This invention relates, in one embodiment, to a treatment of biological organisms with various forms of energy, particularly electromagnetic energy.
It is known that the application of certain electromagnetic energies and signals can change the biological effectiveness of fluids including water. See Dr. Alan Halls' book entitled “Water, Electricity and Health”, Hawthorn Press, 1997 and references cited therein, as well as the papers “Digital Recording/Transmission of the Cholinergic Signal” by Dr. J. Benveniste, et. al. and references therein.
Similarly, the application of exterior photonic and other electromagnetic energy to a body for therapeutic purposes is also known. See, for example, WO9417406 and U.S. Pat. No. 6,541,978 to Benveniste, the contents of which are hereby incorporated by reference. Benveniste determined the characteristic electric signal of an isolated substance (e.g. caffeine, distilled water, ionophoretic-calcium, ovalbumin, propranolol) and then impose that signal on a biological system (e.g. a perfused guinea-pig heart, bacterium coli, streptococci, staphilocci). Surprisingly, Beneveniste discovered at least certain physiological effects of the isolated substance (e.g. caffeine) can be imposed on the biological system (e.g. perfused guinea-pig heart) by application of the substance's characteristic electric signal. This physiological effect was imposed without treatment with the substance itself.
In accordance with this invention, there is provided a process for treating a biological organism comprising the steps of measuring a first electromagnetic energy signal characteristic of a biological sample while experiencing the effect of a therapeutic agent; measuring a second electromagnetic energy signal characteristic of the biological sample while not experiencing the effect of the therapeutic agent; comparing the first and second electromagnetic energy signals and determining a third electromagnetic energy signal that, when superimposed on the second electromagnetic energy signal, results in a fourth electromagnetic energy signal that is substantially identical to the first electromagnetic energy signal. The third electromagnetic energy signal is then delivered to a biological organism.
The present invention is disclosed with reference to the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.
One embodiment of this invention involves the application of electromagnetic energy to an organism. It is known that very minute alterations to molecules and fluids, such as blood or water, can have dramatic therapeutic effects, and that it is possible to digitize the method for effecting the alterations of these treatments and transmit them electronically so that they can be repeated with high precision at a later time and if necessary in a different place. See, for example, U.S. Pat. No. 6,541,978 to Benveniste. As a result, complex diagnostics, including imaging and chemical analyses, can be conducted of tissue or fluid samples at a remote site, and a patient prescription provided for treating the situation that can be transmitted to the patient location and administered locally.
It is noteworthy that molecules can activate their corresponding receptor sites without physical contact. See, e.g., an article by C. W. Smith, “Electromagnetic effects in humans,” in Biological Coherence and Response to External Stimuli, Frohlich H (editor), Springer-Verlag, Berlin, pages 205-232. Reference also may be had to James L. Oschman's book Energy Medicine: The Scientific Basis (Churchill Livingston, New York, N.Y., 2000) and a book published in 1957 by A. Szent-Gyorgyi entitled Bioenergetics, published by Academic Press, New York. In one process of this invention, the energy patterns from signal molecules are used without their corresponding drugs to treat the receptor sites.
Referring to
In one embodiment, the energy emitted by emitter is a combination of energies selected from the group consisting of photonic energy, vibratory energy, electrical energy, and mixtures thereof, provided that, in this embodiment, at least two of such energies are emitted.
In one embodiment, a first energy signal of a biological sample is measured. Beneveniste (U.S. Pat. No. 6,541,978) describes a process for determining “from a biological and/or chemical active element such as a chemical compound, a cell or a micro-organism, or from a substance containing this active element such as a purified preparation, a biological sample, or a living being, an ‘electromagnetic signal characteristic of the biological and/or chemical activity or of the biological and/or chemical behavior’ of said substance.” In one embodiment, the chemical compound or biological organism is placed in a chamber and subjected to certain conditions that permits the electromagnetic signal that is characteristic of the organism or compound to determine according to the techniques of Beneveniste. By way of illustration, Beneveniste determines the electromagnetic signal of caffeine and then imposes the same electromagnetic signal on a guinea-pig heart. A control experiment was conducted which (a) exposed a guinea-pig heart directly to caffeine (a Langendorff experiment) and (b) monitored a drug/signal-free control heart. The heart that was subjected to the electromagnetic signal of caffeine behaved in a fashion similar to that of the heart that was directly exposed to caffeine and in a fashion unlike the control heart. Beneveniste scanned across a variety of wavelengths to determine the characteristic electromagnetic signal.
