Process for controlling triboelectric charging

Abstract
Disclosed is a process which comprises (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected.
Description




BACKGROUND OF THE INVENTION




The present invention is directed to a process for controlling the triboelectric charging of marking materials. More specifically, the present invention is directed to a process for determining the polarity of charge obtained by marking materials such as toner particles suitable for developing electrostatic latent images. One embodiment of the present invention is directed to a process which comprises (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected.




The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic electrophotographic imaging process, as taught by C. F. Carlson in U.S. Pat. No. 2,297,691, entails placing a uniform electrostatic charge on a photoconductive insulating layer known as a photoconductor or photoreceptor, exposing the photoreceptor to a light and shadow image to dissipate the charge on the areas of the photoreceptor exposed to the light, and developing the resulting electrostatic latent image by depositing on the image a finely divided electroscopic material known as toner. Toner typically comprises a resin and a colorant. The toner will normally be attracted to those areas of the photoreceptor which retain a charge, thereby forming a toner image corresponding to the electrostatic latent image. This developed image may then be transferred to a substrate such as paper. The transferred image may subsequently be permanently affixed to the substrate by heat, pressure, a combination of heat and pressure, or other suitable fixing means such as solvent or overcoating treatment.




Another known process for forming electrostatic images is ionography. In ionographic imaging processes, a latent image is formed on a dielectric image receptor or electroreceptor by ion or electron deposition, as described, for example, in U.S. Pat. No. 3,564,556, U.S. Pat. No. 3,611,419, U.S. Pat. No. 4,240,084, U.S. Pat. No. 4,569,584, U.S. Pat. No. 2,919,171, U.S. Pat. No. 4,524,371, U.S. Pat. No. 4,619,515, U.S. Pat. No. 4,463,363, U.S. Pat. No. 4,254,424, U.S. Pat. No. 4,538,163, U.S. Pat. No. 4,409,604, U.S. Pat. No. 4,408,214, U.S. Pat. No. 4,365,549, U.S. Pat. No. 4,267,556, U.S. Pat. No. 4,160,257, and U.S. Pat. No. 4,155,093, the disclosures of each of which are totally incorporated herein by reference. Generally, the process entails application of charge in an image pattern with an ionographic or electron beam writing head to a dielectric receiver that retains the charged image. The image is subsequently developed with a developer capable of developing charge images.




Many methods are known for applying the electroscopic particles to the electrostatic latent image to be developed. One development method, disclosed in U.S. Pat. No. 2,618,552, the disclosure of which is totally incorporated herein by reference, is known as cascade development. Another technique for developing electrostatic images is the magnetic brush process, disclosed in U.S. Pat. No. 2,874,063. This method entails the carrying of a developer material containing toner and magnetic carrier particles by a magnet. The magnetic field of the magnet causes alignment of the magnetic carriers in a brushlike configuration, and this “magnetic brush” is brought into contact with the electrostatic image bearing surface of the photoreceptor. The toner particles are drawn from the brush to the electrostatic image by electrostatic attraction to the undischarged areas of the photoreceptor, and development of the image results. Other techniques, such as touchdown development, powder cloud development, and jumping development are known to be suitable for developing electrostatic latent images.




Powder development systems normally fall into two classes: two component, in which the developer material comprises magnetic carrier granules having toner particles adhering triboelectrically thereto, and single component, which typically uses toner only. Toner particles are attracted to the latent image, forming a toner powder image. The operating latitude of a powder xerographic development system is determined to a great degree by the ease with which toner particles are supplied to an electrostatic image. Placing charge on the particles, to enable movement and imagewise development via electric fields, is most often accomplished with triboelectricity.




The electrostatic image in electrophotographic copying/printing systems is typically developed with a nonmagnetic, insulative toner that is charged by the phenomenon of triboelectricity. The triboelectric charging is obtained either by mixing the toner with larger carrier beads in a two component development system or by rubbing the toner between a blade and donor roll in a single component system.




Triboelectricity is often not well understood and is often unpredictable because of a strong materials sensitivity. For example, the materials sensitivity causes difficulties in identifying a triboelectrically compatible set of color toners that can be blended for custom colors. Furthermore, to enable “offset” print quality with powder-based electrophotographic development systems, small toner particles (about 5 micron diameter) are desired. Although the functionality of small, triboelectrically charged toner has been demonstrated, concerns remain regarding the long-term stability and reliability of such systems.




In addition, development systems which use triboelectricity to charge toner, whether they be two component (toner and carrier) or single component (toner only), tend to exhibit nonuniform distribution of charges on the surfaces of the toner particles. This nonuniform charge distribution results in high electrostatic adhesion because of localized high surface charge densities on the particles. Toner adhesion, especially in the development step, can limit performance by hindering toner release. As the toner particle size is reduced to enable higher image quality, the charge Q on a triboelectrically charged particle, and thus the removal force (F=QE) acting on the particle due to the development electric field E, will drop roughly in proportion to the particle surface area. On the other hand, the electrostatic adhesion forces for tribo-charged toner, which are dominated by charged regions on the particle at or near its points of contact with a surface, do not decrease as rapidly with decreasing size. This so-called “charge patch” effect makes smaller, triboelectric charged particles much more difficult to develop and control.




To circumvent limitations associated with development systems based on triboelectrically charged toner, a non-tribo toner charging system can be desirable to enable a more stable development system with greater toner materials latitude. Conventional single component development (SCD) systems based on induction charging employ a magnetic loaded toner to suppress background deposition. If with such SCD systems one attempts to suppress background deposition by using an electric field of polarity opposite to that of the image electric field (as practiced with electrophotographic systems that use a triboelectric toner charging development system), toner of opposite polarity to the image toner will be induction charged and deposited in the background regions. To circumvent this problem, the electric field in the background regions is generally set to near zero. To prevent deposition of uncharged toner in the background regions, a magnetic material is included in the toner so that a magnetic force can be applied by the incorporation of magnets inside the development roll. This type of SCD system is frequently employed in printing apparatus that also include a transfuse process, since conductive (black) toner may not be efficiently transferred to paper with an electrostatic force if the relative humidity is high. Some printing apparatus that use an electron beam to form an electrostatic image on an electroreceptor also use a SCD system with conductive, magnetic (black) toner. For these apparatus, the toner is fixed to the paper with a cold high-pressure system. Unfortunately, the magnetic material in the toner for these printing systems precludes bright colors.




Powder-based toning systems are desirable because they circumvent a need to manage and dispose of liquid vehicles used in several printing technologies including offset, thermal ink jet, liquid ink development, and the like. Although phase change inks do not have the liquid management and disposal issue, the preference that the ink have a sharp viscosity dependence on temperature can compromise the mechanical properties of the ink binder material when compared to heat/pressure fused powder toner images.




To achieve a document appearance comparable to that obtainable with offset printing, thin images are desired. Thin images can be achieved with a monolayer of small (about 5 micron) toner particles. With this toner particle size, images of desirable thinness can best be obtained with monolayer to sub-monolayer toner coverage. For low micro-noise images with sub-monolayer coverage, the toner preferably is in a nearly ordered array on a microscopic scale.




To date, no magnetic material has been formulated that does not have at least some unwanted light absorption. Consequently, a nonmagnetic toner is desirable to achieve the best color gamut in color imaging applications.




For a printing process using an induction toner charging mechanism, the toner should have a certain degree of conductivity. Induction charged conductive toner, however, can be difficult to transfer efficiently to paper by an electrostatic force if the relative humidity is high. Accordingly, it is generally preferred for the toner to be rheologically transferred to the (heated) paper.




A marking process that enables high-speed printing also has considerable value.




Electrically conductive toner particles are also useful in imaging processes such as those described in, for example, U.S. Pat. No. 3,639,245, U.S. Pat. No. 3,563,734, European Patent 0,441,426, French Patent 1,456,993, and United Kingdom Patent 1,406,983, the disclosures of each of which are totally incorporated herein by reference.




Marking materials of the present invention are also suitable for use in ballistic aerosol marking processes. Ink jet is currently a common printing technology. There are a variety of types of ink jet printing, including thermal ink jet printing, piezoelectric ink jet printing, and the like. In ink jet printing processes, liquid ink droplets are ejected from an orifice located at one terminus of a channel. In a thermal ink jet printer, for example, a droplet is ejected by the explosive formation of a vapor bubble within an ink bearing channel. The vapor bubble is formed by means of a heater, in the form of a resistor, located on one surface of the channel.




Several disadvantages can be associated with known ink jet systems. For a 300 spot-per-inch (spi) thermal ink jet system, the exit orifice from which an ink droplet is ejected is typically on the order of about 64 microns in width, with a channel-to-channel spacing (pitch) of typically about 84 microns; for a 600 dpi system, width is typically about 35 microns and pitch is typically about 42 microns. A limit on the size of the exit orifice is imposed by the viscosity of the fluid ink used by these systems. It is possible to lower the viscosity of the ink by diluting it with increasing amounts of liquid (such as water) with an aim to reducing the exit orifice width. The increased liquid content of the ink, however, results in increased wicking, paper wrinkle, and slower drying time of the ejected ink droplet, which negatively affects resolution, image quality (such as minimum spot size, intercolor mixing, spot shape), and the like. The effect of this orifice width limitation is to limit resolution of thermal ink jet printing, for example to well below 900 spi, because spot size is a function of the width of the exit orifice, and resolution is a function of spot size.




Another disadvantage of known ink jet technologies is the difficulty of producing grayscale printing. It is very difficult for an ink jet system to produce varying size spots on a printed substrate. If one lowers the propulsive force (heat in a thermal ink jet system) so as to eject less ink in an attempt to produce a smaller dot, or likewise increases the propulsive force to eject more ink and thereby to produce a larger dot, the trajectory of the ejected droplet is affected. The altered trajectory in turn renders precise dot placement difficult or impossible, and not only makes monochrome grayscale printing problematic, it makes multiple color grayscale ink jet printing impracticable. In addition, preferred grayscale printing is obtained not by varying the dot size, as is the case for thermal ink jet, but by varying the dot density while keeping a constant dot size.




Still another disadvantage of common ink jet systems is rate of marking obtained. Approximately 80 percent of the time required to print a spot is taken by waiting for the ink jet channel to refill with ink by capillary action. To a certain degree, a more dilute ink flows faster, but raises the problem of wicking, substrate wrinkle, drying time, and the like, discussed above.




One problem common to ejection printing systems is that the channels may become clogged. Systems such as thermal ink jet which employ aqueous ink colorants are often sensitive to this problem, and routinely employ non-printing cycles for channel cleaning during operation. This cleaning is required, since ink typically sits in an ejector waiting to be ejected during operation, and while sitting may begin to dry and lead to clogging.




Ballistic aerosol marking processes overcome many of these disadvantages. Ballistic aerosol marking is a process for applying a marking material to a substrate, directly or indirectly. In particular, the ballistic aerosol marking system includes a propellant which travels through a channel, and a marking material that is controllably (i.e., modifiable in use) introduced, or metered, into the channel such that energy from the propellant propels the marking material to the substrate. The propellant is usually a dry gas that can continuously flow through the channel while the marking apparatus is in an operative configuration (i.e., in a power-on or similar state ready to mark). Examples of suitable propellants include carbon dioxide gas, nitrogen gas, clean dry ambient air, gaseous products of a chemical reaction, or the like; preferably, non-toxic propellants are employed, although in certain embodiments, such as devices enclosed in a special chamber or the like, a broader range of propellants can be tolerated. The system is referred to as “ballistic aerosol marking” in the sense that marking is achieved by in essence launching a non-colloidal, solid or semi-solid particulate, or alternatively a liquid, marking material at a substrate. The shape of the channel can result in a collimated (or focused) flight of the propellant and marking material onto the substrate.




