The present invention relates generally to probe heads and probes of probe cards and more particularly, to a probe head with a linear probe.
Referring to
The conventional linear probe, also called wire needle, is formed by directly cutting a metal wire having circular cross sections into an appropriate length and thus cylinder-shaped. Therefore, during the above-described assembly of the probe head 10, the body portions 166 of the probes 16 may be inconsistent in the direction of the bending deformation due to the horizontal relative displacement of the upper and lower dies 12 and 14. Besides, when the head portions 162 of the probes 16 are abutted against the conductive contact pads of the device under test, the body portions 166 of the probes 16 may be inconsistent in the moving behavior due to the elastic deformation thereof, and the entirety of each probe 16 is also liable to rotate a little bit so that the body portions 166 of the probes 16 are more inconsistent in bending direction.
However, the linear probe is widely used in the field of fine pitch, which means the pitch of the probes 16 of the probe head 10 is usually quite small. Therefore, the above-mentioned inconsistent deformation direction, inconsistent moving behavior and self-rotation of the probes 16 are all liable to cause the body portions 166 of the adjacent probes 16 to interfere with each other. In other words, the body portions 166 of the adjacent probes 16 may collide with each other, thereby not only deteriorating the aforesaid elastically adjusting effect and buffering effect but also causing wear to the body portions 166. If the abrasion of the insulating layer on the surface of the body portions 166 causes electrical connection between the probes 16 colliding with each other, a short circuit may occur to damage the probe card or the device under test.
In addition, the conventional linear probe is liable to have the problem of probe drop, i.e. the probe 16 dropping from the downside of the lower die 14, or probe escape, i.e. the probe 16 being escaped from the upside of the upper die 12, during the assembly or maintenance of the probe card 10. The conventional method of solving the problem of probe drop or probe escape is providing a stopper to the probe at an appropriate position thereof to restrict the probe in the upper and lower dies by the stopper being abutted against the upper and lower dies. However, the stopper of the conventional probe is usually formed by adding a protruding block on the outer peripheral surface of the original probe. Such method is not suitable for the linear probe manufactured by cutting a cylindrical metal wire.
The present invention has been accomplished in view of the above-noted circumstances. It is an objective of the present invention to provide a probe head with a linear probe, which can attain at least one of the effects of consistent bending direction of the probes of the same probe head, consistent moving behavior of the probes of the same probe head, avoiding self-rotation of the probe, avoiding probe drop and avoiding probe escape.
To attain the above objective, the present invention provides a probe head which includes a linear probe, a lower die unit having a lower installation hole, and an upper die unit having an upper installation hole. The linear probe includes a tail portion, a body portion and a head portion extending along a longitudinal axis in order. At least one of the tail portion, the body portion and the head portion is flattened and thereby defined with a first width axis perpendicular to the longitudinal axis, and a second width axis perpendicular to the longitudinal axis and the first width axis. Each of the tail portion, the body portion and the head portion is defined with a first width along the first width axis and a second width along the second width axis. The first width and the second width of the body portion are respectively larger than and smaller than the first width and the second width of at least one of the tail portion and the head portion. The head portion and the tail portion of the linear probe are inserted through the lower installation hole and the upper installation hole respectively. The lower installation hole and the upper installation hole are defined with a first central axis and a second central axis respectively. The second central axis is offset from the first central axis along the second width axis and thereby the body portion of the linear probe is curved. Each of the head portion and the tail portion of the linear probe is flattened and thereby has a cross section having an elongated shape. Each of the lower die unit and the upper die unit includes a top surface and a bottom surface opposite to the top surface. The top surface of the lower die unit faces toward the bottom surface of the upper die unit. The lower installation hole includes an upper part extending from the top surface of the lower die unit toward the bottom surface of the lower die unit, and a lower part extending from the upper part to the bottom surface of the lower die unit. The lower part of the lower installation hole is an elongated-shaped hole for the head portion to be inserted therethrough. The upper part of the lower installation hole is a circular hole having a diameter larger than or equal to a length of the elongated-shaped hole and larger than a width of the elongated-shaped hole and the first width and the second width of the body portion.
