the paper. The second set of rollers has a long main roller below the paper and one or more star wheels above the paper. The star wheels are tensioned against the lower roller and are free turning. The second upper set are star shaped to minimize contact with the freshly printed paper surface and to avoid smearing the ink.
As the paper is fed through the printer, it starts out held by only the first roller set. In this portion of the printing process, the paper may curl up or down, changing the head/paper spacing, which changes dot alignment. Part way into the print, the paper will start being held by the star wheel rollers also. This middle area of the print is the most stable for paper advance and head/paper spacing since the paper is held by both sets of rollers. Then, at the end of the print, the paper comes out of the first roller and is only held by the star wheel rollers. At this point, paper curl could change the head/paper spacing. Also, the paper advance distances may not be as accurate when the star wheel rollers only hold the paper. Additionally the area near the edges or borders is not effectively printed.
It is also known in inkjet printing that individual nozzles can fail to eject drops when commanded, due to a variety of reasons including electrical failure, clogging with fibers or contaminants in the ink, drying out, and others. When a nozzle fails, an unprinted streak appears in the image, causing an undesirable image artifact. Multipass printing in which the page is advanced by less than the swath height provides a means for allowing more than one nozzle to print a given line, thereby minimizing the appearance of the failed nozzle since not all dots in the given line will be missing. Additionally, it is known in the art to redirect the printing duty of the failed nozzle to another nozzle that prints along the same line, so that the unprinted locations are minimized or eliminated, thereby “correcting” for the failed nozzle. However, prior art techniques for failed nozzle correction generally do not sufficiently address the problem of providing for failed nozzle collection in borderless regions of the print, where the paper is not engaged by both sets of rollers.
This system and related method makes artifact free and borderless printing possible by allowing the printhead to print up to the paper edge and thus effectively give complete coverage for the printhead on a sheet of paper and/or receiver, even for the case of failed nozzles.
In accordance with an object of the invention, both a system and a method are provided for improving the quality of prints using a print mask to prevent artifacts by compensating for bad dot forming elements on a print head supporting a plurality of dot forming elements arranged in complementary dot forming element groups by section. The method including the steps of identifying each bad dot forming element, identifying and setting up a threshold for each complementary dot forming element group corresponding to one or more bad dot forming elements, and creating a compensation print mask having one or more intermediate print sections by using a blue noise matrix and the thresholds for the complementary dot forming elements to reassign printing duty cycle from the bad dot forming elements to their respective complementary dot forming elements before printing using the compensation print mask. This may be applied multiple times as needed.
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus and methods in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
In the specification, various terms are employed and are defined as discussed above and summarized below as follows:
The term “print mask” is related to the controls that are used to give permission to print, referring to the dot forming elements, including nozzles, and including an image-independent matrix determining which printing element (nozzle) should be used for each potential dot location on a receiver. A print mask can be used for multi-pass, multi-drop and multi-channel (which includes color or other printable materials) situations.
The term “dot forming elements” refers to any of the myriad of ways, including the nozzles of an inkjet printer, that a dot may be formed on a recording medium.
The term “print mode” refers to the set of instructions relative to one mask matrix (width×height), the number of passes, and the maximum number of drops per pixel. If any of these parameters change then it is a mode change.
For one of the contiguous sections of nozzles that compose the mask (see the following descriptions and associated drawings), the height of the mask section is determined by taking the total mask height (in number of nozzles) and dividing by total number of passes for that particular mode
∴section height size=mask height/# passes
The term “complementary nozzles” refers to a set of nozzles, one from each mask section, each of which will have the capability of printing pixels on the same line of the output print as the media is advanced for each successive print swath. Complementary nozzles line up with each other on any given line of the printed output as is illustrated below in
Set 1: Mask positions A1, B1, C1, D1 [those for the first line to be printed]
Set 2: Mask positions A2, B2, C2, D2 [those for the second line to be printed]
Set 3: Mask positions A3, B3, C3, D3 [those for the third line to be printed]
The term “printhead size” refers to the number of nozzles contained in the printhead. This term usually refers to the number of nozzles no capable of printing one color and is generally configured in a linear or rectangular formation such as that necessary to define 1-2 columns of nozzles.
