The present invention relates to the field of grafting a protein onto a substrate, according to an optically defined pattern.
The publication of international application number WO 2013/135844 (hereinafter “STUDER” or “the publication”) discloses a device for the microstructured grafting of proteins onto a substrate, or photochemical printing device. In the publication, a mixture, in aqueous solution, of a benzophenone (BP) and of a protein is illuminated in places according to a pattern on top of a substrate and a durable transfer of the protein at the illuminated places is obtained, producing the printing. However, the process described in the publication transfers the protein onto the substrate, in the presence of BP and at the same time as the illumination.
This device involves a combination, at the same location, of a lighting device for illuminating according to an image of a pattern on the substrate and a microfluidic device that makes it possible to convey an aqueous solution simultaneously containing a protein and a BP. This results in a problem of bulkiness of the printing system and also a risk of damaging the protein by the combined action of the benzophenone and the light from the lighting device. Ideally, it would be useful to print a pattern that is only adhesive for the protein, without adhered protein, onto a substrate, by means of the lighting system. An actual pattern would subsequently develop on the substrate, in contact with an aqueous solution of a protein, for example a fluorescent protein, the protein attaching preferentially to the illuminated parts in the adhesive pattern to form the actual pattern. Such a solution is nevertheless governed, for a protein, by the availability of a process capable of producing a latent or subsequently developed adhesive pattern, which is printed onto a support covered by a protein anti-fouling layer. A protein anti-fouling layer is understood to mean a layer made from a material that has no attachment of proteins to said layer, on the timescale of carrying out the printing that it is proposed to produce.
Such a substrate covered by its anti-fouling layer, or anti-fouling substrate, may be formed in particular by a support such as a hard support, one example of which is a glass of optical quality which is transparent for the light from the lighting system, or such as a soft support, one example of which is a PDMS, the glass or the PDMS being covered by a polymer brush material, or polymer attaching as a brush to the support by chains of molecules, such as PEG and polyNipam. The polymer chains are, for anti-fouling substrates of this type, attached at one of their ends to the support and free at the other end, like the bristles of a brush.
Other techniques such as photolithography applied to a protein anti-fouling substrate through a mask using laser ablation of patterns of anti-fouling materials on an anti-fouling substrate make it possible in the prior art to obtain anti-fouling supports having patterns that allow the subsequent selective grafting of a protein to the substrate, according to the illuminated zones of the substrate from which the polymer brush or anti-fouling material has been removed, by light energy.
It is considered that ablation of material is caused by the illumination of the substrate and that the differences in level produced make possible a pseudoscopic image of the subsequent actual image. When these differences are observed by the optical phase-contrast technique which is only sensitive to the optical path, the adhesive pattern may be attributed in an equivalent manner to an ablation of anti-fouling material or to a change in the nature of the material modifying its optical index and providing a subsequent preferential adhesion of proteins to the zones of polymer chains that have been illuminated. Other techniques that enable the latent image to be observed (in particular atomic-force microscopy, ellipsometry, x-ray analysis, etc.) make it possible in certain cases to prove that the latent image is due to a complete ablation of the PEG layer for these techniques. Such ablation techniques do not therefore make it possible to produce concentration gradients, the ablation of the PEG or anti-fouling layer being a priori complete.
It would finally be desirable to have available a process for producing an anti-fouling or polymer brush support having adhesion that is proportional or continuously variable with the exposure of the brush to an illumination, according to a pattern, without molecules necessarily being adhered to the brush at the same time as the illumination. It would instead be desirable for these molecules to be adhered to the brush in a deferred manner.