As a result, at least one of the tail portion and the head portion is different from the body portion in area moment of inertia because of the above-described difference in the first and second widths. For example, the area moment of inertia (IX) of the body portion with respect to the first width axis (X-axis) is smaller than the area moment of inertia of (IX) of at least one of the tail portion and the head portion with respect to the first width axis (X-axis). Because of such difference in area moment of inertia, the body portion is liable to elastic bending deformation in a specific direction when the linear probe is applied with a force along the second width axis (Y-axis). Therefore, setting the first and second widths of the tail portion, the body portion and the head portion can control the directions of the deformation and movement of the linear probe due to the relative displacement between the upper and lower die units and the contact between the head portion and the device under test in a way that the probes of the same probe head are consistent in bending direction and moving behavior thereof and thereby prevented from interference and short circuit. In particularly, the tail portion, the body portion and the head portion may, but unlimited to, be all flattened in a way that the long sides of the cross sections of the tail and head portions are perpendicular to the long sides of the cross sections of the body portion, such that the above-mentioned effects are optimized. For example, the linear probe may be formed in a way that a cylindrical needle is at least partially flattened to become the linear probe, and the direction in which the tail portion and the head portion are flattened is perpendicular to the direction in which the body portion is flattened, so that the first and second widths of the body portion are respectively larger than and smaller than the diameter of the needle and the first and second widths of each of the tail and head portions are respectively smaller than and larger than the diameter of the needle, thereby optimizing the above-mentioned effects.
Besides, in the condition that the body portion and the head portion have the above-described difference in the first and second widths thereof, such as the condition that the body portion and the head portion are flattened in the directions perpendicular to each other like the above-described manner or the condition that the head portion is flattened but the body portion is maintained with cylindrical shape, a lower stopping portion exists at the junction of the body portion and the head portion. As long as the width of the lower part (the elongated-shaped hole) of the lower installation hole, which is defined along the first width axis, is smaller than the first width of the body portion, the body portion can enter the upper part (the circular hole) of the lower installation hole to be stopped at the top end of the lower part of the lower installation hole, such that the problem of probe drop is avoided.
In addition, the at least one of the tail portion, the body portion and the head portion being flattened may have cross sections having an elongated shape with two arc sides, thereby moving smoothly in the upper installation hole and the lower installation hole and release stress because of having the arc-shaped parts. The lower part of the lower installation hole provided with an elongated shape, such as a non-square rectangle with arc chamfering, can prevent the linear probe from self-rotation. The upper part of the lower installation hole shaped as a circular hole can minimize the wear of the head portion and the lower die unit, thereby preventing the probe from break. Besides, the circular hole makes the probe installation relatively easier.
The entire upper installation hole may be a square hole, or the upper installation hole may be divided into upper and lower parts wherein the lower part is a square hole and the upper part may be a square hole or a circular hole. The upper installation hole having the configuration of circular upper part and square lower part can improve the movability of the probe, avoiding failure in repair due to excessive friction between the probe and the dies. Resulted from the square shape of the entire upper installation hole or the lower part thereof, when the upper and lower die units are offset from each other to make the body portion curved, the tail portion can be abutted on a side of the square hole, such that the probe is prevented from self-rotating and the problem of probe escape can be minimized.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
First of all, it is to be mentioned that same reference numerals used in the following preferred embodiments and the appendix drawings designate same or similar elements throughout the specification for the purpose of concise illustration of the present invention.
Referring to
In this embodiment, the tail portion 22, body portion 24 and head portion 26 of the linear probe 20 are all flattened. Besides, the direction in which the body portion 24 is flattened is perpendicular to the direction in which the tail portion 22 and head portion 26 are flattened. There may, but unlimited to, be a non-flattened part 28 left between the tail portion 22 and the body portion 24 and another non-flattened part 28 left between the body portion 24 and the head portion 26. In other words, when it is mentioned in the present invention that the tail portion 22, body portion 24 and head portion 26 extend along the longitudinal axis (Z-axis) in order, it delimits the positional order and extending direction of the tail portion 22, body portion 24 and head portion 26 without delimiting that the tail portion 22, body portion 24 and head portion 26 have to be connected in order directly. Each of the non-flattened parts 28 is cylinder-shaped like the original needle, thereby having circular cross sections. Because the tail portion 22, body portion 24 and head portion 26 are flattened, the cross sections thereof substantially have an elongated shape with two arc sides, like the tail portion 22 as shown in
Because the flattened tail portion 22, body portion 24 and head portion 26 have approximately non-square rectangular cross sections, the linear probe 20 is defined with a first width axis (X-axis) perpendicular to the longitudinal axis (Z-axis) and a second width axis (Y-axis) perpendicular to the longitudinal axis (Z-axis) and the first width axis (X-axis) according to the shape of the flattened portions. The tail portion 22, body portion 24 and head portion 26 are defined with first widths WX1, WX2 and WX3 along the first width axis (X-axis) and second widths WY1, WY2 and WY3 along the second width axis (Y-axis). Because the body portion 24 is flattened in the direction along the second width axis (Y-axis) from the original cylindrical needle, the first width WX2 and the second width WY2 of the body portion 24 are respectively larger than and smaller than the diameter of the needle, i.e. the diameter D of the non-flattened part 28. The tail portion 22 and head portion 26 are flattened in the direction along the first width axis (X-axis) from the original cylindrical needle, so the first widths WX1 and WX3 of the tail portion 22 and head portion 26 are smaller than the diameter D of the needle and the second width WY1 and WY3 of the tail portion 22 and head portion 26 are larger than the diameter D of the needle. In other words, the first width WX2 and the second width WY2 of the body portion 24 are respectively larger than and smaller than the first width WX1 and the second width WY1 of the tail portion 22, and respectively larger than and smaller than the first width WX3 and the second width WY3 of the head portion 26.
