This document claims priority to Japanese Application Number 2011-163200, filed Jul. 26, 2011, the entire content of which is hereby incorporated by reference.
The present invention relates to a printing device, a printing method and a computer-readable storage medium storing therein a program for executing the printing method.
There has been proposed a printing method as a method for forming a pattern of a device, such as a liquid crystal display or the like, on a glass substrate, a film substrate and the like. Since the pattern of the device has been required to have a high dimensional accuracy responding to, e.g., miniaturization of pixels in the liquid crystal display, a reverse off-set printing method has been devised as a printing method capable of printing a pattern having a high dimensional accuracy (see, e.g., Japanese Patent Application Publication No. H04-279349).
The reverse off-set printing method includes a printing method using a roller transfer cylinder. The printing method using the roller transfer cylinder has: a coating step for forming a coating surface by coating ink on a surface of the roller transfer cylinder a surface of which is formed of, e.g., a silicone resin; a removing step in which the roller transfer cylinder subjected to the coating step is rotated on a master plate, which is a protrusion plate having protrusion portion in a specific shape, and thus, the ink in the coating surface corresponding to the protrusion portion of the master plate is transferred to be removed; and a transferring step for transferring the ink remained in the coating surface to a work plate as a target substrate to be printed. (see, e.g., Japanese Patent No. 3689536)
In the reverse off-set printing method using the roller transfer cylinder, a pattern of the master plate is transferred to the roller transfer cylinder by relatively moving the roller transfer cylinder with respect to the master plate formed with a glass substrate, a film substrate or the like, while rotating the roller transfer cylinder on the master plate. Then, the pattern transferred to the roller transfer cylinder is transferred to the work plate by relatively moving the roller transfer cylinder with respect to the work plate formed with a glass substrate, a film substrate or the like, while rotating the roller transfer cylinder on the work plate. Therefore, it is easy to obtain the pattern having a dimensional accuracy equivalent to that of a pattern formed by a photolithography technique.
However, the reverse off-set printing method has a drawback described as below.
Compared with conventional printing methods, the reverse off-set printing method using the roller transfer cylinder easily obtains a dimensional accuracy equivalent to that in the photolithography. However, there is a problem in that the dimensional accuracy of the pattern printed on the work plate by transferring the pattern formed on the roller transfer cylinder is inferior to the dimensional accuracy of the pattern formed on the master plate which is used in removing an unnecessary portion of the ink coated on the roller transfer cylinder by transferring.
When the roller transfer cylinder is rotated on the master plate or the work plate, there may be a change in a contact status between the roller transfer cylinder and the master plate or the work plate due to a dimension tolerance, wobbling or the like of each part of a printing device. As a result, the dimensional accuracy of the pattern printed on the work plate is deteriorated, and thus, the printed pattern may deviate from a design dimension.
The problem may be also encountered in a case where a printing pattern formed on a transfer roller including a roller transfer cylinder is printed on a target substrate to be printed as well as the case of the reverse off-set printing method using the roller transfer cylinder, the master plate and the work plate.
In view of the above, the present invention provides a printing device and a printing method capable of preventing a printing pattern from being deviated from a design dimension of a device due to a change in a contact status between a transfer roller and a target substrate to be printed to thereby print the pattern with a high dimensional accuracy, when the pattern is printed on the target substrate by rotating the transfer roller on the target substrate.
In order to provide solutions for the problem, the present invention devises means described below.
In accordance with an aspect of the present invention, there is provided a printing device including a transfer roller and a supporting unit for supporting a target substrate to be printed, which prints a printing pattern formed on the transfer roller onto the target substrate by rotating the transfer roller on the target substrate. The printing device further includes: an adjusting mechanism which is configured to extend/contract, when the transfer roller is rotated on the target substrate, the printing pattern formed on the transfer roller along a rotational direction of the transfer roller by adjusting a pressing amount of the target substrate against the transfer roller based on position information on another printing pattern which has been already printed on the target substrate.
In accordance with another aspect of the present invention, there is provided a printing method for printing a printing pattern formed on a roller transfer onto a target substrate to be printed, which is supported by a supporting unit, by rotating the transfer roller on the target substrate. The method includes: an adjustment step of adjusting a pressing amount of the target substrate against the transfer roller based on position information on another printing pattern which has been already printed on the target substrate so that the printing pattern formed on the roller transfer is extended/contracted along a rotational direction of the transfer roller when the transfer roller is rotated on the target substrate.