The propellant can be introduced at a propellant port into the channel to form a propellant stream. A marking material can then be introduced into the propellant stream from one or more marking material inlet ports. The propellant can enter the channel at a high velocity. Alternatively, the propellant can be introduced into the channel at a high pressure, and the channel can include a constriction (for example, de Laval or similar converging/diverging type nozzle) for converting the high pressure of the propellant to high velocity. In such a situation, the propellant is introduced at a port located at a proximal end of the channel (the converging region), and the marking material ports are provided near the distal end of the channel (at or further down-stream of the diverging region), allowing for introduction of marking material into the propellant stream.




In the situation where multiple ports are provided, each port can provide for a different color (for example, cyan, magenta, yellow, and black), pre-marking treatment material (such as a marking material adherent), post-marking treatment material (such as a substrate surface finish material, for example, matte or gloss coating, or the like), marking material not otherwise visible to the unaided eye (for example, magnetic particle-bearing material, ultraviolet-fluorescent material, or the like) or other marking material to be applied to the substrate. Examples of materials suitable for pre-marking treatment and post-marking treatment include polyester resins (either linear or branched); poly(styrenic) homopolymers; poly(acrylate) and poly(methacrylate) homopolymers and mixtures thereof; random copolymers of styrenic monomers with acrylate, methacrylate, or butadiene monomers and mixtures thereof; polyvinyl acetals; poly(vinyl alcohol)s; vinyl alcohol-vinyl acetal copolymers; polycarbonates; mixtures thereof; and the like. The marking material is imparted with kinetic energy from the propellant stream, and ejected from the channel at an exit orifice located at the distal end of the channel in a direction toward a substrate.




One or more such channels can be provided in a structure which, in one embodiment, is referred to herein as a printhead. The width of the exit (or ejection) orifice of a channel is typically on the order of about 250 microns or smaller, and preferably in the range of about 100 microns or smaller. When more than one channel is provided, the pitch, or spacing from edge to edge (or center to center) between adjacent channels can also be on the order of about 250 microns or smaller, and preferably in the range of about 100 microns or smaller. Alternatively, the channels can be staggered, allowing reduced edge-to-edge spacing. The exit orifice and/or some or all of each channel can have a circular, semicircular, oval, square, rectangular, triangular or other cross-sectional shape when viewed along the direction of flow of the propellant stream (the channel's longitudinal axis).




The marking material to be applied to the substrate can be transported to a port by one or more of a wide variety of ways, including simple gravity feed, hydrodynamic, electrostatic, ultrasonic transport, or the like. The material can be metered out of the port into the propellant stream also by one of a wide variety of ways, including control of the transport mechanism, or a separate system such as pressure balancing, electrostatics, acoustic energy, ink jet, or the like.




The marking material to be applied to the substrate can be a solid or semi-solid particulate material, such as a toner or variety of toners in different colors, a suspension of such a marking material in a carrier, a suspension of such a marking material in a carrier with a charge director, a phase change material, or the like. Preferably the marking material is particulate, solid or semi-solid, and dry or suspended in a liquid carrier. Such a marking material is referred to herein as a particulate marking material. A particulate marking material is to be distinguished from a liquid marking material, dissolved marking material, atomized marking material, or similar non-particulate material, which is generally referred to herein as a liquid marking material. However, ballistic aerosol marking processes are also able to utilize such a liquid marking material in certain applications.




Ballistic aerosol marking processes also enable marking on a wide variety of substrates, including direct marking on non-porous substrates such as polymers, plastics, metals, glass, treated and finished surfaces, and the like. The reduction in wicking and elimination of drying time also provides improved printing to porous substrates such as paper, textiles, ceramics, and the like. In addition, ballistic aerosol marking processes can be configured for indirect marking, such as marking to an intermediate transfer member such as a roller or belt (which optionally can be heated), marking to a viscous binder film and nip transfer system, or the like.




The marking material to be deposited on a substrate can be subjected to post ejection modification, such as fusing or drying, overcoating, curing, or the like. In the case of fusing, the kinetic energy of the material to be deposited can itself be sufficient effectively to melt the marking material upon impact with the substrate and fuse it to the substrate. The substrate can be heated to enhance this process. Pressure rollers can be used to cold-fuse the marking material to the substrate. In-flight phase change (solid-liquid-solid) can alternatively be employed. A heated wire in the particle path is one way to accomplish the initial phase change. Alternatively, propellant temperature can accomplish this result. In one embodiment, a laser can be employed to heat and melt the particulate material in-flight to accomplish the initial phase change. The melting and fusing can also be electrostatically assisted (i.e., retaining the particulate material in a desired position to allow ample time for melting and fusing into a final desired position). The type of particulate can also dictate the post-ejection modification. For example, ultraviolet curable materials can be cured by application of ultraviolet radiation, either in flight or when located on the material-bearing substrate.




Since propellant can continuously flow through a channel, channel clogging from the build-up of material is reduced (the propellant effectively continuously cleans the channel). In addition, a closure can be provided that isolates the channels from the environment when the system is not in use. Alternatively, the printhead and substrate support (for example, a platen) can be brought into physical contact to effect a closure of the channel. Initial and terminal cleaning cycles can be designed into operation of the printing system to optimize the cleaning of the channel(s). Waste material cleaned from the system can be deposited in a cleaning station. It is also possible, however, to engage the closure against an orifice to redirect the propellant stream through the port and into the reservoir thereby to flush out the port.




Further details on the ballistic aerosol marking process are disclosed in, for example, Copending Application U.S. Ser. No. 09/163,893 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Steven B. Bolte, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, Jaan Noolandi, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Ballistic Aerosol Marking Apparatus for Marking a Substrate,” Copending Application U.S. Ser. No. 09/164,124 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Steven B. Bolte, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, Jaan Noolandi, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Method of Marking a Substrate Employing a Ballistic Aerosol Marking Apparatus,” Copending Application U.S. Ser. No. 09/164,250 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Danielle C. Boils, Steven B. Bolte, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, T. Brian McAneney, Maria N. V. McDougall, Karen A. Moffat, Jaan Noolandi, Richard P. N. Veregin, Paul D. Szabo, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Ballistic Aerosol Marking Apparatus for Treating a Substrate,” Copending Application U.S. Ser. No. 09/163,808 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Danielle C. Boils, Steven B. Bolte, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, T. Brian McAneney, Maria N. V. McDougall, Karen A. Moffat, Jaan Noolandi, Richard P. N. Veregin, Paul D. Szabo, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Method of Treating a Substrate Employing a Ballistic Aerosol Marking Apparatus,” Copending Application U.S. Ser. No. 09/163,765 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Steven B. Bolte, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, Jaan Noolandi, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Cartridge for Use in a Ballistic Aerosol Marking Apparatus,” Application U.S. Ser. No. 09/163,839 now U.S. Pat. No. 6,290,342, filed Sep. 30, 1998, with the named inventors Abdul M. Elhatem, Dan A. Hays, Jaan Noolandi, Kaiser H. Wong, Joel A. Kubby, Tuan Anh Vo, and Eric Peeters, entitled “Marking Material Transport,” Copending Application U.S. Ser. No. 09/163,954 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Andrew A. Berlin, Steven B. Bolte, Ga Neville Connell, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, Jaan Noolandi, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Ballistic Aerosol Marking Apparatus for Marking with a Liquid Material,” Copending Application U.S. Ser. No. 09/163,924 pending, filed Sep. 30, 1998, with the named inventors Gregory B. Anderson, Andrew A. Berlin, Steven B. Bolte, Ga Neville Connell, Dan A. Hays, Warren B. Jackson, Gregory J. Kovacs, Meng H. Lean, Jaan Noolandi, Joel A. Kubby, Eric Peeters, Raj B. Apte, Philip D. Floyd, An-Chang Shi, Frederick J. Endicott, Armin R. Volkel, and Jonathan A. Small, entitled “Method for Marking with a Liquid Material Using a Ballistic Aerosol Marking Apparatus,” Application U.S. Ser. No. 09/163,825, now U.S. Pat. No. 6,136,442 filed Sep. 30, 1998, with the named inventor Kaiser H. Wong, entitled “Multi-Layer Organic Overcoat for Electrode Grid,” Copending Application U.S. Ser. No. 09/164,104 allowed, filed Sep. 30, 1998, with the named inventors T. Brian McAneney, Jaan Noolandi, and An-Chang Shi, entitled “Kinetic Fusing of a Marking Material,” Application U.S. Ser. No. 09/163,904 (now U.S. Pat. No. 6,116,718), filed Sep. 30, 1998, with the named inventors Meng H. Lean, Jaan Noolandi, Eric Peeters, Raj B. Apte, Philip D. Floyd, and Armin R. Volkel, entitled “Print Head for Use in a Ballistic Aerosol Marking Apparatus,” Copending Application U.S. Ser. No. 09/163,799 pending, filed Sep. 30, 1998, with the named inventors Meng H. Lean, Jaan Noolandi, Eric Peeters, Raj B. Apte, Philip D. Floyd, and Armin R. Volkel, entitled “Method of Making a Print Head for Use in a Ballistic Aerosol Marking Apparatus,” Application U.S. Ser. No. 09/163,664, now U.S. Pat. No. 6,265,050 filed Sep. 30, 1998, with the named inventors Bing R. Hsieh, Kaiser H. Wong, and Tuan Anh Vo, entitled “Organic Overcoat for Electrode Grid,” and Application U.S. Ser. No. 09/163,518, now U.S. Pat. No. 6,291,088 filed Sep. 30, 1998, with the named inventors Kaiser H. Wong and Tuan Anh Vo, entitled “Inorganic Overcoat for Particulate Transport Electrode Grid”, the disclosures of each of which are totally incorporated herein by reference.




U.S. Pat. No. 5,834,080 (Mort et al.), the disclosure of which is totally incorporated herein by reference, discloses controllably conductive polymer compositions that may be used in electrophotographic imaging developing systems, such as scavengeless or hybrid scavengeless systems or liquid image development systems. The conductive polymer compositions includes a charge-transporting material (particularly a charge-transporting, thiophene-containing polymer or an inert elastomeric polymer, such as a butadiene- or isoprene-based copolymer or an aromatic polyether-based polyurethane elastomer, that additionally comprises charge transport molecules) and a dopant capable of accepting electrons from the charge-transporting material. The invention also relates to an electrophotographic printing machine, a developing apparatus, and a coated transport member, an intermediate transfer belt, and a hybrid compliant photoreceptor comprising a composition of the invention.




U.S. Pat. No. 5,853,906 (Hsieh), the disclosure of which is totally incorporated herein by reference, discloses a conductive coating comprising an oxidized oligomer salt, a charge transport component, and a polymer binder, for example, a conductive coating comprising an oxidized tetratolyidiamine salt of the formula











a charge transport component, and a polymer binder, wherein X





is a monovalent anion.