The following definitions apply to the present application:
“Adhesive pattern”: denotes a surface pattern according to which certain molecules, in particular proteins (and especially antibodies), nanoshells, DNA (deoxyribonucleic acid) strands or RNA strands or bacteria are distributed in a time-stable manner on a support covered by an anti-adhesive or anti-fouling or polymer brush layer, outside of said adhesive pattern. Since the pattern is defined outside of an anti-adhesive or anti-fouling zone or a set of anti-adhesive or anti-fouling zones, an adhesive pattern may also be defined on a substrate as a set of zones or patterns that are more adhesive for the molecules of interest than the supplementary surface of the set of zones on the substrate. A difference in adhesion effect, necessary for the existence of a pattern, may be predicted for a polymer brush, without coming into contact with an aqueous solution of a molecule, by at least two techniques that are available in the prior art:
“Polymer brush”: denotes a nanometric layer (i.e. the thickness of which is on the nanometer scale, namely typically between 1 nm and 100 nm) which is anti-fouling, in particular for proteins, nanoshells, DNA strands and bacteria, such a nanometric layer being present at the surface of a support in order to form an anti-fouling substrate. It is estimated, at the date of the present application, that such a brush consists of a set of polymer chains grafted to the surface of a support, this set extending in a zone having a thickness of between 1 nm and 20 nm at the surface of the support for PEG and between 1 nm and 30 nm for polyNIPAM. It is estimated that between 1 nm and 20 nm, such a brush has anti-adhesion or anti-fouling properties, in particular for proteins, nanoshells, DNA strands or bacteria. A polyethylene glycol or “PEG” layer or a poly(N-isopropylacrylamide) or polyNIPAM layer are examples of polymer brushes.
“Thickness” denotes, for a polymer brush, the measure of the distance to the support from the free ends of the polymer chains forming the brush. For example, for PEG, the thickness of the layer is controlled by the length of the PEG chains, that is to say the number of ethylene glycol monomers making up these chains. These chains may in particular be inclined with respect to the substrate or compressed or modified in any manner similar to an action on the bristles of a brush in order to print a relief or a thickness variation on the free surface of the brush.
Within this context, the invention relates to a process for printing an adhesive pattern on a polymer brush extending at the surface of a support forming a nanometric anti-fouling layer, the process comprising the following steps:
In variants of the process:
The invention also relates to a process as above, for printing a pattern of a protein on the polymer brush, comprising the following additional steps:
The invention also relates to a process as above, for printing a pattern of nanoshells on the polymer brush, comprising the following additional steps:
The invention also relates to a process as above, for printing a pattern of DNA strands on the polymer brush, comprising the following additional steps:
The invention also relates to an application of the process for printing an adhesive pattern, to the production of an adhesive pattern having an adhesion gradient at the surface of the support, by spatial variation of the surface energy.
The invention will be better understood in connection with the list of figures below, wherein:
In a first embodiment, disclosed with reference to
In this first embodiment, radiation (3) illuminates the layer (2) over a zone AB (AB), here through a support (1) chosen to be transparent for the radiation used, a drop (4) of an aqueous benzophenone solution is deposited on the layer (2) covering the zone AB (AB). In an equivalent manner, it would be possible to illuminate the layer through the drop (4), over the same zone AB.
The radiation used comprises at least one wavelength within the absorption spectrum of benzophenone, which spectrum usefully extends in practice between 300 nm and 400 nm. Preferentially, within this range use will be made of radiation having a wavelength of less than 390 nm, in this case the exposure time of the layer to the radiation will be minimized.
The lower the absorption of benzophenone at the chosen wavelength, the greater the power of the light source will have to be or the longer the exposure time of the illuminated zone will have to be, the dose of the radiation received, equal to the product of the lighting power and the exposure time to the light, being the parameter governing the obtaining of the effect of the invention.
Since no protein to be grafted is in solution, the radiation will if necessary be of higher power than a power that gives rise to the destruction of a protein to be subsequently grafted and will only be limited by the surface density of light energy accepted by the layer, without degradation. However, the presence of benzophenone makes it possible, for PEG, to use optical powers 10 to 100 times lower than for ablation or masking techniques.
An energy density between 10 mJ/mm2 and 1000 mJ/mm2 can thus be used to obtain the appearance of an adhesive pattern on PEG. The invention may thus be satisfied with a source that produces an illumination of 2 mW over a square having sides of 400 microns for a wavelength of an ultraviolet line at 372 nm from a semiconductor laser. For polyNipam on a PDMS support, a usable energy density is between 100 mJ/mm2 and 10000 mJ/mm2. The same semiconductor laser source may again be used by simply multiplying the exposure times for PEG by 10.