In accordance with the aspects of the present invention, when a pattern is printed on a target substrate to be printed by rotating a transfer roller on the target substrate, the printing pattern is prevented from being deviated from a design dimension of a device due to a change in a contact status between the transfer roller and the target substrate, and thus, the pattern is printed with a high dimensional accuracy.
The objects and features of the present invention will become apparent from the following description of embodiments, given in conjunction with the accompanying drawings, in which:
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings which form a part hereof.
[First Embodiment]
First, a printing device in accordance with a first embodiment of the present invention is described. The printing device in accordance with the present embodiment prints a printing pattern formed on a roller transfer cylinder on a work plate as a target substrate to be printed by rotating the roller transfer cylinder on the work plate which is supported by a supporting unit. Further, the roller transfer cylinder corresponds with a transfer roller in the embodiments of the present invention.
The printing device 1 includes a roller transfer cylinder 3. Tables 4 and 5, which are connected with each other, are installed above a main body 9 of the printing device 1 in a movable manner. On the table 4, a master plate (i.e., a plate-shaped printing block) 10 is mounted. Further, on the table 5, a work plate (i.e., a film of a plate-shaped body) 11 is mounted.
The master plate 10 of a flat plate shape is provided with a protruding reverse pattern reversed to a pattern to be printed on the work plate 11. The master plate 10 is fixedly maintained on the table 4, and removes ink corresponding to the reverse pattern from the roller transfer cylinder 3 of which whole surface is coated with ink, by transferring.
The work plate 11 is an object to be printed of a flat plate shape which is formed with a glass substrate, a film substrate or the like. Ink corresponding to a printing pattern is transferred from the roller transfer cylinder 3 to the work plate 11, which is fixedly maintained on the table 5. Further, the table 5 is the supporting unit in the present invention.
The roller transfer cylinder 3 may be a blanket cylinder of which periphery is wrapped with a water repellent blanket 16 formed with, e.g., silicone, as described later with reference to
A rotational shaft RC of the roller transfer cylinder 3 is held by bearings which are fixed to brackets 13. Between the brackets 13 and both sides of the roller transfer cylinder 3, pinions 12 are attached. The pinions 12 and the rotational shaft RC are rotated together or separately by a clutch 7, which will be described later. Racks 2 are provided above the main body 9 to be engaged with the pinions 12. The brackets 13 may move up and down by an elevation mechanism 14. Accordingly, the racks 2 and pinions 12 may be in one of three statuses of engagement, contact without engagement, and separation.
As shown in
Linear guides 15 as linear-motion bearings are fixed on the main body 9 to be parallel with the racks 2, and the tables 4 and 5 connected with each other are positioned on the linear guides 15 to be movable thereon. Further, linear-motion bearings are also provided under the pinions 12, so that stiffness of each of the tables 4 and 5 is prevented from being deteriorated.
The tables 4 and 5 are assembled with six axis driving mechanisms 4a and 5a which move the master plate 10 and the work plate 11 respectively mounted thereon in X, Y and Z directions, and θ, Y and Ψ rotational directions around respective X, Y and Z axes. Intervals in the Z direction, deviations in the X direction, inclinations in the direction, distances in the Y direction of the master plate 10 and the work plate 11 relative to the roller transfer cylinder 3 can be adjusted by employing the six axis driving mechanisms 4a and 5a, respectively.
Further, the six axis driving mechanisms 4a and 5a correspond to an adjusting mechanism in accordance with the embodiments of the present invention.
First, the connected tables 4 and 5 are returned to be located at original positions (i.e., the status of the tables 4 and 5 in
Then, the six axis driving mechanisms 4a and 5a respectively assembled in the tables 4 and 5 are operated to adjust the intervals in the Z direction, the deviations in the X direction and the inclinations in the θ direction, distances in Y direction of the master plate 10 and the work plate 11 relative to the roller transfer cylinder 3, and the like. Thereafter, tables 4 and 5 are simultaneously moved in the X direction with the rotation of the roller transfer cylinder 3, so that ink can be transferred (printed) from the roller transfer cylinder 3 to the master plate 10 on the table 4 or the work plate 11 on the table 5, when the roller transfer cylinder 3 rotates on the table 4 or 5.