U.S. Pat. No. 5,457,001 (Van Ritter), the disclosure of which is totally incorporated herein by reference, discloses an electrically conductive toner powder, the separate particles of which contain thermoplastic resin, additives conventional in toner powders, such as coloring constituents and possibly magnetically attractable material, and an electrically conductive protonized polyaniline complex, the protonized polyaniline complex preferably having an electrical conductivity of at least 1 S/cm, the conductive complex being distributed over the volume of the toner particles or present in a polymer-matrix at the surface of the toner particles.




U.S. Pat. No. 5,202,211 (Vercoulen et al.), the disclosure of which is totally incorporated herein by reference, discloses a toner powder comprising toner particles which carry on their surface and/or in an edge zone close to the surface fine particles of electrically conductive material consisting of fluorine-doped tin oxide. The fluorine-doped tin oxide particles have a primary particle size of less than 0.2 micron and a specific electrical resistance of at most 50 ohms.meter. The fluorine content of the tin oxide is less than 10 percent by weight, and preferably is from 1 to 5 percent by weight.




U.S. Pat. No. 5,035,926 (Jonas et al.), the disclosure of which is totally incorporated herein by reference, discloses new polythiophenes containing structural units of the formula











in which A denotes an optionally substituted C


1


-C


4


alkylene radical, their preparation by oxidative polymerization of the corresponding thiophenes, and the use of the polythiophenes for imparting antistatic properties on substrates which only conduct electrical current poorly or not at all, in particular on plastic mouldings, and as electrode material for rechargeable batteries.




While known compositions and processes are suitable for their intended purposes, a need remains for improved marking processes. In addition, a need remains for improved electrostatic imaging processes. Further, a need remains for marking materials that can be charged inductively and used to develop electrostatic latent images. Additionally, a need remains for marking materials that can be used to develop electrostatic latent images without the need for triboelectric charging of the marking material with a carrier. There is also a need for marking materials that are sufficiently conductive to be employed in an inductive charging process without being magnetic. In addition, there is a need for conductive, nonmagnetic marking materials that enable controlled, stable, and predictable inductive charging. Further, there is a need for conductive, nonmagnetic, inductively chargeable marking materials that are available in a wide variety of colors. Additionally, there is a need for conductive, nonmagnetic, inductively chargeable marking materials that enable uniform development of electrostatic images. A need also remains for conductive, nonmagnetic, inductively chargeable marking materials that enable development of high quality full color and custom or highlight color images. In addition, a need remains for conductive, nonmagnetic, inductively chargeable marking materials that enable generation of transparent, light-transmissive color images. Further, a need remains for conductive, nonmagnetic, inductively chargeable marking materials that have relatively small average particle diameters (such as 10 microns or less). Additionally, a need remains for conductive, nonmagnetic, inductively chargeable marking materials that have relatively uniform size and narrow particle size distribution values. There is also a need for marking materials suitable for use in printing apparatus that employ electron beam imaging processes. In addition, there is a need for marking materials suitable for use in printing apparatus that employ single component development imaging processes. Further, there is a need for conductive, nonmagnetic, inductively chargeable marking materials with desirably low melting temperatures. Additionally, there is a need for conductive, nonmagnetic, inductively chargeable marking materials with tunable gloss properties, wherein the same monomers can be used to generate marking materials that have different melt and gloss characteristics by varying polymer characteristics such as molecular weight (M


w


, M


n


, M


WD


, or the like) or crosslinking. There is also a need for conductive, nonmagnetic, inductively chargeable marking materials that can be prepared by relatively simple and inexpensive methods. In addition, there is a need for conductive, nonmagnetic, inductively chargeable marking materials with desirable glass transition temperatures for enabling efficient transfer of the marking material from an intermediate transfer or transfuse member to a print substrate. Further, there is a need for conductive, nonmagnetic, inductively chargeable marking materials with desirable glass transition temperatures for enabling efficient transfer of the marking material from a heated intermediate transfer or transfuse member to a print substrate. Additionally, there is a need for conductive, nonmagnetic, inductively chargeable marking materials that exhibit good fusing performance. A need also remains for conductive, nonmagnetic, inductively chargeable marking materials that form images with low toner pile heights, even for full color superimposed images. In addition, a need remains for conductive, nonmagnetic, inductively chargeable marking materials wherein the marking material comprises a resin particle encapsulated with a conductive polymer, wherein the conductive polymer is chemically bound to the particle surface. Further, a need remains for conductive, nonmagnetic, inductively chargeable marking materials that comprise particles having tunable morphology in that the particle shape can be selected to be spherical, highly irregular, or the like. Additionally, a need remains for insulative, triboelectrically chargeable marking materials that are available in a wide variety of colors. There is also a need for insulative, triboelectrically chargeable marking materials that enable uniform development of electrostatic images. In addition, there is a need for insulative, triboelectrically chargeable marking materials that enable development of high quality full color and custom or highlight color images. Further, there is a need for insulative, triboelectrically chargeable marking materials that enable generation of transparent, light-transmissive color images. Additionally, there is a need for insulative, triboelectrically chargeable marking materials that have relatively small average particle diameters (such as 10 microns or less). A need also remains for insulative, triboelectrically chargeable marking materials that have relatively uniform size and narrow particle size distribution values. In addition, a need remains for insulative, triboelectrically chargeable marking materials with desirably low melting temperatures. Further, a need remains for insulative, triboelectrically chargeable marking materials with tunable gloss properties, wherein the same monomers can be used to generate marking materials that have different melt and gloss characteristics by varying polymer characteristics such as molecular weight (M


w


, M


n


, M


WD


, or the like) or crosslinking. Additionally, a need remains for insulative, triboelectrically chargeable marking materials that can be prepared by relatively simple and inexpensive methods. There is also a need for insulative, triboelectrically chargeable marking materials with desirable glass transition temperatures for enabling efficient transfer of the marking material from an intermediate transfer or transfuse member to a print substrate. In addition, there is a need for insulative, triboelectrically chargeable marking materials with desirable glass transition temperatures for enabling efficient transfer of the marking material from a heated intermediate transfer or transfuse member to a print substrate. Further, there is a need for insulative, triboelectrically chargeable marking materials that exhibit good fusing performance. Additionally, there is a need for insulative, triboelectrically chargeable marking materials that form images with low toner pile heights, even for full color superimposed images. A need also remains for insulative, triboelectrically chargeable marking materials wherein the marking material comprises a resin particle encapsulated with a polymer, wherein the polymer is chemically bound to the particle surface. In addition, a need remains for insulative, triboelectrically chargeable marking materials that comprise particles having tunable morphology in that the particle shape can be selected to be spherical, highly irregular, or the like. Further, a need remains for insulative, triboelectrically chargeable marking materials that can be made to charge either positively or negatively, as desired, without varying the resin or colorant comprising the toner particles. Additionally, a need remains for insulative, triboelectrically chargeable marking materials that can be made to charge either positively or negatively, as desired, without the need to use or vary surface additives. There is also a need for both conductive, inductively chargeable marking materials and insulative, triboelectrically chargeable marking materials that enable production of toners of different colors that can reach the same equilibrium levels of charge, and that enable modification of toner color without affecting the charge of the toner; the sets of different colored toners thus prepared enable generation of high quality and uniform color images in color imaging processes. In addition, there is a need for both conductive, inductively chargeable toners and insulative, triboelectrically chargeable toners that can be prepared to charge to a desired polarity, either negative or positive, without the need to modify the composition of the toner resin and without the need for surface additives. Further, there is a need for marking materials suitable for use in ballistic aerosol marking processes wherein the marking materials can achieve either a positive or a negative surface charge. Further, there is a need for ballistic aerosol marking materials and processes that enable the printing of very small pixels, enabling printing resolutions of 900 dots per inch or more. Additionally, there is a need for ballistic aerosol marking materials and processes in which the possibility of the marking material clogging the printing channels is reduced. There is also a need for ballistic aerosol marking processes wherein the marking material does not become undesirably charged. In addition, there is a need for ballistic aerosol marking processes wherein the marking material exhibits desirable flow properties. Further, there is a need for ballistic aerosol marking processes wherein the marking material contains particles of desirably small particle size and desirably narrow particle size distribution. Additionally, there is a need for ballistic aerosol marking processes wherein the marking material can obtain a low degree of surface charge without becoming so highly charged that the material becomes agglomerated or causes channel clogging. A need also remains for ballistic aerosol marking processes wherein the marking material is semi-conductive or conductive (as opposed to insulative) and capable of retaining electrostatic charge. In addition, a need remains for ballistic aerosol marking processes wherein the marking materials have sufficient conductivity to provide for inductive charging to enable toner transport and gating into the printing channels. Further, a need remains for ballistic aerosol marking processes wherein the marking materials can be selected to control the level of electrostatic charging and conductivity, thereby preventing charge build up in the BAM subsystems, controlling relative humidity, and maintaining excellent flow. Additionally, a need remains for ballistic aerosol marking processes wherein the marking materials have desirably low melting temperatures. There is also a need for ballistic aerosol marking processes wherein the marking materials have tunable melt and gloss properties, wherein the same monomers can be used to generate marking materials that have different melt and gloss characteristics by varying polymer characteristics such as molecular weight (M


w


, M


n


, M


WD


, or the like) or crosslinking. In addition, there is a need for ballistic aerosol marking processes wherein the marking materials have desirable glass transition temperatures for enabling efficient transfer of the marking material from an intermediate transfer or transfuse member to a print substrate. Further, there is a need for ballistic aerosol marking processes wherein the marking materials have desirable glass transition temperatures for enabling efficient transfer of the marking material from a heated intermediate transfer or transfuse member to a print substrate. Additionally, there is a need for ballistic aerosol marking processes wherein the marking materials have a wide range of colors with desirable color characteristics. A need also remains for ballistic aerosol marking processes wherein the marking materials exhibit good transparency characteristics. In addition, a need remains for ballistic aerosol marking processes wherein the marking materials exhibit good fusing performance. Further, a need remains for ballistic aerosol marking processes wherein the marking material forms images with low toner pile heights, even for full color superimposed images. Additionally, a need remains for ballistic aerosol marking processes wherein the marking material comprises a resin particle encapsulated with a conductive polymer, wherein the conductive polymer is chemically bound to the particle surface. There is also a need for ballistic aerosol marking processes wherein the marking material comprises particles that have tunable morphology in that the particle shape can be selected to be spherical, highly irregular, or the like.




SUMMARY OF THE INVENTION




The present invention is directed to a process which comprises (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic elevational view of an illustrative electrophotographic printing machine suitable for use with the present invention.





FIG. 2

is a schematic illustration of a development system suitable for use with the present invention.





FIG. 3

illustrates a monolayer of induction charged toner on a dielectric overcoated substrate.





FIG. 4

illustrates a monolayer of previously induction charged toner between donor and receiver dielectric overcoated substrates.





FIG. 5

is a schematic elevational view of an illustrative electrophotographic printing machine incorporating therein a nonmagnetic inductive charging development system for the printing of black and a custom color.





FIG. 6

is a schematic illustration of a ballistic aerosol marking system for marking a substrate according to the present invention.





FIG. 7

is cross sectional illustration of a ballistic aerosol marking apparatus according to one embodiment of the present invention.