By way of further illustration, one may use energy of from about 1 to about 3 hertz to regenerate nerves. One may use an energy of from about 5 to about 9 hertz to promote bone growth. One may use an energy of about 10 hertz to heal ligaments. Generally, energies of 15, 20, and 72 hertz decrease skin necrosis, stimulate capillary formation, and cause the proliferation of fibroblasts. Energies of 25 and 50 hertz promote synergistic effects with nerve growth factor. In general, the use of energies from about 1 to about 100 hertz promotes healing of many bodily parts.
In one aspect of this embodiment, millimeter and/or centimeter wavelength energy is used. In general, this energy has a frequency of from about 30 to about 300 gigahertz. In some papers, reference to “millimeter waves” refers to frequencies around 60 gigahertz.
In one embodiment, the energy utilized in the process of this invention has a frequency of at least 1,000 gigahertz (one terahertz) and is believed to cause deoxyribonucleic acid to resonate. In this embodiment, a multiplicity of different frequencies, each of which has a frequency of at least one terahertz, are used.
Referring again to
Alternatively, and as is illustrated in step 15, one may determine the spectrum response of a receptor site to various stimuli, including stimulation by drugs as well as stimulation by application of various energy patterns or by combinations. Alternatively, one may determine the spectrum of the biological organism, over time, as it is exposed to a drug. By trial and error, one may determine what combination of stimuli produce the desired receptor response.
Alternatively, as is illustrated in
In one embodiment, a second energy signal of a biological sample is measured once one has determined a desired energy signal (first energy signal) produced by a specified drug or combination of drugs. One may then evaluate which combination of energy pattern stimuli will produce the same response in step 19 of the process.
A electromagnetic signal characteristic of the biological and/or chemical activity or of the biological and/or chemical behavior' of the biological organism is determined while it is not under the effects of the therapeutic agent. Techniques for determining such a characteristic electromagnetic signal are known to those skilled in the art. See U.S. Pat. No. 6,541,978.
Referring again to
Thereafter, in step 21 of the process, a (fourth) spectrum and/or spectra may be determined for any particular condition to be treated in the biological organism and information about this determined spectrum/spectra may be incorporated into a program in step 23. In step 25, the program may be incorporated into a device which is capable of sensing the condition within the biological organism, selecting the appropriate spectrum/spectra from its database, emitting such energy pattern and directing it to the appropriate site within the organism, sensing the response of the living organism to such emission, modifying such emission as appropriate, and/or ceasing such emission as appropriate.
In portion 27 of the process, which is comprised of steps 11 through 25, the steps necessary to identify the appropriate energy pattern are described. In portion 29 of the process, comprising steps 31 through 37, the steps necessary to apply the selected energy pattern to the living organism are described.
In step 31 of the process, which is optional, one may utilize an external monitor/reprogrammer for bi-directional communication between the implanted device and the outside world. With such a monitor/reprogrammer, one can visually observe indicia of the state of biological organism and, as appropriate, change the program of the implanted device.
The external monitor/reprogrammer is operatively connected to the implanted energy device of step 33 which, in response to external stimuli and/or in vivo stimuli provided by the biological organism, provides energy to biological organism of step 35. In one embodiment, depicted in step 37, a sensor which can monitor the response of the living organism to the applied energy and, with use of a programmable computer (not shown), continually modifies the energy delivered to the organism. The connection between the external monitor/reprogrammer 31 and the energy device may be direct, or it may be indirect. In one embodiment, the connection is indirect and is made, e.g., by means of transceivers.
Resistant myofascial pain can be treated with microcurrent of specific frequencies, as is disclosed in a 1998 article by C. McMakin entitled “Microcurrent treatment of myofascial pain in the head, neck, and face” published in Topics in Clinical Chiropractic 5(1):29-35.