Then, the elevation mechanism 14 is operated to move up the brackets 13, so that teeth of the racks 2 and pinions 12 are completely separated not to be engaged. Then, in the state that the clutch 7 is released from the pinion 12, the roller transfer cylinder 3 is rotated by the driving unit 6 to be at an original position. Thereafter, as shown in
The roller transfer cylinder 3 is further rotated to a specific position, and the clutch 7 is engaged with the pinion 12. Then, the brackets 13 are moved down by operating the elevation mechanism 14, so that the pinions 12 are engaged with the racks 2. Thereafter, the roller transfer cylinder 3 is moved together with the table 4 by operating the driving unit 6. Since the racks 2 and pinions 12 are engaged with each other and a radius of the roller transfer cylinder 3 and that of each pinion 12 are equal, a rotational speed of the periphery of the roller transfer cylinder 3 and a moving speed of the table 4 becomes equal. Accordingly, the master plate 10 moves while the protrusion portion 10b thereof contacts with the ink film 17 coated on the roller transfer cylinder 3 in a contact area linearly extended along the direction of the rotational shaft RC and takes out the contacted ink.
As a result, a pattern reversed to that formed on the master plate 10 remains on the surface of water repellent blanket 16 of the roller transfer cylinder 3, and thus, a printing pattern is formed as shown in
Then, the brackets 13 are moved up by operating the elevation mechanism 14, so that the engagement between the racks 2 and the pinions 12 are released. Next, the roller transfer cylinder 3 is rotated to a specific position, and the brackets 13 are moved down again by operating the elevation mechanism 14 to engage the racks 2 and pinions 12. Thereafter, the roller transfer cylinder 3 simultaneously moves with the table 5 by operating the driving unit 6 to transfer the ink from the water repellent blanket 16 to the work plate 11, as shown in
By repeatedly performing the above-described operations, patterns are printed to be superimposed on the work plate 11, so that a desirable structure can be produced. When the patterns are printed to be superimposed on the work plate 11, position alignment with respect to a pattern, which has been previously printed, is performed first. A position alignment mark is formed on the master plate 10 and it is transferred to the roller transfer cylinder 3 as well as a printing pattern to be corresponded with other patterns. The position alignment mark transferred to the roller transfer cylinder 3 is further transferred to the work plate 11. The position alignment mark transferred to the work plate 11 and that transferred to the roller transfer cylinder 3 are controlled to be corresponded, so that the patterns are printed to be precisely superimposed.
Further, the mark detection unit 22 and the six axis driving mechanisms 4a and 5a form a position alignment mechanism in the embodiments of the present invention.
In the vicinity of a contact position of the roller transfer cylinder 3 and the table 5, the mark detection unit is provided which is capable of observing a position alignment mark AM1 formed on the surface of the roller transfer cylinder 3 and a position alignment mark AM2 formed on the work plate 11 which is mounted on the table 5, simultaneously. The mark detection unit 22 includes a strobe light source 22a, a half mirror 22b, and a CCD (Charge Coupled Device) detection unit 22c. When the roller transfer cylinder 3 and the table 5 are operated together, the mark detection unit 22 picks-up and observes images of the respective position alignment marks AM1 and AM2.
The strobe light source 22a emits a light in order to observe a moving object. The emitted light from the strobe light source 22a is incident upon the half mirror 22b as a form of a parallel beam through a lens 22d. The incident light upon the half mirror 22b are divided into two lights of different directions, one of which is bent at about ninety degrees by being reflected by the half mirror 22b and reaches the roller transfer cylinder 3, and the other of which transmits through the half mirror 22b straightly to reach the work plate 11 on the table 5. Further, the former is reflected by the roller transfer cylinder 3 and transmits through the half mirror 22b straightly, while the latter is reflected by the work plate 11 and bent at ninety degrees by being reflected by the half mirror 22b, and then, two lights are mixed with the light. The mixed light proceeds to the CCD detection unit 22c.
The CCD detection unit 22c receives the light mixed by the half mirror 22b, and therefore, it images the position alignment mark AM1 in the patterns formed on the roller transfer cylinder 3 and the position alignment mark AM2 formed on the work plate 11. In detail, an image processor 27 performs image synthesis based on signals detected by the CCD detection unit 22c. Then, an operation of the six axis driving mechanism 5a is controlled by a control unit (not shown) based on the images taken by the CCD detection unit 22c, and thus, a relative position between the work plate 11 and the roller transfer cylinder 3 is aligned. Further, the CCD detection unit 22c may be set to image the position alignment mark AM1 in the patterns formed on the roller transfer cylinder 3 and the position alignment mark AM2 formed on the work plate 11 only when the strobe light source 22a emits a light.