FIG. 8

is another cross sectional illustration of a ballistic aerosol marking apparatus according to one embodiment of the present invention.





FIG. 9

is a plan view of one channel, with nozzle, of the ballistic aerosol marking apparatus shown in FIG.


8


.





FIGS. 10A through 10C

and


11


A through


11


C are end views, in the longitudinal direction, of several examples of channels for a ballistic aerosol marking apparatus.





FIG. 12

is another plan view of one channel of a ballistic aerosol marking apparatus, without a nozzle, according to the present invention.





FIGS. 13A through 13D

are end views, along the longitudinal axis, of several additional examples of channels for a ballistic aerosol marking apparatus.











DETAILED DESCRIPTION OF THE INVENTION




Marking materials of the present invention can be used in conventional electrostatic imaging processes, such as electrophotography, ionography, electrography, or the like. In some embodiments of these processes, the marking material can comprise toner particles that are relatively insulative for use with triboelectric charging processes, with average bulk conductivity values typically of no more than about 10


−12


Siemens per centimeter, and preferably no more than about 10


−13


Siemens per centimeter, and with conductivity values typically no less than about 10


−16


Siemens per centimeter, and preferably no less than about 10


−15


Siemens per centimeter, although the conductivity values can be outside of these ranges. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the particles, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, molar ratios of oxidant and dopant to thiophene or pyrrole monomer, temperature, and the like. These insulative toner particles are charged triboelectrically and used to develop the electrostatic latent image.




In embodiments of the present invention in which the marking particles are used in electrostatic imaging processes wherein the marking particles are triboelectrically charged, toners of the present invention can be employed alone in single component development processes, or they can be employed in combination with carrier particles in two component development processes. Any suitable carrier particles can be employed with the toner particles. Typical carrier particles include granular zircon, steel, nickel, iron ferrites, and the like. Other typical carrier particles include nickel berry carriers as disclosed in U.S. Pat. No. 3,847,604, the entire disclosure of which is incorporated herein by reference. These carriers comprise nodular carrier beads of nickel characterized by surfaces of reoccurring recesses and protrusions that provide the particles with a relatively large external area. The diameters of the carrier particles can vary, but are generally from about 30 microns to about 1,000 microns, thus allowing the particles to possess sufficient density and inertia to avoid adherence to the electrostatic images during the development process.




Carrier particles can possess coated surfaces. Typical coating materials include polymers and terpolymers, including, for example, fluoropolymers such as polyvinylidene fluorides as disclosed in U.S. Pat. No. 3,526,533, U.S. Pat. No. 3,849,186, and U.S. Pat. No. 3,942,979, the disclosures of each of which are totally incorporated herein by reference. Coating of the carrier particles may be by any suitable process, such as powder coating, wherein a dry powder of the coating material is applied to the surface of the carrier particle and fused to the core by means of heat, solution coating, wherein the coating material is dissolved in a solvent and the resulting solution is applied to the carrier surface by tumbling, or fluid bed coating, in which the carrier particles are blown into the air by means of an air stream, and an atomized solution comprising the coating material and a solvent is sprayed onto the airborne carrier particles repeatedly until the desired coating weight is achieved. Carrier coatings may be of any desired thickness or coating weight. Typically, the carrier coating is present in an amount of from about 0.1 to about 1 percent by weight of the uncoated carrier particle, although the coating weight may be outside this range.




In a two-component developer, the toner is present in the developer in any effective amount, typically from about 1 to about 10 percent by weight of the carrier, and preferably from about 3 to about 6 percent by weight of the carrier, although the amount can be outside these ranges.




Any suitable conventional electrophotographic development technique can be utilized to deposit toner particles of the present invention on an electrostatic latent image on an imaging member. Well known electrophotographic development techniques include magnetic brush development, cascade development, powder cloud development, and the like. Magnetic brush development is more fully described, for example, in U.S. Pat. No. 2,791,949, the disclosure of which is totally incorporated herein by reference; cascade development is more fully described, for example, in U.S. Pat. No. 2,618,551 and U.S. Pat. No. 2,618,552, the disclosures of each of which are totally incorporated herein by reference; powder cloud development is more fully described, for example, in U.S. Pat. No. 2,725,305, U.S. Pat. No. 2,918,910, and U.S. Pat. No. 3,015,305, the disclosures of each of which are totally incorporated herein by reference.




In other embodiments of the present invention wherein nonmagnetic inductive charging methods are employed, the marking material can comprise toner particles that are relatively conductive, with average bulk conductivity values typically of no less than about 10


−11


Siemens per centimeter, and preferably no less than about 10


−7


Siemens per centimeter, although the conductivity values can be outside of these ranges. There is no upper limit on conductivity for these embodiments of the present invention. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the particles, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, molar ratios of oxidant and dopant to thiophene or pyrrole monomer, temperature, and the like. These conductive toner particles are charged by a nonmagnetic inductive charging process and used to develop the electrostatic latent image.




While the present invention will be described in connection with a specific embodiment thereof, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.




Inasmuch as the art of electrophotographic printing is well known, the various processing stations employed in the printing machine of

FIG. 1

will be shown hereinafter schematically and their operation described briefly with reference thereto.




Referring initially to

FIG. 1

, there is shown an illustrative electrostatographic printing machine. The printing machine, in the shown embodiment an electrophotographic printer (although other printers are also suitable, such as ionographic printers and the like), incorporates a photoreceptor


10


, in the shown embodiment in the form of a belt (although other known configurations are also suitable, such as a roll, a drum, a sheet, or the like), having a photoconductive surface layer


12


deposited on a substrate. The substrate can be made from, for example, a polyester film such as MYLAR® that has been coated with a thin conductive layer which is electrically grounded. The belt is driven by means of motor


54


along a path defined by rollers


49


,


51


, and


52


, the direction of movement being counterclockwise as viewed and as shown by arrow


16


. Initially a portion of the belt


10


passes through a charge station A at which a corona generator


48


charges surface


12


to a relatively high, substantially uniform, potential. A high voltage power supply


50


is coupled to device


48


.




Next, the charged portion of photoconductive surface


12


is advanced through exposure station B. In the illustrated embodiment, at exposure station B, a Raster Output Scanner (ROS)


56


scans the photoconductive surface in a series of scan lines perpendicular to the process direction. Each scan line has a specified number of pixels per inch. The ROS includes a laser with a rotating polygon mirror to provide the scanning perpendicular to the process direction. The ROS imagewise exposes the charged photoconductive surface


12


. Other methods of exposure are also suitable, such as light lens exposure of an original document or the like.




After the electrostatic latent image has been recorded on photoconductive surface


12


, belt


10


advances the latent electrostatic image to development station C as shown in FIG.


1


. At development station C, a development system or developer unit


44


develops the latent image recorded on the photoconductive surface. The chamber in the developer housing stores a supply of developer material. In embodiments of the present invention in which the developer material comprises insulative toner particles that are triboelectrically charged, either two component development, in which the developer comprises toner particles and carrier particles, or single component development, in which only toner particles are used, can be selected for developer unit


44


. In embodiments of the present invention in which the developer material comprises conductive or semiconductive toner particles that are inductively charged, the developer material is a single component developer consisting of nonmagnetic, conductive toner that is induction charged on a dielectric overcoated donor roll prior to the development zone. The developer material may be a custom color consisting of two or more different colored dry powder toners.




Again referring to

FIG. 1

, after the electrostatic latent image has been developed, belt


10


advances the developed image to transfer station D. Transfer can be directly from the imaging member to a receiving sheet or substrate, such as paper, transparency, or the like, or can be from the imaging member to an intermediate and subsequently from the intermediate to the receiving sheet or substrate. In the illustrated embodiment, at transfer station D, the developed image


4


is tack transferred to a heated transfuse belt or roll


100


. The covering on the compliant belt or drum typically consists of a thick (1.3 millimeter) soft (IRHD hardness of about 40) silicone rubber. (Thinner and harder rubbers provide tradeoffs in latitudes. The rubber can also have a thin VITON® top coat for improved reliability.) If the transfuse belt or roll is maintained at a temperature near 120° C., tack transfer of the toner from the photoreceptor to the transfuse belt or drum can be obtained with a nip pressure of about 50 pounds per square inch. As the toned image advances from the photoreceptor-transfuse belt nip to the transfuse belt-medium transfuse nip formed between transfuse belt


100


and roller


68


, the toner is softened by the ˜120° C. transfuse belt temperature. With the receiving sheet


64


preheated to about 85° C. in guides


66


by a heater


200


, as receiving sheet


64


is advanced by roll


62


and guides


66


into contact with the developed image on roll


100


, transfuse of the image to the receiving sheet is obtained with a nip pressure of about 100 pounds per square inch. It should be noted that the toner release from the roll


100


can be aided by a small amount of silicone oil that is imbibed in the roll for toner release at the toner/roll interface. The bulk of the compliant silicone material also contains a conductive carbon black to dissipate any charge accumulation. As noted in

FIG. 1

, a cleaner


210


for the transfuse belt material is provided to remove residual toner and fiber debris. An optional glossing station (not shown) can be employed by the customer to select a desired image gloss level.




After the developed image has been transferred from photoconductive surface


12


of belt


10


, the residual developer material adhering to photoconductive surface


12


is removed therefrom by a rotating fibrous brush


78


at cleaning station E in contact with photoconductive surface


12


. Subsequent to cleaning, a discharge lamp (not shown) floods photoconductive surface


12


with light to dissipate any residual electrostatic charge remaining thereon prior to the charging thereof for the next successive imaging cycle.




Referring now to

FIG. 2

, which illustrates a specific embodiment of the present invention in which the toner in housing


44


is inductively charged, as the donor


42


rotates in the direction of arrow


69


, a voltage DC


D




300


is applied to the donor roll to transfer electrostatically the desired polarity of toner to the belt


10


while at the same time preventing toner transfer in the nonimage areas of the imaged belt


10


. Donor roll


42


is mounted, at least partially, in the chamber of developer housing


44


containing nonmagnetic conductive toner. The chamber in developer housing


44


stores a supply of the toner that is in contact with donor roll


42


. Donor roll


42


can be, for example, a conductive aluminum core overcoated with a thin (50 micron) dielectric insulating layer. A voltage DC


L




302


applied between the developer housing


44


and the donor roll


42


causes induction charging and loading of the nonmagnetic conductive toner onto the dielectric overcoated donor roll.




As successive electrostatic latent images are developed, the toner particles within the developer housing


44


are depleted. A toner dispenser (not shown) stores a supply of toner particles. The toner dispenser is in communication with housing


44


. As the level of toner particles in the chamber is decreased, fresh toner particles are furnished from the toner dispenser.




The maximum loading of induction charged, conductive toner onto the dielectric overcoated donor roll


42


is preferably limited to approximately a monolayer of toner. For a voltage DC


L




302


greater than approximately 100 volts, the monolayer loading is essentially independent of bias level. The charge induced on the toner monolayer, however, is proportional to the voltage DC


L




302


. Accordingly, the charge-to-mass ratio of the toner loaded on donor roll


42


can be controlled according to the voltage DC


L




302


. As an example, if a DC


L


voltage of −200 volts is applied to load conductive toner onto donor roll


42


with a dielectric overcoating thickness of 25 microns, the toner charge-to-mass ratio is −17 microCoulombs per gram.