In one embodiment, the first characteristic electromagnetic signal of a biological sample experiencing myofascial pain is determined. Likewise, the second characteristic electromagnetic signal of tissue not experiencing myofascial pain is determined. For example, a therapeutic agent may be present which results in a low pain state. By way of further illustration, the organism may be emitting an unknown therapeutic agent that causes a decrease in myofascial pain. The first and second signals are compared and a third signal is determined which, when mathematically added to the first signal, will produce a fourth signal that closely approximates the second signal. This third signal is then applied to an organism that corresponds to the biological sample. For example, if the biological sample was human tissue, then a corresponding biological organism is a human being. This human being may be the same or different than the human being from which the biological sample originated.
In another embodiment of this invention, illustrated in
In another embodiment of this invention, illustrated in
Referring to
Once such correlations have been made, using the methods disclosed herein or by reference to research studies conducted by others, one can deliver to the patient, via emitter 16, that portion of the spectral pattern which is advantageous to the patient at times when it is advantageous to the patient. Thus, e.g., the sensors 46 can determine when, e.g., the liver is malfunctioning and deliver the required electromagnetic radiation to the patient, either alone and/or in combination with one or more drugs, until the liver is functioning properly.
In the embodiment depicted in
In one embodiment, as depicted in
How the energy pattern of any particular drug, or combinations of drugs, or how combinations of drugs and electromagnetic fields, changes over time may be stored within the controller 44 of
If, for example, a drug is being administered which, at a particular point in time, is producing a disadvantageous energy pattern, the emitter 16 may emit one or more interfering and/or phase shifted and/or phase inverted and/or complementary energy patterns which, after they interact with the energy pattern produced by such drug, or with the response of the receptor molecules the drug is acting upon, produce the desired energy pattern and/or lack thereof.
In another embodiment of this invention, illustrated in
In one embodiment, illustrated in
In another embodiment of this invention, illustrated in
In the embodiment depicted in
In one embodiment, in any or all of the processes of this invention, the electromagnetic energy is delivered directly into one or more bodily fluids, such as, e.g., the blood, the lymph, the urine, cerebrospinal fluid, endolymph, aqueous humor, etc. Reference may be had, e.g., to
After verifying that the therapy regimen is safe, in step 108, millimeter wave frequency is applied for a specified duration such as, e.g., 15 minutes. Thereafter, the blood pressure of the biological organism is again checked in step 102′. In one aspect of this embodiment, if the blood pressure of the organism is still too high after the initial treatment, additional incremental treatments 110 preferably are continued up to a threshold decision point 112. In the embodiment depicted, additional chemical therapy is administered in step 114, and monitored in step 102″. If this additional drug therapy is not effective, the patient is alerted in step 118.
It will be apparent to those skilled in the art that the process depicted in
Referring to the graph depicted in
The spectrum 216 depicted in the graph of
When a drug is administered to patient, its spectrum changes as it is dissolved within the patient's system and/or is metabolized within the patient. As the drug undergoes physical and/or chemical changes, its spectrum changes. In one embodiment of this invention, the energy pattern delivered by the emitter 16 is substantially comparable to the energy pattern delivered by a drug as it undergoes physical and/or chemical changes within the patient's body.
One may, by conventional techniques, measure the spectrum of one or more drugs as they interact with and within a patient's body. Thereafter, one may program this spectrum into an emitter comprised of programmable computer such that the emitter will deliver the same energy pattern to a biological organism as the drug did, over time. Thus, e.g., one may use the emitter 16 and the controller 44, as depicted in
It will be apparent to those skilled in the art that the process just described may not be ideal, as alterations in the structure of drug molecules, and resulting alterations in the emission spectrum of the molecules, may be detrimental to the organism, leading to undesired side effects. Hence in another embodiment the computer is programmed such that the emitter will continue to deliver the same energy pattern to a biological organism as the drug did when the drug was first administered to the patient.
The process of this invention is not limited to the use of only one emitter 16 or only one implantable drug dispenser 240. As will be apparent to those skilled in the art, the use of a multiplicity of emitters 16 allows one to produce a large variety of different waveforms and spectra patterns that can interact with a multiplicity of injected drugs.
