The present invention relates to writing conductive lines and conductive grids on media, and in particular to writing with an inkjet and laser combination.
One of the ultimate goals in electronics is the ability to directly write electronic components and circuits on a variety of substrates. Advancing materials chemistry and developing printhead technology is bringing this goal closer to reality.
Drop on demand inkjet printing applied to industrial processes, utilizes the piezo electric effect to deliver precise and consistent quantities of fluids to media or substrate. Such inkjet printing has a relatively low resolution, which might not be enough to print the fine details in circuit boards 100 as shown in
Current methods for printing electronics on suitable substrates, for example applying material deposition, results in relatively thick lines, i.e. greater than 30 micrometers. Other methods, such as subtractive methods, which may be based upon laser writing and etching, may consume large amounts of expensive conductive material.
The deposition of the conductive grid lines may also be done by flexographical means. The width of the grid lines formed depends on the printing method, but in general are not narrow enough to be used for high density circuit boards.
Briefly, according to one aspect of the present invention a method for printing conductive lines on a substrate includes printing a pattern of conductive material on the substrate to; and sintering a first part of the pattern of conductive material.
These and other objects, features, and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there is shown and described an illustrative embodiment of the invention.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the disclosure. However, it will be understood by those skilled in the art that the teachings of the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the teachings of the present disclosure.
While the present invention is described in connection with one of the embodiments, it will be understood that it is not intended to limit the invention to this embodiment. On the contrary, it is intended to cover all alternatives, modifications and equivalents as covered by the appended claims.
Following the deposition of the conductive lines 204 deposition, by inkjet head 320, a focused laser beam is applied by laser source 324. The thickness of sintering applied by the laser source 324 is variable and is adjusted by the spot size of the laser source 324. The laser source 324 scans lines 204 on the previously deposited lines 204.
This process (the laser imaging on lines 204) sinters together the nano-particles of the ink deposited on lines 204. Since size of the laser spot can be made significantly smaller than the deposited line, the sintering process can form sintered grid lines 504 shown in
The un-sintered ink 508 is then removed with appropriate materials and complementary processes such as brushing with water (not shown). Alternatively an un-sintered removal element (not shown) can be added to imaging device 300 on carriage 312. The removal element will operate following to the laser source for sintering 324 on the un-sintered ink 508.
The result of the process using the device described above as is shown in
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Reference is made to commonly-assigned copending U.S. patent application Ser. No. ______ (Attorney Docket No. K000148US01/NAB), filed herewith, entitled PRINTING CONDUCTIVE LINES, by Schuster; the disclosure of which is incorporated herein.