As the toned donor rotates in the direction indicated by arrow


69


in

FIG. 2

, it is desirable to condition the toner layer on the donor roll


42


before the development zone


310


. The objective of the toner layer conditioning device is to remove any toner in excess of a monolayer. Without the toner layer conditioning device, toner-toner contacts in the development zone can cause wrong-sign toner generation and deposition in the nonimage areas. A toner layer conditioning device


400


is illustrated in FIG.


2


. This particular example uses a compliant overcoated roll that is biased at a voltage DC


C




304


. The overcoating material is charge relaxable to enable dissipation of any charge accumulation. The voltage DC


C




304


is set at a higher magnitude than the voltage DC


L




302


. For synchronous contact between the donor roll


42


and conditioning roll


400


under the bias voltage conditions, any toner on donor roll


42


that is on top of toner in the layer is induction charged with opposite polarity and deposited on the roll


400


. A doctor blade on conditioning roll


400


continually removes the deposited toner.




As donor


42


is rotated further in the direction indicated by arrow


69


, the now induction charged and conditioned toner layer is moved into development zone


310


, defined by a synchronous contact between donor


42


and the photoreceptor belt


10


. In the image areas, the toner layer on the donor roll is developed onto the photoreceptor by electric fields created by the latent image. In the nonimage areas, the electric fields prevent toner deposition. Since the adhesion of induction charged, conductive toner is typically less than that of triboelectrically charged toner, only DC electric fields are required to develop the latent electrostatic image in the development zone. The DC field is provided by both the DC voltages DC


D




300


and DC


L




302


, and the electrostatic potentials of the latent image on photoconductor


10


.




Since the donor roll


42


is overcoated with a highly insulative material, undesired charge can accumulate on the overcoating surface over extended development system operation. To eliminate any charge accumulation, a charge neutralizing device may be employed. One example of such device is illustrated in

FIG. 2

whereby a rotating electrostatic brush


315


is brought into contact with the toned donor roll. The voltage on the brush


315


is set at or near the voltage applied to the core of donor roll


42


.




An advantageous feature of nonmagnetic inductive charging is that the precharging of conductive, nonmagnetic toner prior to the development zone enables the application of an electrostatic force in the development zone for the prevention of background toner and the deposition of toner in the image areas. Background control and image development with an induction charged, nonmagnetic toner employs a process for forming a monolayer of toner that is brought into contact with an electrostatic image. Monolayer toner coverage is sufficient in providing adequate image optical density if the coverage is uniform. Monolayer coverage with small toner enables thin images desired for high image quality.




To understand how toner charge is controlled with nonmagnetic inductive charging,

FIG. 3

illustrates a monolayer of induction charged toner on a dielectric overcoated substrate


42


. The monolayer of toner is deposited on the substrate when a voltage V


A


is applied to conductive toner. The average charge density on the monolayer of induction charged toner is given by the formula









σ
=



V
A



ε
0



(



T
d

/

κ
d


+

0.32






R
p



)






(
1
)













where T


d


is the thickness of the dielectric layer, κ


d


is the dielectric constant, R


p


is the particle radius, and ε


o


is the permittivity of free space. The 0.32 R


p


term (obtained from empirical studies) describes the average dielectric thickness of the air space between the monolayer of conductive particles and the insulative layer.




For a 25 micron thick dielectric layer (κ


d


=3.2), toner radius of 6.5 microns, and applied voltage of −200 volts, the calculated surface charge density is −18 nC/cm


2


. Since the toner mass density for a square lattice of 13 micron nonmagnetic toner is about 0.75 mg/cm


2


, the toner charge-to-mass ratio is about −17 microCoulombs per gram. Since the toner charge level is controlled by the induction charging voltage and the thickness of the dielectric layer, one can expect that the toner charging will not depend on other factors such as the toner pigment, flow additives, relative humidity, or the like.




With an induction charged layer of toner formed on a donor roll or belt, the charged layer can be brought into contact with an electrostatic image on a dielectric receiver.

FIG. 4

illustrates an idealized situation wherein a monolayer of previously induction charged conductive spheres is sandwiched between donor


42


and receiver dielectric materials


10


.




The force per unit area acting on induction charged toner in the presence of an applied field from a voltage difference, V


o


, between the donor and receiver conductive substrates is given by the equation










F
/
A

=







-


σ
2


2


ε
0






(




T
r

/

κ
r


+

T
a
r

-


T
d

/

κ
d


-

T
a
d





T
r

/

κ
r


+


T
d

/

κ
d


+

T
a
r

+

T
a
d



)


+














σ






V
0





T
r

/

κ
r


+


T
d

/

κ
d


+

T
a
r

+

T
a
d



-

(


F
sr
d

-

F
sr
r


)















where σ is the average charge density on the monolayer of induction charged toner (described by Equation 1), T


r





r


and T


d





d


are the dielectric thicknesses of the receiver and donor, respectively, T


r




a


and T


d




a


are the average thicknesses of the receiver and donor air gaps, respectively, V


o


is the applied potential, T


o


=0.32 R


p


where R


p


is the particle radius, ε


o


is the permittivity of free space, and F


r




sr


and F


d




sr


are the short-range force per unit area at the receiver and donor interfaces, respectively. The first term, because of an electrostatic image force from neighboring particles, becomes zero when the dielectric thicknesses of the receiver and its air gap are equal to the dielectric thicknesses of the donor and its air gap. Under these conditions, the threshold applied voltage for transferring toner to the receiver should be zero if the difference in the receiver and donor short-range forces is negligible. One expects, however, a distribution in the short-range forces.




To illustrate the functionality of the nonmagnetic inductive charging device, the developer system of

FIG. 2

was tested under the following conditions. A sump of toner (conducting toner of 13 micron volume average particle size) biased at a potential of −200 volts was placed in contact with a 25 micron thick MYLAR® (grounded aluminum on backside) donor belt moving at a speed of 4.2 inches per second. To condition the toner layer and to remove any loosely adhering toner, a 25 micron thick MYLAR® covered aluminum roll was biased at a potential of −300 volts and contacted with the toned donor belt at substantially the same speed as the donor belt. This step was repeated a second time. The conditioned toner layer was then contacted to an electrostatic image moving at substantially the same speed as the toned donor belt. The electrostatic image had a potential of −650 volts in the nonimage areas and −200 volts in the image areas. A DC potential of +400 volts was applied to the substrate of electrostatic image bearing member during synchronous contact development. A toned image with adequate optical density and low background was observed.




Nonmagnetic inductive charging systems based on induction charging of conductive toner prior to the development zone offer a number of advantages compared to electrophotographic development systems based on triboelectric charging of insulative toner. The toner charging depends only on the induction charging bias, provided that the toner conductivity is sufficiently high. Thus, the charging is insensitive to toner materials such as pigment and resin. Furthermore, the performance should not depend on environmental conditions such as relative humidity.




Nonmagnetic inductive charging systems can also be used in electrographic printing systems for printing black plus one or several separate custom colors with a wide color gamut obtained by blending multiple conductive, nonmagnetic color toners in a single component development system. The induction charging of conductive toner blends is generally pigment-independent. Each electrostatic image is formed with either ion or Electron Beam Imaging (EBI) and developed on separate electroreceptors. The images are tack transferred image-next-to-image onto a transfuse belt or drum for subsequent heat and pressure transfuse to a wide variety of media. The custom color toners, including metallics, are obtained by blending different combinations and percentages of toners from a set of nine primary toners plus transparent and black toners to control the lightness or darkness of the custom color. The blending of the toners can be done either outside of the electrophotographic printing system or within the system, in which situation the different proportions of color toners are directly added to the in-situ toner dispenser.





FIG. 5

illustrates the components and architecture of such a system for custom color printing.

FIG. 5

illustrates two electroreceptor modules, although it is understood that additional modules can be included for the printing of multiple custom colors on a document. For discussion purposes, it is assumed that the second module


2


prints black toner. The electroreceptor module


2


uses a nonmagnetic, conductive toner single component development (SCD) system that has been described in

FIG. 2. A

conventional SCD system, however, that uses magnetic, conductive toner that is induction charged by the electrostatic image on the electroreceptor can also be used to print the black toner.




For the electroreceptor module


1


for the printing of custom color, an electrostatic image is formed on an electroreceptor drum


505


with either ion or Electron Beam Imaging device


510


as taught in U.S. Pat. No. 5,039,598, the disclosure of which is totally incorporated herein by reference. The nonmagnetic, single component development system contains a blend of nonmagnetic, conductive toners to produce a desired custom color. An insulative overcoated donor


42


is loaded with the induction charged blend of toners. A toner layer conditioning station


400


helps to ensure a monolayer of induction charged toner on the donor. (Monolayer toner coverage is sufficient to provide adequate image optical density if the coverage is uniform. Monolayer coverage with small toner particles enables thin images desired for high image quality.) The monolayer of induction charged toner on the donor is brought into synchronous contact with the imaged electroreceptor


505


. (The development system assembly can be cammed in and out so that it is only in contact with warmer electroreceptor during copying/printing.) The precharged toner enables the application of an electrostatic force in the development zone for the prevention of background toner and the deposition of toner in the image areas. The toned image on the electroreceptor is tack transferred to the heated transfuse member


100


which can be a belt or drum. The covering on the compliant transfuse belt or drum typically consists of a thick (1.3 millimeter) soft (IRHD hardness of about 40) silicone rubber. Thinner and harder rubbers can provide tradeoffs in latitudes. The rubber can also have a thin VITON® top coat for improved reliability. If the transfuse belt/drum is maintained at a temperature near 120° C., tack transfer of the toner from the electroreceptor to the transfuse belt/drum can be obtained with a nip pressure of about 50 psi. As the toned image advances from the electroreceptor-transfuse drum nip for each module to the transfuse drum-medium transfuse nip, the toner is softened by the about 120° C. transfuse belt temperature. With the medium


64


(paper for purposes of this illustrative discussion although others can also be used) preheated by heater


200


to about 85° C., transfuse of the image to the medium is obtained with a nip pressure of about 100 psi. The toner release from the silicone belt can be aided by a small amount of silicone oil that is imbibed in the belt for toner release at the toner/belt interface. The bulk of the compliant silicone material also contains a conductive carbon black to dissipate any charge accumulation. As noted in

FIG. 5

, a cleaner


210


for the transfuse drum material is provided to remove residual toner and fiber debris. An optional glossing station


610


enables the customer to select a desired image gloss level. The electroreceptor cleaner


514


and erase bar


512


are provided to prepare for the next imaging cycle.




The illustrated black plus custom color(s) printing system enables improved image quality through the use of smaller toners (3 to 10 microns), such as toners prepared by an emulsion aggregation process.




The SCD system for module


1


shown in

FIG. 5

inherently can have a small sump of toner, which is advantageous in switching the custom color to be used in the SCD system. The bulk of the blended toner can be returned to a supply bottle of the particular blend. The residual toner in the housing can be removed by vacuuming


700


. SCD systems are advantaged compared to two-component developer systems, since in two-component systems the toner must be separated from the carrier beads if the same beads are to be used for the new custom color blend.




