Embodiments of the present invention relate to printers and, more particularly to a printhead for a printer.
Printers typically have a printhead mounted on a carriage that scans back and forth across the width of a sheet of paper, as the paper is fed through the printer. Fluid from a fluid reservoir, either on-board the carriage or external to the carriage, is fed to fluid ejection chambers on the printhead. Each fluid ejection chamber contains a fluid ejection element, such as a heater resistor or a piezoelectric element, which is independently addressable. Energizing a fluid ejection element causes a droplet of fluid to be ejected through a nozzle to create a small dot on the paper. The pattern of dots created forms an image or text.
Hewlett-Packard is developing printheads that are formed using integrated circuit techniques. A thin film membrane, composed of various thin film layers, including a resistive layer, is formed on a top surface of a silicon substrate, and an orifice layer is formed on top of the thin film membrane. The various thin film layers of the thin film membrane are etched to provide conductive leads to fluid ejection elements, which may be heater resistor or piezoelectric elements. Fluid feed holes are also formed in the thin film layers. The fluid feed holes control the flow of fluid to the fluid ejection elements. The fluid flows from the fluid reservoir, across a bottom surface of the silicon substrate, into a trench formed in the silicon substrate, through the fluid feed holes, and into fluid ejection chambers where the fluid ejection elements are located.
The trench is etched in the bottom surface of the silicon substrate so that fluid can flow into the trench and into each fluid ejection chamber through the fluid feed holes formed in the thin film membrane. The trench completely etches away portions of the substrate near the fluid feed holes, so that the thin film membrane forms a shelf in the vicinity of the fluid feed holes.
One problem faced during development of these printheads is that the thin film membrane and the orifice layer form a composite, which when subjected to stress can crack. When the composite is placed under stress, the thin film membrane, which is the stiffer of the two components, bears the majority of the stress. Thus, when the printhead is flexed or otherwise stressed, either during assembly or operation, the thin film membrane, particularly, in the shelf portion which overlies the trench, can crack. Cracking in the thin film membrane causes reliability problems with these printheads. The problem of flexure and stresses is exacerbated in longer printheads, which typically have larger trenches.
Described herein is a printhead having a printhead substrate and a thin film membrane. The printhead substrate has at least one opening formed in a first surface to provide a fluid path through the substrate. The thin film membrane is formed on a second surface of the substrate and includes a plurality of fluid ejection elements. The thin film membrane has a floating and cantilevered section, which are detached and separated from each other by a gap formed in the thin film membrane. The floating section is located over the opening of the substrate, while the cantilevered section is substantially supported by the substrate.
Embodiments of the present invention may be better understood, and its features and advantages made apparent to those skilled in the art, by referencing the accompanying drawings, wherein like reference numerals are used for like parts in the various drawings.
The fluid is supplied to a printhead 14. Printhead 14, to be described in detail later, channels the fluid into fluid ejection chambers, each chamber containing a fluid ejection element. Electrical signals are provided to contacts 16 to individually energize the fluid ejection elements to eject a droplet of fluid through an associated nozzle 18. The structure and operation of conventional print cartridges are very well known.
Embodiments of the present invention relate to the printhead portion of a print cartridge, or a printhead that can be permanently installed in a printer, and, thus, is independent of the fluid delivery system that provides fluid to the printhead. The invention is also independent of the particular printer, into which the printhead is incorporated.
In
Formed on top of silicon substrate 20 is a thin film membrane 24. Thin film membrane 24 is composed of various thin film layers, to be described in detail later. The thin film layers include a resistive layer for forming fluid ejection elements or resistors 26. Other thin film layers perform various functions, such as providing electrical insulation from substrate 20, providing a thermally conductive path from the heater resistor elements to substrate 20, and providing electrical conductors to the resistor elements. One electrical conductor 28 is shown leading to one end of a resistor 26. A similar conductor leads to the other end of resistor 26. In an actual embodiment, the resistors and conductors in a chamber would be obscured by overlying layers.
Thin film membrane 24 includes fluid feed holes 30 that are formed completely through thin film membrane 24. In addition, thin film membrane 24 is divided into a cantilevered section 32 and a floating section 34. Cantilevered section 32 is substantially supported by substrate 20, while floating section 34 is suspended over trench 22 formed in substrate 20. Floating section 34 is separated on all sides from cantilevered section 32 by a gap 36 formed in thin film membrane 24. Each gap 36 has a width of approximately 0.1 microns. One of ordinary skill in the art will appreciate that the width of gaps 36 may be optimized to control the flow of fluid through printhead 14. The advantages of dividing thin film membrane 24 into cantilevered and floating sections 32 and 34, respectively, is described in greater detail below.
In another embodiment, floating section 34 is not separated on all sides from the remainder of the thin film layers but is only separated on one or both long sides to relieve stress.