In one embodiment, there is provided an apparatus for treating a biological organism, comprising an externally worn and removable appliance comprised of means for inducing an electromagnetic and/or vibrational and/or light and/or other energy pattern of a biological process and/or a suitable drug or drugs through the skin of a organism which, preferably, is living. In this embodiment, the energy pattern corresponds to at least a portion of the electromagnetic pattern, or a modification thereof, of a biological process within the organism.
In many cases, it may be desirable to introduce more than one electromagnetic pattern to the patient. Thus, in one embodiment, depicted in
In one embodiment, in any or all of the processes of this invention, the electromagnetic energy and/or other energy is delivered directly into cartilage. In another embodiment of the invention, the electromagnetic and/or other energy is delivered directly into bone. In yet another embodiment of the invention, the electromagnetic and/or other energy is delivered directly into brain cells. In yet another embodiment of this invention, the electromagnetic and/or other energy is delivered to fascia and/or cerebrospinal fluid and/or other fluids. In yet another embodiment of this invention, the electromagnetic and/or other energy is delivered to acupuncture and/or other biologically active points within and/or on the body.
In any or all of the aforementioned embodiments, one may substitute for part or all of the electromagnetic energy other energy forms, such as vibratory energy.
After a suitable number of correlations have been made with the devices of this invention, one may deliver one or more energy patterns, and/or drugs, adapted to provide anti-allergy signals, anti-aids recognition signals, signals that reduce the side effects of drugs, signals that mimic the signals of homeopathic remedies, signals that mimic the patterns of heat drugs (such as beta blockers), nitrolycerine, anti-tumor drugs, antibiotics, antiviral agents, stress reducing agents, pain killers, and the like. As will be apparent, this list is merely illustrative.
In one embodiment, a desired electromagnetic spectrum and/or modulated light or sound (including, e.g., ultraviolet light or ultrasound or infrared radiation, e.g.) is injected directly into a patient's blood stream on demand and/or at regular intervals and/or continuously.
In one embodiment, the spectral pattern which exists when the AIDS virus attaches to a lymphocyte is determined, and a pattern designed to interfere with this first spectral pattern is emitted. Thus, e.g., one may emit coherent photon signals that mediate the behavior of the AIDS viron and its attraction to and identification of and docking on the human lymphocyte. In one aspect of this embodiment, either the viron itself and/or a component of the viron is caused to resonate at its natural coherent resonant frequency. Two key elements of such viron are two surface proteins, glycoprotein GP41 and glycoprotein GP 120; they constitute a dielectric antenna. By the application of suitable electromagnetic energy to such “antenna,” the AIDS viron can be affected.
In one embodiment, the emitter 16 is comprised of means for transmitting a desired electromagnetic pattern to a pacemaker. Thus, e.g., one may transmit suitable analog, digital, or scalar versions of such signals to a cardiac assist device. In one aspect of this embodiment, the cardiac assist device is adapted to store the spectrum transmitted to it by the emitter 16 and, when appropriate, to retransmit part or all of such spectrum.
In another embodiment, see
In another embodiment, fluid is treated externally and independent of a body as it flows through tubing. In
In another embodiment (not shown), the emitter tip 356 of
In another embodiment, see
In yet another embodiment of the invention, a process for the treatment of disease, such as cancer is provided. Although the process is applicable to many different diseases, it will be described by reference to cancer for simplicity of description.
The group of diseases commonly referred to as cancer in fact includes a highly diverse set of cell types that have, through a process of mutation, begun a process of unregulated proliferation. Since the accumulation of these mutations is a random process, the combination of mutations that ultimately result in a cancerous disease state varies widely. This complicates the process of disease treatment, as each protocol must be tailor-made to suit each different patient.
Physicians have long sought a treatment for cell proliferation diseases (such as cancer) that could be generalized for the treatment of all of these related maladies, avoiding this process of “tailoring making” a protocol that may involve invasive diagnostic techniques that can be uncomfortable for the patient and rely on conventional pathological analysis which is expensive, time-consuming and often is based on techniques that have variable accuracy.
One unique property of cancer cells is their ability, once in their fully transformed state, to become motile. This property is known to those of skill in the art as invasive and metastasis.