Under the condition that no rattling is generated by the racks 2, the pinions 12 and the like and the work plate 11 is aligned in a precise position on the table 5, the position alignment marks AM1 and AM2 of the roller transfer cylinder 3 and the work plate 11 are previously adjusted, so that they can be precisely superimposed in the image obtained by the CCD detection unit 22c. Therefore, when the position alignment is not precise, the position alignment mark AM1 is deviated in X and Y directions by amounts of ΔX and ΔY from the position alignment mark AM2 due to sliding or rattling generated from the clutch 7, the racks 2 and the pinions 12 or a dimension tolerance of the each unit, as shown
Herein, e.g., a case where ink coated on the surface of the roller transfer cylinder 3 is transferred to the work plate 11 maintained on the table 5 is considered. The deviation amounts described above are fed back to a table driving circuit 28, and the relative position between the work plate 11 and roller transfer cylinder 3 is aligned to superimpose the position alignment marks AM1 and AM2 by the six axis driving mechanism 5a, before the work plate 11 and the roller transfer cylinder 3 are contacted. As a result, a movement distance of the work plate 11 and a rotation distance of the surface of the roller transfer cylinder 3 become same when the roller transfer cylinder 3 is rotated on the work plate 11 maintained on the table 5. Further, the ink is transferred from the surface of the roller transfer cylinder 3 to be printed on the work plate 11 in a status in which the relative position between the work plate 11 and the roller transfer cylinder 3 is precisely aligned.
The substrate deformation/distortion measurement unit 23 is installed between the tables 4 and 5, so that deformation amounts in the master plate 10 mounted on the table 4 or those in the work plate 11 mounted on the table 5 can be measured while the tables 4 and 5 move.
The substrate deformation/distortion measurement unit includes an optical lens group and a TDI (Time Delay Integration) sensor and obtains an image of the surface of the master plate 10 or that of the work plate 11, which is lit by illuminations 24 disposed at both sides of the substrate deformation/distortion measurement unit 23. Even when the master plate 10 or the work plate 11 moves, an image having a high S/N ratio can be obtained by using the TDI sensor. Image data obtained by the substrate deformation/distortion measurement unit 23 is transmitted to an image distortion processing circuit 25, thereby obtaining the deformation and distortion map of the master plate 10 or the work plate 11, as shown in the example of
In the image distortion processing circuit 25, a linear distortion component (hereinafter, also referred to as “linear distortion mode”) is extracted from the deformation and distortion map, and a correction amount of pressing amount h, which will be described later in detail, is sent to a roller control circuit 26, based on the extracted linear distortion mode. The roller control circuit 26 controls the pressing amount h based on the correction amount sent from the image distortion processing circuit 25. Therefore, the pattern on the water repellent blanket 16 can be desirably extended or contracted in the X direction, i.e., the rotational direction of the roller transfer cylinder 3, and thus, the printing pattern is prevented from being deviated from the design dimension of device.
As shown in
In the printing device 1 in accordance with the present embodiment, the substrate deformation/distortion measurement unit 23 is installed in the printing device 1. However, the substrate deformation/distortion measurement unit 23 may be provided separately from the printing unit 1 to measure the deformation amounts in the master plate 10 or those in the work plate 11 and the resultant measurement information may be input to the printing device 1.
On the main body 9, a cleaning unit 29 is provided on an opposite side of the tables 4 and 5 with respect to the roller transfer cylinder 3 such that the roller transfer cylinder 3 interposes between the cleaning unit 29 and the tables 4 and 5. The linear guides 15 are extended into the cleaning unit 29. When ink is transferred from the roller transfer cylinder 3 to the work plate 11 on the table 5, the master plate 10 on the table 4 gets into the cleaning unit to be cleaned therein. Since ink is coated on the surface of the protrusion portion 10b of the master plate 10, it is removed by using, e.g., an adhesive roller. After removing the unnecessary ink by using the adhesive roller, organic cleaning, ionized air blowing, a surface energy adjustment by UV (Ultra Violet) light irradiation and the like are performed onto the surface of the master plate 10. Since the cleaning process is performed in the midst of ink transferring from the roller transfer cylinder 3 to the work plate 11, a preparation for next printing is completed without spending an extra time for cleaning.