An orifice layer 38 is deposited over the surface of thin film membrane 24. Orifice layer 38 is adhered to the top surface of thin film membrane 24, such that the two form a composite. The adhesion between thin film membrane 24 and orifice layer 38 is sufficient for orifice layer 38 to suspend floating section 34 of thin film membrane 24 over trench 22 in substrate 20, however, additional structures, as described below, may be used to further secure the two together.
Orifice layer 38 is etched to form fluid ejection chambers 40, one chamber per resistor 26. A manifold 42 is also formed in orifice layer 38 for providing a common fluid channel for a row of fluid ejection chambers 40. The inside edge of manifold 42 is shown by a dashed line 44. Nozzles 46 may be formed by laser ablation using a mask and conventional photolithography techniques.
Trench 22 in silicon substrate 20 extends along the length of the row of fluid feed holes 30 so that fluid 48 from a fluid reservoir may enter fluid feed holes 30 and supply fluid to fluid ejection chambers 40.
In one embodiment, each printhead is approximately one-half inch long and contains two offset rows of nozzles, each row containing 150 nozzles for a total of 300 nozzles per printhead. The printhead can thus print at a single pass resolution of 600 dots per inch (dpi) along the direction of the nozzle rows or print at a greater resolution in multiple passes. Greater resolutions may also be printed along the scan direction of the printhead. Resolutions of 1200 dpi or greater may be obtained using the present invention.
In operation, an electrical signal is provided to heater resistor 26, which vaporizes a portion of the fluid to form a bubble within a fluid ejection chamber 40. The bubble propels a fluid droplet through an associated nozzle 46 onto a medium. The fluid ejection chamber is then refilled by capillary action.
In one embodiment, the size of each fluid feed hole 30 is smaller than the size of a nozzle 46, so that particles in the fluid will be filtered by fluid feed holes 30 and will not clog nozzle 46. The clogging of a fluid feed hole will have little effect on the refill speed of a chamber, since there are multiple fluid feed holes supplying fluid to each chamber 40. In another embodiment, there are more fluid feed holes 30 than fluid ejection chambers 40.
A field oxide layer 50, having a thickness of 1.2 microns, is formed over silicon substrate 20 using conventional techniques A tetraethyl orthosilicate (TEOS) layer 52, having a thickness of 1.0 microns, is then applied over the layer of oxide 50. A boron TEOS (BTEOS) layer may be used instead.
A resistive layer of, for example, tantalum aluminum (TaAl), having a thickness of 0.1 microns, is then formed over TEOS layer 52. Other known resistive layers can also be used.
A patterned metal layer, such as an aluminum-copper alloy, having a thickness of 0.5 microns, overlies the resistive layer for providing an electrical connection to the resistors. The conductive AlCu traces are etched to reveal portions of the TaAl layer to define a first resistor dimension (e.g., a width). A second resistor dimension (e.g., a length) is defined by etching the AlCu layer to cause a resistive portion to be contacted by AlCu traces at two ends. This technique of forming resistors 26 and electrical conductors is well known in the art.
TEOS layer 52 and field oxide layer 50 provide electrical insulation between resistors 26 and substrate 20, as well as an etch stop when etching substrate 20. In addition, TEOS layer 52 and field oxide layer 50 provide a mechanical support for an overhang portion 54 of cantilevered section 32 and for floating section 34. The TEOS and field oxide layers also insulate polysilicon gates of transistors (not shown) used to couple energization signals to the resistors 26.
Referring back to
Over the nitride layer 56 is formed a layer 58 of silicon carbide (SiC), having a thickness of 0.125 microns, to provide additional insulation and passivation. Other dielectric layers may be used instead of nitride and carbide.
Carbide layer 58 and nitride layer 56 are also etched to expose portions of the AlCu traces for contact to subsequently formed ground lines (out of the field of
On top of carbide layer 58 is formed an adhesive layer 60 of tantalum (Ta), having a thickness of 0.3 microns. The tantalum also functions as a bubble cavitation barrier over the resistor elements. This layer 60 contacts the AlCu conductive traces through the openings in the nitride/carbide layers.
Gold (not shown) is deposited over tantalum layer 60 and etched to form ground lines electrically connected to certain ones of the AlCu traces. Such conductors may be conventional.
The AlCu and gold conductors may be coupled to transistors formed on the substrate surface. Such transistors are described in U.S. Pat. No. 5,648,806, assigned to the present assignee and incorporated herein by reference. The conductors may terminate at electrodes along edges of substrate 20.
A flexible circuit (not shown) has conductors, which are bonded to the electrodes on substrate 20 and which terminate in contact pads 16 (
Fluid feed holes 30 and gaps 36 are formed by etching through the layers that form thin film membrane 24. In one embodiment, a single feed hole and gap mask is used. In another embodiment, several masking and etching steps are used as the various thin film layers are formed.