Referring to
In this embodiment, the lower die unit 40 includes a lower die 44. However, the lower die unit 40 may be composed of a plurality of lower dies. Each of the lower installation holes 42 penetrates through the lower die 44 and is defined with a first central axis A1 as shown in
As shown in
With the feature that the first and second widths of the body portion 24 are respectively larger than and smaller than the first and second widths of the tail portion 22 and the head portion 26, the area moment of inertia of the body portion 24 has significant and specific difference from the area moment of inertia of the tail portion 22 and the head portion 26, and such difference in the area moment of inertia makes the body portion 24 liable to elastic bending deformation in a specific direction when the linear probe 20 is applied with a force along the second width axis (Y-axis). Specifically speaking, considering the condition that the cross sections of the tail portion 22, body portion 24 and head portion 26 are non-square rectangular, the formula for the area moment of inertia L of the body portion 24 with respect to the first width axis (X-axis) is IX=WX2 WY23/12, and the formulas for the area moment of inertia Ix of the tail portion 22 and the head portion 26 with respect to the first width axis (X-axis) are IX=WX1 WY13/12 and IX=WX3 WY33/12 respectively. It can be thus known that the area moment of inertia Ix of the body portion 24 is smaller than the area moment of inertia of Ix of the tail portion 22 and the head portion 26. When the upper and lower die units 50 and 40 are displaced relative to each other along the second width axis (Y-axis) to apply a force along the second width axis (Y-axis) to the linear probe 20, the body portion 24 is particularly liable to elastic bending deformation on the Y-Z plane, as shown in
As a result, setting the first and second widths of the tail portion 22, body portion 24 and head portion 26 can control the directions of the deformation and movement of the linear probe 20 due to the relative displacement between the upper and lower die units 50 and 40 and the contact between the head portion 26 and the device under test in a way that the probes 20 of the same probe head 30 are consistent in bending direction and moving behavior thereof and thereby prevented from interference and short circuit. In particular, the size of the body portion 24 is more influential in the above-mentioned effects, which is adjustable according to the practical demanding conditions. The sizes of the tail portion 22 and the head portion 26 are not only adjustable for improving the above-mentioned effects, but also adjustable according to the size of the device under test.
Besides, the body portion 24 and the tail portion 22 have the above-described difference in first and second widths, and the upper installation hole 52 is shaped as a non-square rectangle from the first and second through holes 532 and 542 offset from each other along the first width axis (X-axis) so that the width WH1 of the upper installation hole 52 defined along the first width axis (X-axis) as shown in
Referring to
In the second to seventh preferred embodiments of the present invention as shown in
In the above-described first preferred embodiment, the lower installation hole 42 is provided with the area approximately just adapted for the head portion 26 to be inserted therethrough, thereby attaining the effects of avoiding probe drop and preventing the probe from self-rotation. Besides, the upper installation hole 52 is formed with an elongated shape a little larger than the tail portion 22 (the upper installation hole 52 is formed from the first and second through holes 532 and 542 offset from each other and each having an area larger than the lower installation hole 42), thereby attaining the effects of avoiding probe escape, preventing the probe from self-rotation and convenience for the installation of the probe. However, the lower installation hole 42 is unlimited to be shaped as a non-square rectangle. As long as the lower installation hole 42 has an elongated shape, the effects of avoiding probe drop and preventing the probe from self-rotation can be attained by the lower installation hole 42 and the flattened head portion 26 collectively. In the condition that the head portion 26 is not flattened and maintained with the cylindrical shape, the lower installation hole 42 may be not elongated-shaped, but shaped as a circle, square, and so on, such that the effect of avoiding probe drop can be still attained. Likewise, the upper installation hole 52 is unlimited to be shaped as a non-square rectangle. As long as the upper installation hole 52 has an elongated shape, the effects of avoiding probe escape and preventing the probe from self-rotation can be attained by the upper installation hole 52 and the flattened tail portion 22 collectively. In the condition that the tail portion 22 is not flattened and maintained with the cylindrical shape, the upper installation hole 52 may be not elongated-shaped, but shaped as a circle, square, and so on, such that the effect of avoiding probe escape can be still attained. However, in the condition that the upper and lower installation holes 52 and 42 are elongated-shaped, the body portion 24 can be abutted on relatively larger areas of the bottom surface of the upper die unit 50 and the top surface of the lower die unit 40 around the upper and lower installation holes 52 and 42, such that the effects of avoiding probe escape and probe drop are relatively better. No matter the tail portion 22 is flattened or not, the upper installation hole 52 is unlimited to be formed from two through holes collectively, which means the upper die unit 50 may include only one upper die where the upper installation hole 52 penetrates, as long as the upper installation hole 52 is adapted for the tail portion 22 to be inserted therethrough.