In
As shown in
A Z-directional position in which the master plate 10 or the work plate 11 is maintained by the table 4 or 5 is controlled to press the master plate 10 or the work plate 11 into the roller transfer cylinder 3 when the master plate 10 or the work plate 11 makes contact with the roller transfer cylinder 3. This is because the ink may be not transferred onto a whole surface of the master plate 10 or the work plate 11 due to a flatness of the surface of the table 4 or 5, a positional precision of a moving table, a flatness of the surface of the roller transfer cylinder 3 or the like if the master plate 10 or the work plate 11 is not pressed into the roller transfer cylinder 3 (i.e., h=0.0).
In the present embodiment, the printing is performed between the roller transfer cylinder 3 and the master plate 10 or the work plate 11 in a state that the Z-directional position where the master plate 10 or the work plate 11 is maintained by the table 4 or 5 is controlled by the six axis driving mechanism 4a or 5a to make the pressing amount h of the master plate 10 or the work plate 11 against the roller transfer cylinder 3 be a positive value. When the pressing amount h becomes a positive value, the elastic material 32, which is the softest material of the roller transfer cylinder 3, is nipped. Accordingly, even in a case where the pressing amount is changed while the ink is transferred, the ink may be securely transferred.
Further, the relative position of the master plate 10 or the work plate 11, which is maintained by the table 4 or 5, with respect to the roller transfer cylinder 3 may be controlled. Furthermore, the Z-directional position of the roller transfer cylinder 3 may be also controlled.
Herein, a case, in which the radius of the roller transfer cylinder 3 is defined as “R”, the roller transfer cylinder 3 is nipped by the pressing amount h, and the work plate 11 and the roller transfer cylinder 3 are contacted by a surface contact, is considered. Further, as shown in
As shown in
Further, in a case where the ink is removed from the roller transfer cylinder 3 by the master plate 10, when the roller transfer cylinder 3 is rotated by θ, the ink is removed from the roller transfer cylinder 3 in a status in which the pattern on the circular arc of the length of R×θ (i.e., length D) is reduced to have a length of d along the moving direction (X direction) of the master plate 10. However, when the contact between the roller transfer cylinder 3 and the master plate 10 is completed, i.e., when the ink is completely removed, the deformation of the elastic material 32 is recovered, and thus, the diameter of the roller transfer cylinder 3 returns to its original size. Accordingly, the reduced pattern is enlarged to be same as a dimension of the pattern on the master plate 10. With this, no deviation in the dimension of pattern occurs when the ink is removed by the master plate 10.
Further, the printing device 1 may further include, e.g., an operation unit, a storage unit and a display unit, which are not shown. The operation unit may be a computer having, e.g., CPU (Central Processing Unit). The storage unit may be a computer-readable storage medium, such as, e.g., a hard disk or the like, and store therein programs for executing a variety of processes on the operation unit. The display unit may be formed with, e.g., a computer screen. The operation unit reads out a program stored in the storage unit, transmits control signals to respective units configuring the printing device 1, and executes a printing method which will be described below.
Hereinafter, the printing method in accordance with the present embodiment is described.
Print processing by the printing method in accordance with the present embodiment is classified into two great processes, i.e., a master plate manufacturing process and a printing process.
In the master plate manufacturing process, the master plate 10 is manufactured based on data for device design, specifications of the printing device 1 and the like.
First, the data for device design is read from a memory unit provided, e.g., in the printing device 1 or provided separately from the printing device 1, in step S11.
Next, the specifications of the printing device 1 are read from, e.g., the memory unit described above, in step S12. The specifications of the printing device 1 may include, e.g., the diameter of the roller transfer cylinder 3, the pressing amount h allowed with respect to the elastic material 32, in step S12.
Thereafter, the reduction rate d/D is determined based on the diameter and the pressing amount h allowed with respect to the elastic material 32, in step S13. For example, when the diameter of the roller transfer cylinder 3 is 1200 mm (i.e., R=600 mm) and the thickness of the elastic material 32 is 5 mm, the allowed pressing amount h is adjusted to be in a range of 1.5±0.5 mm. When the pressing amount h has an intermediate value of the range, i.e., 1.5 mm, the reduction rate d/D becomes 0.25%, as shown in the graph of
Then, in step S14, pattern data of the master plate 10 is made by being increased by 0.25% in advance, so that dimension of the roller transfer cylinder 3 in a rotational direction corresponds to a design dimension of the device (data resizing process) when the pressing amount h is 1.5 mm.
Next, a pattern of a protrude portion is formed in a quartz plate by using, e.g., a photolithography technique based on the generated pattern data in step S15. Through a series of the steps, the master plate 10 is formed.