As the substrate moves through the printer, it moves through different regions, as shown in
The bitwise print mask 22 contains a row of Boolean data per nozzle in the printhead 12. The height H of the mask is less than or equal to the number of nozzles in the printhead. The value in each position of the mask is logically ANDed with the image data to determine whether to eject a drop at each location. Each mask row may contain 1 or more columns C. If the mask is narrower than the width of the image being printed, the mask is tiled across the image. The mask is divided into N sections, where N is the number of print passes to be performed on the image, and N is at least 1. The height of each section SH is the same, calculated as SH=H/N. The value of H must be picked such that SH is a whole integer number. The value SH is also the number of lines that the page is advanced after each carriage pass or swath. The corresponding nozzles within each mask section are known as complementary nozzles. The complementary nozzles are the ones that print a single row of the image as the page is advanced.
Below is a diagram showing the structure of a simple 4-pass print mask. In this example H=12, N=4, SH=3, C=1. In this and subsequent examples, the printhead is assumed to have 12 nozzles. For typical printers, the actual number of nozzles is usually several hundred or more, and the mask height H will also be correspondingly much greater than 12. Dotted lines in the diagram represent the boundaries between mask sections.
A section letter and a number (i.e. the mask layout identifiers) denote the positions in the mask. The data values at each position can be either a 0 or 1. In this example, there are three sets of complementary nozzles:
Set 1: Mask positions A1, B1, C1, D1
Set 2: Mask positions A2, B2, C2, D2
Set 3: Mask positions A3, B3, C3, D3
Here the complementary nozzles are the ones that will fall on the same line of the output print when the media is advanced for each successive swath. The print mask is mapped onto the printhead as shown in the next diagram. Note that the printhead may have more nozzles than the print mask has entries.
For example, the following is a 4-pass print mask that can lay down 1 drop per pixel:
It would map onto the print head as follows:
As shown in
The mask is tiled across the width of the image. For example, if a print mask had a width of 4, the first column of the image data would be applied against the first column of the print mask. The second column of the image data would be applied against the second column of the print mask, and so on. The fifth column of the image would be applied against the first column of the print mask, as the mask is tiled.
In order to handle printing of multiple drops per pixel location, the mask may contain more than one plane or layer. The number of drops to be printed at each location is used to determine which plane of the mask to use for that location. The first plane of the mask is used to print at locations where there will be one drop. The second plane of the mask is used to print at locations where there will be two drops, and so on up to the number of planes in the mask. When the input image data is zero, no drop ejection is called for, and there is nothing to look up in the print mask. A mask may contain up to N planes, where N is the number of print passes to be performed on the image, and N is at least 1. Plane P of the mask, where 1<=P<=N, has complementary nozzle data that adds up to the value P.
The following diagram shows the contents of a print mask following the above rules. In this example H=12, N=4, SH=3, C=1, P=4. There are 4 planes of data in the print mask. Adding the complementary nozzles of each plane together, the total for each complementary nozzle set is equal to the plane number.
The use of this type of multi-plane print mask follows the same sequence of printing as does the previous examples, with one change: The value of the input pixel at each location will determine which plane of the print mask is used for determining whether to output a drop at that location. The use of a multi-planed print mask is described more fully in U.S. patent application Ser. No. 11/362,346 entitled “MULTI-LEVEL PRINTING MASKING METHOD”, filed on Feb. 24, 2006 by Eastman Kodak, and identified as attorney docket 91871, in the names of Steven A. Billow, Douglas W. Couwenhoven, Richard C. Reem, and Kevin E. Spaulding, the contents of which are fully incorporated by reference as if set forth herein.
In this description there is reference to two types of masks used during printing, shifted and normal, which are defined as follows:
Continuing with the description of the present invention, a few more terms and concepts will now be introduced. A “preload” pass is now defined wherein the print mask is shifted by a number of nozzle positions relative to the printhead. Preload passes are used in situations where multipass printing is desired, but it is advantageous to keep the page stationary. Examples of this situation commonly occur at the top and bottom of a “borderless” print, in which it is desired that ink is deposited right up to the edge of the page, with no unprinted border surrounding the printed area. It is known in the art that in borderless print modes, it is advantageous to keep the media stationary at a position in the printer where the flatness of the paper surface can be maintained, thereby providing improved print quality. For example, U.S. Pat. No. 5,555,006 discusses “sweep rotation” of the mask near the top and bottom of the page (see section 6 of '006). Sweep rotation of a mask is substantially the same as the concept of preloaded passes described herein. However, '006 discloses only the use of sweep rotation of the mask for facilitating the printing of the top edge and the bottom edge of the paper. Patent '006 does not disclose the compensation for failed nozzles at the top and bottom edges of the paper, which is an object of the present invention.