Orifice layer 38 is then deposited and formed, followed by the etching of the trench 22. In another embodiment, the trench etch is conducted before the orifice layer fabrication. Orifice layer 38 may be formed of a spun-on epoxy called SU-8. Orifice layer 38 in one embodiment is approximately 30 microns.
A backside metal may be deposited, if necessary, to better conduct heat from substrate 20 to the fluid.
The present invention provides a printhead with improved reliability. Since the composite formed by thin film membrane 24 and orifice layer 38 is not continuous throughout, due to gaps 36 in thin film membrane 24, it is less sensitive to the loads imposed by flexure of printhead 14. When flexure occurs, gaps 36 stop the propagation of stress through thin film membrane 24 and allow the lower modulus SU-8 material of orifice layer to bear the imposed load. Thus, by isolating floating section 34 of thin film membrane 24 from loads created by flexure of the die, the thin film membrane can remain over trench 22 in substrate, thereby taking advantage of the smaller features and tighter tolerances offered by integrated circuit techniques. Adjusting the width of gaps 36 also provides a way to control fluid refill other than through barrier architecture or through shelf length. In addition, the present invention requires no additional process steps, as gaps 36 may be formed simultaneously with fluid feed holes 30. Finally, the present invention enables the use of the thin film membrane in larger printheads that have a greater potential for flexure.
As discussed above, adhesion between the top layer of thin film membrane 24 and orifice layer 38 enables orifice layer 38 to suspend floating section 34 of thin film membrane 24 over trench 22 in substrate 20. Orifice layer 38 may also be further secured to thin film membrane 24.
Printer 70 includes an input tray 72 containing sheets of paper 74, which are forwarded through a print zone 76 using rollers 78 for being printed upon. Paper 74 is then forwarded to an output tray 80. A moveable carriage 82 holds print cartridges 82, 84, 86 and 99, which respectively print cyan (C), black (K), magenta (M), and yellow (Y) fluid.
In one embodiment, fluids in replaceable fluid cartridges 92 are supplied to their associated print cartridges via flexible fluid tubes 94. The print cartridges may also be the type that hold a substantial supply of fluid and may be refillable or non-refillable. In another embodiment, the fluid supplies are separate from the printhead portions and are removably mounted on the printheads in carriage 82.
Carriage 82 is moved along a scan axis by a conventional belt and pulley system and slides along a slide rod 96. In another embodiment, the carriage is stationary, and an array of stationary print cartridges print on a moving sheet of paper.
Printing signals from a conventional external computer (e.g., a PC) are processed by printer 70 to generate a bitmap of the dots to be printed. The bitmap is then converted into firing signals for the printheads. The position of the carriage 82 as it traverses back and forth along the scan axis while printing is determined from an optical encoder strip 98, detected by a photoelectric element on carriage 82, to cause the various fluid ejection elements on each print cartridge to be selectively fired at the appropriate time during a carriage scan.
The printhead may use resistive, piezoelectric, or other types of fluid ejection elements.
As the print cartridges in carriage 82 scan across a sheet of paper, the swaths printed by the print cartridges overlap. After one or more scans, the sheet of paper 74 is shifted in a direction towards output tray 80, and carriage 82 resumes scanning.
The present invention is equally applicable to alternative printing systems (not shown) that utilize alternative media and/or printhead moving mechanisms, such as those incorporating grit wheel, roll feed, or drum or vacuum belt technology to support and move the print media relative to the printhead assemblies. With a grit wheel design, a grit wheel and pinch roller move the media back and forth along one axis while a carriage carrying one or more printhead assemblies scan past the media along an orthogonal axis. With a drum printer design, the media is mounted to a rotating drum that is rotated along one axis while a carriage carrying one or more printhead assemblies scans past the medial along an orthogonal axis. In either the drum or grit wheel designs, the scanning is typically not done in a back and forth manner as is the case for the system depicted in
Multiple printheads may be formed on a single substrate. Further, an array of printheads may extend across the entire width of a page so that no scanning of the printheads is needed; only the paper is shifted perpendicular to the array.
Additional print cartridges in the carriage may include other colors or fixers.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
This is a divisional of Ser. No. 10/000,120 filed Oct. 31, 2001, now U.S. Pat. No. 6,626,523.
Number | Name | Date | Kind |
---|---|---|---|
6003977 | Weber et al. | Dec 1999 | A |
6305790 | Kawamura et al. | Oct 2001 | B1 |
6402301 | Powers et al. | Jun 2002 | B1 |
6419346 | Nikkel | Jul 2002 | B1 |
6543884 | Kawamura et al. | Apr 2003 | B1 |
6627467 | Haluzak et al. | Sep 2003 | B2 |
6782621 | Giere et al. | Aug 2004 | B2 |
20020101479 | Giere et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
1078754 | Feb 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20030189622 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10000120 | Oct 2001 | US |
Child | 10430645 | US |