In one embodiment, describe more fully elsewhere in this specification, there is disclosed a process and device to influence the cell motility and cell division cycle of cancer and other diseased cells in order to slow or stop their proliferation and thereby slow the progression of the disease or affect a cure. As will be apparent to those skilled in the art, disease processes involving the control of cell proliferation include, but are not limited to restenosis of vascular and arteriole tissue following angioplasty or the introduction of a vascular stent, the development of excessive or unwanted scar tissue, thickening of ventricular walls in hypertrophic cardiomyopathy, angiogenesis of tumor masses, psoriasis, and other related disorders.
In one embodiment of this invention, also described elsewhere in this specification, infrared light is used to promote the migration of cells or cell appendages to a particular region. This migration can include, but is not limited to, angiogenesis, nerve axons, and myocytes.
In one embodiment of this invention, pulsed infrared light is used to turn away invasive or migrating cells from an irradiated area. In another embodiment, light in the visual and ultraviolet spectrum is used. Each of these embodiments is described elsewhere in this specification.
In another embodiment, non-cancer and/or cancer cells are cultured by methods routine to those skilled in the art, and exposed to light in the range of 660-1000 nanometers with varied pulse rates and wavelengths that were discovered to be capable of altering the progression of the cell cycle. This alteration could be a cessation or a signal to begin cell division. In another embodiment, light in the visual and ultraviolet spectrum is used.
In another section of this specification, various types and regimens of energy are delivered to a biological organism. It will be understood that any one or more of these energy protocols may be used with one or more of the devices of
In one embodiment, the control unit 552 uses information derived from the process described in
In one embodiment the properties of the light emitted by one or more of the devices of
In one embodiment, the wavelength is between about 601 and about 1200 nanometers. In another embodiment the wavelength is from about 390 to about 600 nanometers. In yet another embodiment, the wavelength is from about 200 to about 389 nanometers. In one aspect of these embodiments, regardless of the wavelength used, the light energy is pulsed into a biological sample (such as a tissue sample) at a 0.5 hertz pulse rate. In another aspect of this embodiment, the pulse rate is from about 0.55 hertz to about 0.7 hertz. In another aspect of this embodiment, the pulse rate is less than about 0.4 hertz and preferably is from about 0.1 to about 0.4 hertz. In another embodiment, when using one or more of the aforementioned wavelengths of light, the light is continuous.
Referring again to
Spectral density and phase coherence of the emissions from normal cells 610 and malignant cells 611 are computed in step 612 and stored in database 620. Such detection and measurement can be accomplished by well-known electronic devices; e.g., spectrum analyzers and oscilloscopes.
Optionally, and in one embodiment, Fast Fourier transform algorithms may be used with wideband signals to determine power spectral density of biological data by converting a signal in the time domain into data in the frequency domain, using either digital signal processors or the equivalent algorithms in software.
As is known to those skilled in the art, such measurements of spectral density and phase coherence may be performed in a Faraday cage to attenuate artifacts from environmental sources. In addition, artifacts from electrical signals in the extreme low frequency (ELF) range, such as 60 Hz power line signals, may be attenuated by using battery-powered equipment, mu-metal shielding, common-mode-rejection circuits, and other methods.
Optionally, and in one embodiment, electromagnetic signals in the 100 to 1200 nanometer wavelength range are detected, measured, and recorded for normal cells 610 and malignant cells 611. One may detect, measure, and record spectral density and phase coherence for such signals by well-known devices; e.g., spectrophotometers, photomultipliers, and the like, or combinations thereof.
Referring again to
The aforementioned steps (shown in 610, 611, 612, 616, 617, 618) are also repeated to determine the signature of electromagnetic radiation for normal and malignant cells for each isotope in the database of tubulin isotypes in step 621.
The signature (unique patterns) of the spectral density and phase coherence of the electromagnetic radiation for each group of normal and malignant cells is then determined by computational algorithms (which can be executed in either hardware or software) known to those skilled in the art, based on an analysis of the normal and malignant electromagnetic radiation and other data in the database.