A particular custom color can be produced by offline equipment that blends a number of toners selected from a set of nine primary color toners (plus transparent and black toners) that enable a wide custom color gamut, such as PANTONE® colors. A process for selecting proportional amounts of the primary toners for in-situ addition to a SCD housing can be provided by dispenser


600


. The color is controlled by the relative weights of primaries. The P


1


. . . P


N


primaries can be selected to dispense toner into a toner bottle for feeding toner to a SCD housing in the machine, or to dispense directly to the sump of the SCD system on a periodic basis according to the amount needed based on the run length and area coverage. The dispensed toners are tumbled/agitated to blend the primary toners prior to use. In addition to the nine primary color toners for formulating a wide color gamut, one can also use metallic toners (which tend to be conducting and therefore compatible with the SCD process) which are desired for greeting, invitation, and name card applications. Custom color blends of toner can be made in an offline (paint shop) batch process; one can also arrange to have a set of primary color toners continuously feeding a sump of toner within (in-situ) the printer, which enables a dial-a-color system provided that an in-situ toner waste system is provided for color switching.




The deposited toner image can be transferred to a receiving member such as paper or transparency material by any suitable technique conventionally used in electrophotography, such as corona transfer, pressure transfer, adhesive transfer, bias roll transfer, and the like. Typical corona transfer entails contacting the deposited toner particles with a sheet of paper and applying an electrostatic charge on the side of the sheet opposite to the toner particles. A single wire corotron having applied thereto a potential of between about 5000 and about 8000 volts provides satisfactory transfer. The developed toner image can also first be transferred to an intermediate transfer member, followed by transfer from the intermediate transfer member to the receiving member.




After transfer, the transferred toner image can be fixed to the receiving sheet. The fixing step can be also identical to that conventionally used in electrophotographic imaging. Typical, well known electrophotographic fusing techniques include heated roll fusing, flash fusing, oven fusing, laminating, adhesive spray fixing, and the like. Transfix or transfuse methods can also be employed, in which the developed image is transferred to an intermediate member and the image is then simultaneously transferred from the intermediate member and fixed or fused to the receiving member.




The marking materials of the present invention are also suitable for use in ballistic aerosol marking processes. In the following detailed description, numeric ranges are provided for various aspects of the embodiments described, such as pressures, velocities, widths, lengths, and the like. These recited ranges are to be treated as examples only, and are not intended to limit the scope of the claims hereof. In addition, a number of materials are identified as suitable for various aspects of the embodiments, such as for marking materials, propellants, body structures, and the like. These recited materials are also to be treated as exemplary, and are not intended to limit the scope of the claims hereof.




With reference now to

FIG. 6

, shown therein is a schematic illustration of a ballistic aerosol marking device


110


according to one embodiment of the present invention. As shown therein, device


110


comprises one or more ejectors


112


to which a propellant


114


is fed. A marking material


116


, which can be transported by a transport


118


under the command of control


120


, is introduced into ejector


112


. (Optional elements are indicated by dashed lines.) The marking material is metered (that is controllably introduced) into the ejector by metering device


121


, under command of control


122


. The marking material ejected by ejector


112


can be subject to post-ejection modification


123


, optionally also part of device


110


. Each of these elements will be described in further detail below. It will be appreciated that device


110


can form a part of a printer, for example of the type commonly attached to a computer network, personal computer or the like, part of a facsimile machine, part of a document duplicator, part of a labelling apparatus, or part of any other of a wide variety of marking devices.




The embodiment illustrated in

FIG. 6

can be realized by a ballistic aerosol marking device


124


of the type shown in the cut-away side view of FIG.


7


. According to this embodiment, the materials to be deposited will be four colored marking materials, for example cyan (C), magenta (M), yellow (Y), and black (K), of a type described further herein, which can be deposited concomitantly, either mixed or unmixed, successively, or otherwise. While the illustration of FIG.


7


and the associated description contemplates a device for marking with four colors (either one color at a time or in mixtures thereof), a device for marking with a fewer or a greater number of colors, or other or additional materials, such as materials creating a surface for adhering marking material particles (or other substrate surface pre-treatment), a desired substrate finish quality (such as a matte, satin or gloss finish or other substrate surface posttreatment), material not visible to the unaided eye (such as magnetic particles, ultra violet-fluorescent particles, and the like) or other material associated with a marked substrate, is clearly contemplated herein.




Device


124


comprises a body


126


within which is formed a plurality of cavities


128


C,


128


M,


128


Y, and


128


K (collectively referred to as cavities


128


) for receiving materials to be deposited. Also formed in body


126


can be a propellant cavity


130


. A fitting


132


can be provided for connecting propellant cavity


130


to a propellant source


133


such as a compressor, a propellant reservoir, or the like. Body


126


can be connected to a print head


134


, comprising, among other layers, substrate


136


and channel layer


137


.




With reference now to

FIG. 8

, shown therein is a cut-away cross section of a portion of device


124


. Each of cavities


128


include a port


142


C,


142


M,


142


Y, and


142


K (collectively referred to as ports


142


) respectively, of circular, oval, rectangular, or other cross-section, providing communication between said cavities, and a channel


146


which adjoins body


126


. Ports


142


are shown having a longitudinal axis roughly perpendicular to the longitudinal axis of channel


146


. The angle between the longitudinal axes of ports


142


and channel


146


, however, can be other than 90 degrees, as appropriate for the particular application of the present invention.




Likewise, propellant cavity


130


includes a port


144


, of circular, oval, rectangular, or other cross-section, between said cavity and channel


146


through which propellant can travel. Alternatively, print head


134


can be provided with a port


144


′ in substrate


136


or port


144


″ in channel layer


137


, or combinations thereof, for the introduction of propellant into channel


146


. As will be described further below, marking material is caused to flow out from cavities


128


through ports


142


and into a stream of propellant flowing through channel


146


. The marking material and propellant are directed in the direction of arrow AA toward a substrate


138


, for example paper, supported by a platen


140


, as shown in FIG.


7


. It has been demonstrated that a propellant marking material flow pattern from a print head employing a number of the features described herein can remain relatively collimated for a distance of up to 10 millimeters, with an optimal printing spacing on the order of between one and several millimeters. For example, the print head can produce a marking material stream which does not deviate by more than about 20 percent, and preferably by not more than about 10 percent, from the width of the exit orifice for a distance of at least 4 times the exit orifice width. The appropriate spacing between the print head and the substrate, however, is a function of many parameters, and does not itself form a part of the present invention. In one preferred embodiment, the kinetic energy of the particles, which are moving at very high velocities toward the substrate, is converted to thermal energy upon impact of the particles on the substrate, thereby fixing or fusing the particles to the substrate. In this embodiment, the glass transition temperature of the resin in the particles is selected so that the thermal energy generated by impact with the substrate is sufficient to fuse the particles to the substrate; this process is called kinetic fusing.




According to one embodiment of the present invention, print head


134


comprises a substrate


136


and channel layer


137


in which is formed channel


146


. Additional layers, such as an insulating layer, capping layer, or the like (not shown) can also form a part of print head


134


. Substrate


136


is formed of a suitable material such as glass, ceramic, or the like, on which (directly or indirectly) is formed a relatively thick material, such as a thick permanent photoresist (for example, a liquid photosensitive epoxy such as SU-8, commercially available from Microlithography Chemicals, Inc.; see also U.S. Pat. No. 4,882,245, the disclosure of which is totally incorporated herein by reference) and/or a dry film-based photoresist such as the Riston photopolymer resist series, commercially available from DuPont Printed Circuit Materials, Research Triangle Park, N.C. which can be etched, machined, or otherwise in which can be formed a channel with features described below.




Referring now to

FIG. 9

, which is a cut-away plan view of print head


134


, in one embodiment channel


146


is formed to have at a first, proximal end a propellant receiving region


147


, an adjacent converging region


148


, a diverging region


150


, and a marking material injection region


152


. The point of transition between the converging region


148


and diverging region


150


is referred to as throat


153


, and the converging region


148


, diverging region


150


, and throat


153


are collectively referred to as a nozzle. The general shape of such a channel is sometimes referred to as a de Laval expansion pipe or a venturi convergence/divergence structure. An exit orifice


156


is located at the distal end of channel


146


.




In the embodiment of the present invention shown in

FIGS. 8 and 9

, region


148


converges in the plane of

FIG. 9

, but not in the plane of

FIG. 8

, and likewise region


150


diverges in the plane of

FIG. 9

, but not in the plane of FIG.


8


. Typically, this divergence determines the cross-sectional shape of the exit orifice


156


. For example, the shape of orifice


156


illustrated in

FIG. 10A

corresponds to the device shown in

FIGS. 8 and 9

. However, the channel can be fabricated such that these regions converge/diverge in the plane of

FIG. 8

, but not in the plane of

FIG. 9

(illustrated in FIG.


10


B), or in both the planes of

FIGS. 8 and 9

(illustrated in FIG.


10


C), or in some other plane or set of planes, or in all planes (examples illustrated in

FIGS. 11A-11C

) as can be determined by the manufacture and application of the present invention.




In another embodiment, shown in

FIG. 12

, channel


146


is not provided with a converging and diverging region, but rather has a uniform cross section along its axis. This cross section can be rectangular or square (illustrated in FIG.


13


A), oval or circular (illustrated in FIG.


13


B), or other cross section (examples are illustrated in FIGS.


13


C-


13


D), as can be determined by the manufacture and application of the present invention.




Any of the aforementioned channel configurations or cross sections are suitable for the present invention. The de Laval or venturi configuration is, however, preferred because it minimizes spreading of the collimated stream of marking particles exiting the channel.




Referring again to

FIG. 8

, propellant enters channel


146


through port


144


, from propellant cavity


130


, roughly perpendicular to the long axis of channel


146


. According to another embodiment, the propellant enters the channel parallel (or at some other angle) to the long axis of channel


146


by, for example, ports


144


′ or


144


″ or other manner not shown. The propellant can flow continuously through the channel while the marking apparatus is in an operative configuration (for example, a “power on” or similar state ready to mark), or can be modulated such that propellant passes through the channel only when marking material is to be ejected, as dictated by the particular application of the present invention. Such propellant modulation can be accomplished by a valve


131


interposed between the propellant source


133


and the channel


146


, by modulating the generation of the propellant for example by turning on and off a compressor or selectively initiating a chemical reaction designed to generate propellant, or the like.




Marking material can controllably enter the channel through one or more ports


142


located in the marking material injection region


152


. That is, during use, the amount of marking material introduced into the propellant stream can be controlled from zero to a maximum per spot. The propellant and marking material travel from the proximal end to a distal end of channel


146


at which is located exit orifice


156


.




According to one embodiment for metering the marking material, the marking material includes material which can be imparted with an electrostatic charge. For example, the marking material can comprise a pigment suspended in a binder together with charge directors. The charge directors can be charged, for example by way of a corona


166


C,


166


M,


166


Y, and


166


K (collectively referred to as coronas


166


), located in cavities


128


, shown in FIG.


8


. Another option is initially to charge the propellant gas, for example, by way of a corona


145


in cavity


130


(or some other appropriate location such as port


144


or the like.) The charged propellant can be made to enter into cavities


128


through ports


142


, for the dual purposes of creating a fluidized bed


186


C,


186


M,


186


Y, and


186


K (collectively referred to as fluidized bed


186


), and imparting a charge to the marking material. Other options include tribocharging, by other means external to cavities


128


, or other mechanism.