Depending on the number of preload passes, the number of total passes, and the number of drops being printed per location it may not be possible to compensate for all the missed drops, but the system described below will provide an excellent print even when that situation occurs. In many borderless printing methods which keep preload pass position absolutely still, it is sometimes difficult to compensate for all missing drops, and since compensated drops are fired at limited passes and nozzles, there may not be enough randomization to hide character of individual nozzle. Cases where the complementary nozzles picked also fail can make this situation even worse. The system and method described below overcome the print errors that these problems present.
To solve these problems seen in the prior arts, an alternative method for compensating for failed nozzles was developed utilizing blue noise intermediate mask creation as described below. In the following discussion of embodiments of the invention, borderless printing near the lead edge of the image receiver is described. Similar methods would also be applicable near the trail edge of the image receiver. An embodiment of a general method 90 of creating a blue noise intermediate mask and using it for compensation of failed nozzles is shown in the flowchart of
At the initial step 95 of the flowchart of
In the previous paragraph, it was assumed that there was only one drop per pixel location, i.e. a single mask plane or layer. If there are two drops per pixel location, the segmentation is done in a similar way. However, the mask values relative to one of the two drops per pixel is thresholded relative to one portion of the blue noise matrix 100, and the mask values relative to the other of the two drops per pixel are thresholded relative to a different portion of the blue noise matrix 100. In that way, the selection of which complementary nozzle is to print the first of the two drops for a given pixel location is independent of the selection of which complementary nozzle is to print the second of the two drops.
After step 120 in the flowchart of
At step 129 it is determined whether the region to be printed requires borderless printing. If borderless printing is required, then the steps enclosed in dotted line oval 130 must also be done. In that case, the “finalized compensation mask” 124 is not the mask used to control printing, but 124 is then an intermediate mask (referred to herein as an intermediate blue noise mask 124) which needs to be further modified. At step 132, N−1 sub masks are created from intermediate blue noise mask 124, where the data in each successive sub mask is shifted through the mask and each successive sub mask has one page-advance number of rows fewer than the previous sub mask. For example, suppose that mask 105 and intermediate blue noise mask 124 each have 640 rows (corresponding to a 640 nozzle printhead), and further suppose a 5 pass print mode is used, corresponding to a page advance of 128 nozzle spacings. Then in the borderless printing region, the first sub mask will have 640−128=512 rows; the second sub mask will have 640−2(128)=384 rows; the third sub mask will have 640−3(128)=256 rows; and the fourth sub mask will have 640−4(128)=128 rows. At step 134, it is these sub masks that are applied on each swath of leading edge printing, for example, for borderless printing.
As discussed above in connection with
In this method of mask data shifting, micro-movement, randomization and duty cycle sharing, an adequate amount of compensation for failed nozzles is provided without the need to recreate the mask for each swath, so there is not a heavy demand on system resources such as memory and cpu time. Therefore compensation may be done on the fly while printing without slowing down print speed. It should be noted that failed nozzles are not compensated 100% in this embodiment corresponding to the flowchart in
An embodiment of a general method 140 for a fuller degree of compensation for failed nozzles is outlined in the flowchart of
To illustrate how the preload pass masks have different content rather than simply having shifted content as in the process outlined in the flowchart of
In the exemplary embodiment outlined in the flowchart of
The invention has been described in detail with particular reference to certain preferred embodiments thereof but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. This invention is inclusive of combinations of the embodiments described herein. References to a “particular embodiment” and the like refer to features that are present in at least one embodiment of the invention. Separate references to “am embodiment” or “particular embodiments” or the like do not necessarily refer to the same embodiment or embodiments; however, such embodiments are not mutually exclusive, unless so indicated or as are readily apparent to one of skill in the art. The use of singular and/or plural in referring to the “method” or “methods” and the like are not limiting.