Referring to
In this way, the circular upper part 421 of the lower installation hole 42 can minimize the wear of the head portion 26 and the lower die unit 40, thereby preventing the probe from break, and the circular hole also makes the probe installation easier. The body portion 24 can enter the upper part 421 to be stopped at the top end of the lower part 422, i.e. the top surface of the second lower die 48, so the lower part 421 of the lower installation hole 42 is still effective in avoiding probe drop and preventing the probe from self-rotation. The above-mentioned effects may be attained in a way that the diameter D′ of the upper part 421 of the lower installation hole 42 is designed to be equal to the length L of the elongated-shaped hole 422.
Referring to
The linear probe 20 in this embodiment is also formed in a way that a cylindrical needle is partially flattened to become the linear probe 20. The tail, body and head portions 22, 24 and 26 of the linear probe 20 are all at least partially flattened, and the cross sections of the flattened portions thereof substantially have an elongated shape with two arc sides, like the tail portion 22 as shown in
Like the lower die unit 40 in the eighth preferred embodiment, the lower die unit 40 in this embodiment includes a top surface 45 and a bottom surface 46 opposite to the top surface 45, and the top surface 45 faces toward the upper die unit 50. The lower installation hole 42 includes an upper part 421 extending from the top surface 45 toward the bottom surface 46, and a lower part 422 extending from the bottom end of the upper part 421 to the bottom surface 46. The lower part 422 is an elongated-shaped hole for the head portion 26 to be inserted therethrough. For example, in this embodiment, the cross section of the lower part 422 of the lower installation hole 42 is substantially shaped as a non-square rectangle with arc chamfering, as shown in
The upper die unit 50 in this embodiment includes first and second upper dies 53 and 54 piled on one another, and the first and second upper dies 53 and 54 are not displaced relative to each other along the first width axis (X-axis) during the assembly. The first and second upper dies 53 and 54 may be made integrally or made individually and fixed to each other by gluing or other fastening manners to have fixed relative positions. Besides, the upper installation hole 52 in this embodiment includes an upper part 521 and a lower part 522 located in the first and second upper dies 53 and 54 respectively. The upper part 521 extends from the top surface 55 of the upper die unit 50 toward the bottom surface 57, and the lower part 522 extends from the bottom end of the upper part 521 to the bottom surface 57. The circular section 221 and the flattened section 222 of the tail portion 22 are disposed in the upper and lower parts 521 and 522 of the upper installation hole 52 respectively. The lower part 522 is a square hole for the tail portion 22 to be inserted therethrough, which means the side length L′ of the square hole as shown in
Like the above-described embodiments, this embodiment also has the feature that the first and second widths of the body portion 24 are respectively larger than and smaller than the first and second widths of the tail portion 22 and the head portion 26, which makes the probes 20 of the same probe head 30 consistent in bending direction and moving behavior thereof, thereby preventing the probes from interference and short circuit. Besides, because the flattened head portion 26 has elongated-shaped cross sections, the elongated-shaped lower part 421 of the lower installation hole 42 can prevent the probe from self-rotation. The circular upper part 421 of the lower installation hole 42 can minimize the wear of the head portion 26 and the lower die unit 40, thereby preventing the probe from break. Besides, the circular hole makes the probe installation relatively easier. In addition, the width W of the elongated-shaped hole 421, which is defined along the first width axis (X-axis), is smaller than the first width WX2 of the body portion 24, so the body portion 24 can enter the upper part 421 to be stopped at the top end of the lower part 422, i.e. the top surface of the second lower die 48, so that the lower installation hole 42 can avoid the problem of probe drop.
On the other hand, the upper installation hole 52 in this embodiment has the circular upper part and the square lower part as described above, so it can improve the movability of the probe 20, avoiding failure in repair due to excessive friction between the probe 20 and the dies 53 and 54. Besides, when the upper and lower die units 50 and 40 are offset from each other to make the probe 20 curved as shown in
As shown in
It should be appreciated that in the entire specification and the claims of the present invention, the linear probe refers to that the probe is long and straight after the manufacturing and before the installation and the use, which means the linear probe is unlimited to the probe formed from the cylindrical wire needle being at least partially flattened like the probe in the above embodiments. For example,
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
107123156 | Jul 2018 | TW | national |
108114926 | Apr 2019 | TW | national |