Formed at one surface of channel


146


, opposite each of the ports


142


are electrodes


154


C,


154


M,


154


Y, and


154


K (collectively referred to as electrodes


154


). Formed within cavities


128


(or some other location such as at or within ports


144


) are corresponding counter-electrodes


155


C,


155


M,


155


Y, and


155


K (collectively referred to as counter-electrodes


155


). When an electric field is generated by electrodes


154


and counter-electrodes


155


, the charged marking material can be attracted to the field, and exits cavities


128


through ports


142


in a direction roughly perpendicular to the propellant stream in channel


146


. Alternatively, when an electric field is generated by electrodes


154


and counter-electrodes


155


, a charge can be induced on the marking material, provided that the marking material has sufficient conductivity, and can be attracted to the field, and exits cavities


128


through ports


142


in a direction roughly perpendicular to the propellant stream in channel


146


. In either embodiment, the shape and location of the electrodes and the charge applied thereto determine the strength of the electric field, and accordingly determine the force of the injection of the marking material into the propellant stream. In general, the force injecting the marking material into the propellant stream is chosen such that the momentum provided by the force of the propellant stream on the marking material overcomes the injecting force, and once into the propellant stream in channel


146


, the marking material travels with the propellant stream out of exit orifice


156


in a direction towards the substrate.




In the event that fusing assistance is required (for example, when an elastic substrate is used, when the marking material particle velocity is low, or the like), a number of approaches can be employed. For example, one or more heated filaments


1122


can be provided proximate the ejection port


156


(shown in FIG.


9


), which either reduces the kinetic energy needed to melt the marking material particle or in fact at least partly melts the marking material particle in flight. Alternatively, or in addition to filament


1122


, a heated filament


1124


can be located proximate substrate


138


(also shown in

FIG. 9

) to have a similar effect.




While

FIGS. 9

to


13


illustrate a print head


134


having one channel therein, it will be appreciated that a print head according to the present invention can have an arbitrary number of channels, and range from several hundred micrometers across with one or several channels, to a page-width (for example, 8.5 or more inches across) with thousands of channels. The width of each exit orifice


156


can be on the order of 250 μm or smaller, preferably in the range of 100 μm or smaller. The pitch, or spacing from edge to edge (or center to center) between adjacent exit orifices


156


can also be on the order of 250 μm or smaller, preferably in the range of 100 μm or smaller in non-staggered array. In a two-dimensionally staggered array, the pitch can be further reduced.




In some embodiments, the resin is selected so that the resin glass transition temperature is such as to enable kinetic fusing. If the velocity of the toner particles upon impact with the substrate is known, the value of the T


g


required to enable kinetic fusing can be calculated as follows:




The critical impact velocity v


c


required to melt the toner particle kinetically is estimated for a collision with an infinitely stiff substrate. The kinetic energy E


k


of a spherical particle with velocity v, density ρ, and diameter d is:







E
k

=


π
·
ρ
·

d
3

·

v
2


12











The energy E


m


required to heat a spherical particle with diameter d, heat capacity C


p


, and density ρ from room temperature T


0


to beyond its glass transition temperature T


g


is:







E
m

=


π
·
ρ
·

d
3

·

C
p

·

(


T
g

-

T
0


)


6











The energy E


p


required to deform a particle with diameter d and Young's modulus E beyond its elasticity limit σ


e


and into the plastic deformation regime is:







E
p

=



d
3

·

σ
e
2



2

E












For kinetic fusing (melting the particle by plastic deformation from the collision with an infinitely stiff substrate), the kinetic energy of the incoming particle should be large enough to bring the particle beyond its elasticity limit. In addition, if the particle is taken beyond its elasticity limit, kinetic energy is transformed into heat through plastic deformation of the particle. If it is assumed that all kinetic energy is transformed into heat, the particle will melt if the kinetic energy (E


k


) is larger than the heat required to bring the particle beyond its glass transition temperature (E


m


). The critical velocity for obtaining plastic deformation (v


cp


) can be calculated by equating E


k


to E


p


:







v
cp

=



6

πρ





E



·

σ
e












Note that this expression is independent of particle size. Some numerical examples (Source: CRC Handbook) include:






















Material




E (Pa)




ρ (kg/m


3


)




σ


e


(Pa)




v


cp


(m/s)






























Steel




200E9




 8,000




700E6




25







Polyethylene




140E6




  900




 7E6




28







Neoprene




 3E6




 1,250




 20E6




450







Lead




 13E9




11,300




 14E6




1.6















Most thermoplastic materials (such as polyethylene) require an impact velocity on the order of a few tens of meters per second to achieve plastic deformation from the collision with an infinitely stiff wall. Velocities on the order of several hundred of meters per second are achieved in ballistic aerosol marking processes. The critical velocity for kinetic melt (v


cm


) can be calculated by equating E


k


to E


m


:






V


cm


={square root over (2+L .C


p


+L .(T


g


+L −T


0


+L ))}






Note that this expression is independent of particle size and density. For example, for a thermoplastic material with C


p


=1000 J/kg.K and T


g




=60° C., T




0


=20° C., the critical velocity V


cm


to achieve kinetic melt is equal to 280 meters per second, which is in the order of magnitude of the ballistic aerosol velocities (typically from about 300 to about 350 meters per second).




In embodiments of the present invention wherein the toner particles prepared by the process of the present invention are used in ballistic aerosol marking processes, the toner particles have average bulk conductivity values typically of no more than about 10 Siemens per centimeter, and preferably no more than about 10


−7


Siemens per centimeter, and with conductivity values typically no less than about 10


−11


Siemens per centimeter, although the conductivity values can be outside of these ranges. “Average bulk conductivity” refers to the ability for electrical charge to pass through a pellet of the metal oxide particles having a surface coating of hydrophobic material, measured when the pellet is placed between two electrodes. The particle conductivity can be adjusted by various synthetic parameters of the polymerization; reaction time, molar ratios of oxidant and dopant to thiophene or pyrrole monomer, temperature, and the like.




The marking materials of the present invention comprise toner particles typically having an average particle diameter of no more than about 17 microns, preferably no more than about 15 microns, and more preferably no more than about 14 microns, although the particle size can be outside of these ranges, and typically have a particle size distribution of GSD equal to no more than about 1.45, preferably no more than about 1.38, and more preferably no more than about 1.35, although the particle size distribution can be outside of these ranges. When the toner particles are made by an emulsion aggregation process, the toners of the present invention comprise particles typically having an average particle diameter of no more than about 13 microns, preferably no more than about 12 microns, more preferably no more than about 10 microns, and even more preferably no more than about 7 microns, although the particle size can be outside of these ranges, and typically have a particle size distribution of GSD equal to no more than about 1.25, preferably no more than about 1.23, and more preferably no more than about 1.20, although the particle size distribution can be outside of these ranges. In some embodiments, larger particles can be preferred even for those toners made by emulsion aggregation processes, such as particles of between about 7 and about 13 microns, because in these instances the toner particle surface area is relatively less with respect to particle mass and accordingly a lower amount by weight of conductive polymer with respect to toner particle mass can be used to obtain the desired particle conductivity or charging, resulting in a thinner shell of the conductive polymer and thus a reduced effect on the color of the toner. The toner particles comprise a resin and an optional colorant, said toner particles having coated thereon a polythiophene, a polypyrrole, a poly-co-thiophene/pyrrole, or mixtures thereof.




The toner particles of the present invention comprise a resin and an optional colorant. Typical toner resins include polyesters, such as those disclosed in U.S. Pat. No. 3,590,000, the disclosure of which is totally incorporated herein by reference, polyamides, epoxies, polyurethanes, diolefins, vinyl resins, and polymeric esterification products of a dicarboxylic acid and a diol comprising a diphenol. Examples of vinyl monomers include styrene, p-chlorostyrene, vinyl naphthalene, unsaturated mono-olefins such as ethylene, propylene, butylene, isobutylene, and the like; vinyl halides such as vinyl chloride, vinyl bromide, vinyl fluoride, vinyl acetate, vinyl propionate, vinyl benzoate, and vinyl butyrate; vinyl esters such as esters of monocarboxylic acids, including methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methylalpha-chloroacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like; acrylonitrile, methacrylonitrile, acrylamide, vinyl ethers, including vinyl methyl ether, vinyl isobutyl ether, and vinyl ethyl ether; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, and methyl isopropenyl ketone; N-vinyl indole and N-vinyl pyrrolidene; styrene butadienes, including those disclosed in U.S. Pat. No. 4,560,635, the disclosure of which is totally incorporated herein by reference; mixtures of these monomers; and the like. Mixtures of two or more polymers can also constitute the toner resin. The resin is present in the toner in any effective amount, typically from about 75 to about 98 percent by weight, preferably from about 90 to about 98 percent by weight, and more preferably from about 95 to about 96 percent by weight, although the amount can be outside of these ranges.




Examples of suitable colorants include dyes and pigments, such as carbon black (for example, REGAL 330®), magnetites, phthalocyanines, HELIOGEN BLUE L6900, D6840, D7080, D7020, PYLAM OIL BLUE, PYLAM OIL YELLOW, and PIGMENT BLUE 1, all available from Paul Uhlich & Co., PIGMENT VIOLET 1, PIGMENT RED 48, LEMON CHROME YELLOW DCC 1026, E.D. TOLUIDINE RED, and BON RED C, all available from Dominion Color Co., NOVAPERM YELLOW FGL and HOSTAPERM PINK E, available from Hoechst, CINQUASIA MAGENTA, available from E.I. DuPont de Nemours & Company, 2,9-dimethyl-substituted quinacridone and anthraquinone dyes identified in the Color Index as Cl 60710, Cl Dispersed Red 15, diazo dyes identified in the Color Index as Cl 26050, Cl Solvent Red 19, copper tetra (octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as Cl 74160, Cl Pigment Blue, Anthrathrene Blue, identified in the Color Index as Cl 69810, Special Blue X-2137, diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as Cl 12700, Cl Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, Cl Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4′-chloro-2,5-dimethoxy acetoacetanilide, Permanent Yellow FGL, Pigment Yellow 74, B 15:3 cyan pigment dispersion, commercially available from Sun Chemicals, Magenta Red 81:3 pigment dispersion, commercially available from Sun Chemicals, Yellow 180 pigment dispersion, commercially available from Sun Chemicals, colored magnetites, such as mixtures of MAPICO BLACK® and cyan components, and the like, as well as mixtures thereof. Other commercial sources of pigments available as aqueous pigment dispersion from either Sun Chemical or Ciba include (but are not limited to) Pigment Yellow 17, Pigment Yellow 14, Pigment Yellow 93, Pigment Yellow 74, Pigment Violet 23, Pigment Violet 1, Pigment Green 7, Pigment Orange 36, Pigment Orange 21, Pigment Orange 16, Pigment Red 185, Pigment Red 122, Pigment Red 81:3, Pigment Blue 15:3, and Pigment Blue 61, and other pigments that enable reproduction of the maximum Pantone color space. Mixtures of colorants can also be employed. When present, the optional colorant is present in the toner particles in any desired or effective amount, typically at least about 1 percent by weight of the toner particles, and preferably at least about 2 percent by weight of the toner particles, and typically no more than about 25 percent by weight of the toner particles, and preferably no more than about 15 percent by weight of the toner particles, depending on the desired particle size, although the amount can be outside of these ranges.