In a first step of the process of this embodiment, the anti-fouling substrate is placed in contact with a drop of aqueous benzophenone solution, then in a second step a zone AB of the anti-fouling layer of the substrate is illuminated with the ultraviolet light source.
Any optical system enabling the energy of the source to be focused on the zone AB or on a set of zones at the same time can be used and such systems are known from the prior art. A microscope with a micromirror array can thus be envisaged for producing the lighting system for this embodiment. Similarly, the drop may be replaced by a film of aqueous benzophenone solution, brought into contact with the layer, then rinsed after illumination by known microfluidic means.
However, even without bringing into contact with an aqueous solution, for example a solution of proteins, it is possible to predict, after insolation of the brush, whether the effect of the invention will be obtained, independently of the production of a subsequent actual pattern, by measuring, after illumination, whether there are hollows of nanometric depth in the brush at the illuminated locations using an atomic-force microscope (AFM), or by observing whether there are optical path variations in the brush, optically, by phase-contrast microscopy at these same locations. It is thus possible to select, without other experimentation, the polymer brushes suitable for the process of the invention, in particular as being those for which a reduction in the length of the polymer chains of the brush is observed after illumination in the presence of benzophenone.
In a second embodiment of the invention, the device from
It is thus possible, with the process of this second embodiment, to obtain an actual image of the zone AB for example by using a fluorescent protein, but more generally a pattern of a protein on the protein anti-fouling substrate that was used. Furthermore, the properties, under illumination, of the anti-fouling substrates make it possible to produce a fluorescence having a value that varies continuously with the illumination or the dose of optical radiation received by the zone AB and more generally a concentration of proteins, of nanoshells or of DNA strands that varies continuously with the illumination in this zone, even if this zone corresponds to the resolution limit of the optical lighting system, without recourse to densities of binary points to simulate variable concentrations of proteins.
It is thus possible to apply the invention to the production of adhesion gradients in a concentration direction for example of a protein, of nanoshells or of DNA strands, along the surface of the substrate or of the anti-fouling layer, by aligning several zones of type AB end-to-end and by varying the surface energy delivered to these zones, for example by illuminating them with variable surface zones (in J/m2), during the step of illuminating the polymer brush in the presence of benzophenone or of printing the latent image or adhesive pattern.
For example, a continuously variable adhesive effect for proteins has been obtained by variable dose illumination in the presence of benzophenone on a PEG brush, for a thickness reduction of between 0 nm reduction (no adhesion or outside-pattern zone) and 2 nm reduction (maximum adhesion) for PEG polymer brushes having a thickness estimated at 5 nm outside of the adhesion zones.
In the embodiments presented, a concentration range in millimoles of benzophenone per liter of aqueous solution (mmol/l) from 5 mmol/l to 50 mmol/l was used.
The invention is industrially applicable within the field of substrate production for printing adhesive patterns of a protein on a polymer brush.
Number | Date | Country | Kind |
---|---|---|---|
1459497 | Oct 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/072874 | 10/2/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/050980 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5677196 | Herron | Oct 1997 | A |
7147687 | Mirkin | Dec 2006 | B2 |
20080139689 | Huang | Jun 2008 | A1 |
20080206752 | Balakirev | Aug 2008 | A1 |
20140202632 | Wang | Jul 2014 | A1 |
20150147485 | Studer | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2006084482 | Aug 2006 | WO |
2013135844 | Sep 2013 | WO |
Entry |
---|
International Search Report issued in PCT/EP2015/072874 dated Feb. 5, 2016 (6 pages). |
Written Opinion of the International Searching Authority issued in PCT/EP2015/072874 dated Feb. 5, 2015 (6 pages). |
Cosnier, Serge; et al.; “An electrogenerated poly(pyrrole-benzophenone) film for the photografting of proteins,” Chemical Communications, Jan. 23, 2003; pp. 414-415 (2 pages). |
Leckband, D.; et. al.; “Grafted poly(ethylene oxide) brushes as nonfouling surface coatings;” Journal of Biomaterials Science, Polymer Edition; Apr. 2, 2012, pp. 1125-1147 (25 pages). |
Office Action issued in the counterpart Chinese Patent Application No. 201580053960.7, dated Aug. 13, 2019 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20170218230 A1 | Aug 2017 | US |