In the printing process, first, the master plate 10 is mounted on the table 4, and the posture of the table 4 is adjusted by the six axis driving mechanism 4a to set the pressing amount h of the master plate 10 against the roller transfer cylinder 3 to be about 1.5 mm. Then, the work plate 11 is mounted on the table 5, and the posture of the table 5 is adjusted by the six axis driving mechanism 5a to set the pressing amount h of the master plate 11 against the roller transfer cylinder 3 to be about 1.5 mm in step S16 (adjusting process).
Next, as the description made above by referring to
In the printing device 1 in which the position alignments have been made, when the pressing amount h is the intermediate value, i.e., 1.5 mm, the pattern of a dimension same as a design dimension of the device can be printed. Further, when the pressing amount h is increased from the intermediate value, the printing pattern can be printed to be contracted in the X direction, and when the pressing amount h is reduced from the intermediate value, the printing pattern can be printed to be extended in the X direction. That is, the pattern to be printed on the work plate 11 is contracted/extended along the rotational direction of the roller transfer cylinder 3. For example, when the pressing amount h is changed in an allowable range of ±0.5 mm from the intermediate value, the printing pattern can be contracted/extended by ±0.083%. Accordingly, when an extensible/contractible amount has been known, the printing can be performed while correcting the extensible/contractible amount.
The printed pattern in
[First Modification of the First Embodiment]
Next, a printing method in a first modification of the first embodiment in accordance with the present invention is described.
In the first embodiment, the extensible/contractible amount of the pattern printed on the work plate is uniform in the surface of the work plate along the rotational direction of the roller transfer cylinder. However, the deviation amount of the printing pattern from the design dimension may be changed in the surface of the work plate without being uniform along the rotational direction of the roller transfer cylinder. In the present modification, there is described the printing method in which correction is made, before performing printing, to allow a linear change in extensible/contractible amount of a printing pattern in the surface of the work plate along the rotational direction of the roller transfer cylinder.
In the present modification, the printing device 1 in accordance with the first embodiment can be used, and therefore, a detailed description on the printing device 1 is omitted.
First, a dimension of a pattern is measured with respect to the work plate 11 on which the pattern has been printed by a dimension measuring device (not shown) in step S21. Extraction of the linear distortion mode performed at next step may be currently performed based on the measurement data obtained, wherein the dimension measurement may be executed by the substrate deformation/distortion measurement unit 23 installed in the printing device 1 or by a dimension measurement device provided separately from the printing device 1.
Then, the measurement data obtained is analyzed, and the linear distortion mode is extracted in step S22. That is, the surface of the master plate 10 or that of the work plate 11 is imaged to take the deformation and distortion map, and the linear distortion mode is extracted from the deformation and distortion map.
Thereafter, a position in a Z direction (corresponding to the pressing h), a θ angle, a Y angle required for controlling the six axis driving mechanisms 4a and 5a are set based on the extracted linear distortion mode in step S23. Then, the six axis driving mechanisms 4a and 5a are controlled to obtain the set values.
Then, the master plate 10 and work plate 11 are mounted on the tables 4 and 5, respectively, and the substantially printing treatment in the printing process of the flowchart shown in
By adjusting the position in the Z direction, e.g., an average reduction rate may be corrected in the surface of the work plate 11. Further, a linear change in a reduction rate along the moving direction (X direction) of the table 4 or 5 may be corrected by adjusting the Y angle. A linear change in a reduction rate along a direction (Y direction) orthogonal to the moving direction of the table 4 or 5 may also be corrected by adjusting the θ angle. After performing these corrections, the printing pattern can be printed to be superimposed on the work plate 11.
Although the printing is performed after adjusting the position in the Z direction, the θ angle, the Y angle, the printing may be performed while changing them. Accordingly, even when the extensible/contractible amount is minutely changed in the X direction, the printing pattern is prevented from being deviated from the design dimension of the device and the pattern is printed with a high dimensional accuracy.
[Second Modification of the First Embodiment]
Next, a printing method in a second modification of the first embodiment in accordance with the present invention is described.
In a printing method in accordance with the present modification, a property of each unit in the printing device, i.e., a geometric accuracy of the table mounting thereon the master plate and the table mounting thereon the work plate, is controlled, prior to performing the printing.
Further, the printing device 1 in accordance with the first embodiment is also utilized in the present modification, and thus, a detailed description on the printing device 1 is omitted.