Referring again to
Referring again to
In one embodiment, after a measurement is made of the emission(s) from the normal cells and/or the cancer cells, phase-cancellation signals are sent out to selectively confuse or incapacitate the cancer cells. Thus, e.g., one may use real-time phase cancellation, as known to those skilled in the art. Phase cancellation is achieved by transmitting an inverse (180 degrees out of phase) signal at the same frequency as a detected mitogenic or mutagenic signal. As a result, the mitogenic or mutagenic signal may be attenuated or blocked.
For example, mitogenic or mutagenic signals may be blocked using electronic countermeasures techniques such as, for example, electromagnetic radiation (at microwave or optical frequencies) that is modulated with high levels of noise (“jamming”) at target-sensitive frequencies or ranges of frequencies, or at specific power levels, or by specific pulse trains, or at specific phase regimens, or by synchronizing with mitogenic signals, or by using phase cancellation with mitogenic signals, or by using pulse trains that confuse mitogenic or mutagenic signals, or by using pulse trains that confuse by signalling completion of an event such as mitosis, or by any combination of these tactics, or by using a plurality of other electronic countermeasures techniques that are well known to those skilled in the art.
The candidate therapeutic regimens 624 are then executed in designed experiments 626 seeking to determine the optimal methods of entraining orderly cell division and appropriate coherence in electromagnetic energy emitted by cells. The effects of the candidate regimens are then measured, using standard techniques for the assessment of tumor mass growth, regression and remission known to those of skill in the art. In step 630 of such designed experimentation, a specific regimen that produces the desired therapeutic result for the patient, if successful, is determined and confirmed in final step 640.
Referring to
Referring again to
In one preferred embodiment, described elsewhere in this specification, the wavelength of the light used is a wavelength determined a process described elsewhere to be toxic to cancer cells.
Referring to
In another preferred embodiment of this invention, and with reference to
Referring again to
In the embodiment depicted, the monolayer 1008 is disposed on the media 1010. A light emitting device 1012 is preferably disposed below the monolayer 1008, and it is adapted to emit one or more of the radiations described elsewhere in this specification.
In the preferred embodiment depicted, and referring again to
Lid 1002 is configured so as to ensure an optically sterile environment; it is preferably opaque, neither allowing light to enter or leave. As used herein, the term light with a wavelength of from about 200 to about 1200 nanometers.
In the preferred embodiment depicted, the device 1000 is preferably shielded from radio frequency radiation by Mu metal shields 1006.
Referring again to
In one preferred embodiment, it is preferred to generate harmonics with a wavelength of from 200 to 400 nanometers. In this embodiment, one thus would utilize a light source 1012 that produced light with a wavelength of 400 to 800 nanometers.
After light energy 1014 has been emitted from the light source 1012, one can observe the effect of such light energy 1014 (and/or of the harmonics it creates) upon the cell monolayer 1008. One can remove the lid 1002 and observe whether the cells have proliferated, and/or been killed, and/or moved. In one embodiment, camera 1009 continually monitors the effects of the radiation 1014 upon the cell monolayer and transfers this information by a telemetric link (not shown) to the controller (not shown).
As will be apparent, the device 1000 allows one to determine the effects, if any, upon cellular health of various light regimens. Some of these are discussed elsewhere in this specification.
In one preferred embodiment, the light regimen in question preferentially kills cancer cell and/or preferentially stops the cell division of cancer and/or preferably stops the motility of cancer cells.
In one embodiment, the cell monolayer 1008 is a cell monolayer derived from cancer cells taken from a patient. As will be apparent, one can determine, for these particular cells in question, which light energy regimen is most efficacious in treating such cancer cells. Thereafter, one can implant a device, such as the device depicted in
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof to adapt to particular situations without departing from the scope of the disclosure. Therefore, it is intended that the claims not be limited to the particular embodiments disclosed, but that the claims will include all embodiments falling within the scope and spirit of the appended claims.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 12/155,824, filed Jun. 10, 2008, which is a continuation of Ser. No. 11/066,418, filed Feb. 25, 2005, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 09/930,364, filed on Aug. 15, 2001, now abandoned, which applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11066418 | Feb 2005 | US |
Child | 12155824 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12155824 | Jun 2008 | US |
Child | 13331689 | US | |
Parent | 09930364 | Aug 2001 | US |
Child | 11066418 | US |