First, as shown in
Then, a dimension of the pattern printed on the work plate 11 is measured by a dimension measurement device, such as the substrate deformation/distortion measurement unit 23 described above or the like, and the measurement data obtained is analyzed to extract a linear distortion mode in step S33. That is, the surface of the work plate 11 is imaged to obtain a deformation and distortion map, and the linear distortion mode is extracted from the deformation and distortion map. Further, a position in a Z direction (corresponding to pressing amount h), a θ angle, a Y angle required for controlling the six axis driving mechanism 5a are set based on the extracted linear distortion mode in step S34. Then, the six axis driving mechanism 5a is controlled to obtain the set values. That is, adjustment mechanisms for adjusting the θ angle, the Y angle and the position in the Z direction which are included in the six axis driving mechanism 5a are operated, and thus, an operating position of the table 5 with respect to the roller transfer cylinder 3 is adjusted to be constant, i.e., not to be changed.
Next, the master plate 10a is mounted on the table 5 which has been subjected to the adjustment, and the work plate 11 is placed on the table 4. Then, the pattern for adjusting the printing device 1 is transferred from the master plate 10a on the table 5 to the roller transfer cylinder 3, and the transferred pattern for adjusting the printing device 1 is printed on the work plate 11 on the table 4 in step S35.
Thereafter, the dimension of the pattern printed on the work plate 11 is measured by the dimension measurement device, such as the substrate deformation/distortion measurement unit 23 described above or the like, and the measurement data obtained is analyzed to extract a linear distortion mode in step S36. That is, the surface of the work plate 11 is imaged to obtain a deformation and distortion map, and the linear distortion mode is extracted from the deformation and distortion map. Further, a position in a Z direction (corresponding to pressing amount h), a θ angle, a Y angle required for controlling the six axis driving mechanism 4a are set based on the extracted linear distortion mode in step S37. Then, the six axis driving mechanism 4a is controlled to obtain the set values. That is, adjustment mechanisms for adjusting the θ angle, the Y angle and the position in the Z direction which are included in the six axis driving mechanism 4a are operated, and thus, an operating position of the table 4 with respect to the roller transfer cylinder 3 is controlled to be constant, i.e., not to be changed.
When a higher accuracy is required in the printing, these processes (i.e., step S32 to S37) are repeatedly performed for a number of times to establish a higher positional accuracy.
Accordingly, in step S38, the printing device 1 prints with a higher accuracy than the adjustment performed only by a mechanical adjustment jig, and the printing pattern is prevented from being deviated from the design dimension of the device, and the pattern is printed with high dimensional accuracy in step S38.
[Third Modification of the First Embodiment]
Hereinafter, a third modification of the first embodiment in accordance with the present invention is described.
A printing method in accordance with the present modification is for extending a life span of the resin sheet wrapping the roller transfer cylinder.
In the reverse off-set printing method, ink to be transferred to the work plate 11 remains in predetermined positions of the roller transfer cylinder 3, and the roller transfer cylinder 3 contacts with the work plate 11 in a status where a printing pressure is applied thereto to transfer the ink. Therefore, when an identical pattern is repeatedly printed, specific sites on the roller transfer cylinder 3 contact with ink for a long time period, and thus, swelling or the like occurs in the resin sheet 33 due to a solvent. Depending on existence of the swelling, printing durability in each area of the roller transfer cylinder 3 differs. For example, a life span in the area where the swelling occurs becomes shorter.
In order to solve such problem, a beginning position (contact starting position) between the roller transfer cylinder 3 and the table 4 for the master plate 10 may be changed thereby changing the position of the printing pattern on the surface of the roller transfer cylinder 3. In this case, since sites where ink remains on the roller transfer cylinder 3 are changed in each printing, degrees of swellings in the entire resin sheet 33 become uniform. As a result, swellings do not occur in the same sites, and thus, the life span of the resin sheet 33 is extended. Further, the entire resin sheet 33 has a uniform printing durability.
[Second Embodiment]
Hereinafter, a printing device in accordance with a second embodiment of the present invention will be described.
In the first embodiment, the example of correcting the deviation amount in the printing pattern along the moving direction of the work plate (X direction) is described. However, there is a case in which deviation in the printing pattern occurs along a direction orthogonal to the moving direction of the work plate, i.e., a direction of the rotational axis of the roller transfer cylinder (Y direction). In the present embodiment, description will be made on the printing device which prints a printing pattern after correcting a deviation amount in the printing pattern along the Y direction by contracting/extending the resin sheet of the roller transfer cylinder along the direction of the rotational axis of the roller transfer cylinder (Y direction) by an extension/contraction unit.
Further, in the printing device in accordance with the present embodiment, units other than the image distortion processing circuit 25 and an extension/contraction unit 34 are same as those in the printing device 1 in accordance with the first embodiment, and thus, description on the units other than the image distortion processing circuit 25 and the extension/contraction unit 34 is omitted.
The extension/contraction unit 34 includes a roller transfer cylinder 3a.
As shown in
As shown in
One end of the elastic material 32 and the resin sheet is fixed to the base material 31a and the other end thereof is fixed to the base material 31b. Therefore, the resin sheet 33 is extended or contracted by controlling the interval between the base materials 31a and 31b by an operation of the motor 37. Herein, an extensible/contractible amount is in a range from −0.01% to +0.01%. In practice, the resin sheet 33 may be extended or contracted by ±0.01% in the state that it is extended by, e.g., 0.02%. Accordingly, the resin sheet 33 may be extended by 0.03% at maximum.
By installing the roller transfer cylinder 3a configured as described above, the printing method, in which the deviation amount deviated from the design dimension of printing pattern in X and Y directions is corrected to print the printing pattern, is accomplished.
In the present embodiment, a linear distortion composition (linear distortion mode) is extracted from a deformation and distortion map by the image distortion processing circuit 25, and a correction amount in the pressing amount h, a correction amount in the extensible/contractible amount along the rotational shaft RC of the roller transfer cylinder 3a are transmitted to the roller control circuit 26 based on the extracted linear distortion mode. The roller control circuit 26 separately adjusts the pressing amount h and the extensible/contractible amount of the roller transfer cylinder 3a based on the received correction amounts. Accordingly, since the pattern on the water repellent blanket 16 can be desirably contracted or extended along the X direction, and further, it can be contracted or extended along the Y direction, the printing pattern is prevented from being deviated from the design dimension of the device in both of X and Y directions.
The printing method in accordance with the present embodiment may be performed as the printing method in accordance with the first embodiment described by referring to the flowchart shown in
First, a dimension of a pattern, which has been printed on the work plate 11, is measured in step S21. The dimension measurement may be performed by the substrate deformation/distortion measurement unit 23 described above or by a dimension measurement device provided separately from the printing device.
Next, measurement data obtained is analyzed to extract a linear distortion mode in step S22. Then, an extensible/contractible amount in the Y direction, a position in the Z direction (corresponding to the pressing amount h), a θ angle, a Y angle and an extensible/contractible amount along the rotational shaft RC of the roller transfer cylinder 3a are set to control the six axis driving mechanisms 4a and 5a and the extension/contraction unit 34, based on the extracted linear distortion mode in step S23. Thereafter, the six axis driving mechanisms 4a and 5a and the extension/contraction unit 34 are adjusted to apply the set values, and the printing treatment in the printing process in the flowchart shown in
A linear change in the reduction rate along the rotational shaft RC may be corrected by adjusting the extensible/contractible amount in the Y direction. Further, by adjusting the position in the Z direction, e.g., the average reduction rate may be corrected in the surface of the work plate 11. Furthermore, a linear change in the reduction rate along the moving direction of the tables 4 and 5 (X direction) may be corrected by adjusting the Y angle. Moreover, a linear change in the reduction rate along the direction (Y direction) orthogonal to the moving direction of the tables 4 and 5 may be corrected by adjusting the θ angle. After performing these corrections, the printing pattern can be printed on the work plate 11 to be superimposed.
In the flowchart shown in
Further, in the second embodiment, the printing method may be performed as those in accordance with the second and third modifications of the first embodiment. Therefore, the printing pattern is prevented from being deviated from the design dimension of the device, and the printing pattern is printed with high dimensional accuracy.
While the invention has been shown and described with respect to the embodiments, the present invention is not limited thereto. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2011-163200 | Jul 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5367953 | Yamashita et al. | Nov 1994 | A |
6347583 | Isogai et al. | Feb 2002 | B1 |
Number | Date | Country |
---|---|---|
4-279349 | Oct 1992 | JP |
6-945 | Jan 1994 | JP |
7-81038 | Mar 1995 | JP |
11-245369 | Sep 1999 | JP |
3689536 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20130025482 A1 | Jan 2013 | US |