The toner compositions can be prepared by any suitable method. For example, the components of the toner particles can be mixed in a ball mill, to which steel beads for agitation are added in an amount of approximately five times the weight of the toner. The ball mill can be operated at about 120 feet per minute for about 30 minutes, after which time the steel beads are removed.




Another method, known as spray drying, entails dissolving the appropriate polymer or resin in an organic solvent such as toluene or chloroform, or a suitable solvent mixture. The optional colorant is also added to the solvent. Vigorous agitation, such as that obtained by ball milling processes, assists in assuring good dispersion of the components. The solution is then pumped through an atomizing nozzle while using an inert gas, such as nitrogen, as the atomizing agent. The solvent evaporates during atomization, resulting in toner particles which are then attrited and classified by particle size. Particle diameter of the resulting toner varies, depending on the size of the nozzle, and generally varies between about 0.1 and about 100 microns.




Another suitable process is known as the Banbury method, a batch process wherein the toner ingredients are pre-blended and added to a Banbury mixer and mixed, at which point melting of the materials occurs from the heat energy generated by the mixing process. The mixture is then dropped into heated rollers and forced through a nip, which results in further shear mixing to form a large thin sheet of the toner material. This material is then reduced to pellet form and further reduced in size by grinding or jetting, after which the particles are classified by size.




Another suitable toner preparation process, extrusion, is a continuous process that entails dry blending the toner ingredients, placing them into an extruder, melting and mixing the mixture, extruding the material, and reducing the extruded material to pellet form. The pellets are further reduced in size by grinding or jetting, and are then classified by particle size.




Encapsulated toners for the present invention can also be prepared. For example, encapsulated toners can be prepared by an interfacial/free-radical polymerization process in which the shell formation and the core formation are controlled independently. The core materials selected for the toner composition are blended together, followed by encapsulation of these core materials within a polymeric material, followed by core monomer polymerization. The encapsulation process generally takes place by means of an interfacial polymerization reaction, and the optional core monomer polymerization process generally takes by means of a free radical reaction. Processes for preparing encapsulated toners by these processes are disclosed in, for example, U.S. Pat. No. 4,000,087, U.S. Pat. No. 4,307,169, U.S. Pat. No. 4,725,522, U.S. Pat. No. 4,727,011, U.S. Pat. No. 4,766,051, U.S. Pat. No. 4,851,318, U.S. Pat. No. 4,855,209, and U.S. Pat. No. 4,937,167, the disclosures of each of which are totally incorporated herein by reference. In this embodiment, the oxidation/reduction polymerization is performed at room temperature after the interfacial/free-radical polymerization process is complete, thereby forming an intrinsically conductive polymeric shell on the particle surfaces.




Toners for the present invention can also be prepared by an emulsion aggregation process, as disclosed in, for example, U.S. Pat. No. 5,278,020, U.S. Pat. No. 5,290,654, U.S. Pat. No. 5,308,734, U.S. Pat. No. 5,344,738, U.S. Pat. No. 5,346,797, U.S. Pat. No. 5,348,832, U.S. Pat. No. 5,364,729, U.S. Pat. No. 5,366,841, U.S. Pat. No. 5,370,963, U.S. Pat. No. 5,376,172, U.S. Pat. No. 5,403,693, U.S. Pat. No. 5,405,728, U.S. Pat. No. 5,418,108, U.S. Pat. No. 5,496,676, U.S. Pat. No. 5,501,935, U.S. Pat. No. 5,527,658, U.S. Pat. No. 5,585,215, U.S. Pat. No. 5,593,807, U.S. Pat. No. 5,604,076, U.S. Pat. No. 5,648,193, U.S. Pat. No. 5,650,255, U.S. Pat. No. 5,650,256, U.S. Pat. No. 5,658,704, U.S. Pat. No. 5,660,965, U.S. Pat. No. 5,840,462, U.S. Pat. No. 5,853,944, U.S. Pat. No. 5,869,215, U.S. Pat. No. 5,869,216, U.S. Pat. No. 5,910,387, U.S. Pat. No. 5,916,725, U.S. Pat. No. 5,919,595, U.S. Pat. No. 5,922,501, U.S. Pat. No. 5,945,245, U.S. Pat. No. 6,017,671, U.S. Pat. No. 6,020,101, U.S. Pat. No. 6,054,240, Application U.S. Ser. No. 09/657,340 now U.S. Pat. No. 6,210,853, filed Sep. 7, 2000, entitled “Toner Aggregation Processes,” with the named inventors Raj D. Patel, Michael A. Hopper, Emily L. Moore and Guerino G. Sacripante, Application U.S. Ser. No. 09/415,074 now U.S. Pat. No. 6,143,457, filed Oct. 12, 1999, and Copending Application U.S. Ser. No. 09/624,532 now abandoned, filed Jul. 24, 2000, both entitled “Toner Compositions,” with the named inventors Rina Carlini, Guerino G. Sacripante, and Richard P. N. Veregin, and Application U.S. Ser. No. 09/173,405 now U.S. Pat. No. 6,132,924, filed Oct. 15, 1998, entitled “Toner Coagulant Processes,” with the named inventors Raj D. Patel, Michael A. Hopper, and Richard P. Veregin, the disclosures of each of which are totally incorporated herein by reference.




Any other desired or suitable method can also be used to form the toner particles.




A polypyrrole, a polythiophene, a copolymer of pyrrole and thiophene monomers, or any mixture thereof, is applied to the toner particle surfaces by an oxidative polymerization process. The toner particles are suspended in a solvent in which the toner particles will not dissolve, such as water, methanol, ethanol, butanol, acetone, acetonitrile, blends of water with methanol, ethanol, butanol, acetone, acetonitrile, and/or the like, preferably in an amount of from about 5 to about 20 weight percent toner particles in the solvent, and the pyrrole and/or thiophene monomers are added slowly (a typical addition time period would be over about 10 minutes) to the solution with stirring. The monomers typically are added in an amount of from about 5 to about 15 percent by weight of the toner particles. Thereafter, the solution is stirred for a period of time, typically from about 0.5 to about 3 hours. When a dopant is employed, it is typically added at this stage, although it can also be added after addition of the oxidant. Subsequently, the oxidant selected is dissolved in a solvent sufficiently polar to keep the particles from dissolving therein, such as water, methanol, ethanol, butanol, acetone, acetonitrile, or the like, typically in a concentration of from about 0.1 to about 5 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomers, and slowly added dropwise with stirring to the solution containing the toner particles. The amount of oxidant added to the solution typically is in a molar ratio of 1:1 or less with respect to the pyrrole and/or thiophene monomers, although a molar excess of oxidant can also be used and can be preferred in some instances. The oxidant is preferably added to the solution subsequent to addition of the pyrrole and/or thiophene monomers so that the pyrrole and/or thiophene has had time to adsorb onto the toner particle surfaces prior to polymerization, thereby enabling the pyrrole and/or thiophene to polymerize on the toner particle surfaces instead of forming separate particles in the solution. When the oxidant addition is complete, the solution is again stirred for a period of time, typically from about 1 to about 2 days, although the time can be outside of this range, to allow the polymerization and doping process to occur. Thereafter, the toner particles having a polypyrrole, a polythiophene, a copolymer of pyrrole and thiophene monomers, or a mixture thereof polymerized on the surfaces thereof are washed, preferably with water, to remove therefrom any polymerized pyrrole and/or thiophene that formed in the solution as separate particles instead of as a coating on the toner particle surfaces, and the toner particles are dried. The entire process typically takes place at about room temperature (typically from about 15 to about 30° C.), although lower temperatures can also be used if desired.




Examples of suitable pyrroles for the process of the present invention include those of the general formula











(shown in the reduced form) wherein R, R′, and R″ each, independently of the other, is a hydrogen atom, an alkyl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 16 carbon atoms, and preferably with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, a heterocyclic group, including substituted heterocyclic groups, wherein the hetero atoms can be (but are not limited to) nitrogen, oxygen, sulfur, and phosphorus, typically with from about 4 to about 6 carbon atoms, and preferably with from about 4 to about 5 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein R″ can further be an oligoether group of the formula (C


x


H


2x


O)


y


R, wherein x is an integer of from 1 to about 6 and y is an integer representing the number of repeat monomer units and typically is from about 1 to about 4 and R is as defined hereinabove (with specific examples of R″ including —(CH


2


CH


2


O)


2


CH


2


CH


3


, —(CH


2


CH


2


O)


2


CH


2


CH


2


OH, and —(CH


2


)


3


SO


3


—Na


+


, wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, alkylaryloxy, and heterocyclic groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring. One example of a suitable pyrrole is simple pyrrole, of the formula











(shown in the reduced form). The polymerized pyrrole (shown in the reduced form) is of the formula











wherein R, R′, and R″ are as defined above and n is an integer representing the number of repeat monomer units.




One particularly preferred class of pyrroles is that of 3,4-ethylenedioxypyrroles, of the general formula











(shown in the reduced form), wherein each of R


1


, R


2


, R


3


, R


4


, and R


5


, independently of the others, is a hydrogen atom, an alkyl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 16 carbon atoms, and preferably with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, a heterocyclic group, including substituted heterocyclic groups, wherein the hetero atoms can be (but are not limited to) nitrogen, oxygen, sulfur, and phosphorus, typically with from about 4 to about 6 carbon atoms, and preferably with from about 4 to about 5 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein R


5


can further be an oligoether group of the formula (C


x


H


2x


O)


y


R


1


, wherein x is an integer of from 1 to about 6 and y is an integer representing the number of repeat monomer units and typically is from about 1 to about 4 and R


1


is as defined hereinabove (with specific examples of R


5


including —(CH


2


CH


2


O)


2


CH


2


CH


3


, —(CH


2


CH


2


O)


2


CH


2


CH


2


OH, and —(CH


2


)


3


SO


3


—Na


+


, wherein materials with these R


5


groups can be prepared as disclosed in, for example, Merz, A., Schropp, R., Dötterl, E.,


Synthesis


, 1995, 795; Reynolds, J. R.; Brzezinski, J., DuBois, C. J., Giurgiu, I., Kloeppner, L., Ramey, M. B., Schottland, P., Thomas, C., Tsuie, B. M., Welsh, D. M., Zong, K.,


Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem


, 1999, 40(2), 1192; and Thomas, C. A., Zong, K., Schottland, P., Reynolds, J. R.,


Adv. Mater


., 2000, 12(3), 222, the disclosures of each of which are totally incorporated herein by reference), wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, alkylaryloxy, and heterocyclic groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring. These materials are preferred because of their relative lack of color, thereby enabling their use on toner particles of a wide variety of colors without significant impairment of the toner color quality or transparency.




Particularly preferred R


1


, R


2


, R


3


, and R


4


groups on the 3,4-ethylenedioxypyrrole monomer and poly(3,4-ethylenedioxypyrrole) polymer include hydrogen atoms, linear alkyl groups of the formula —(CH


2


)


n


CH


3


wherein n is an integer of from 0 to about 16, linear alkyl sulfonate groups of the formula —(CH


2


)


n


SO


3


—M


+


wherein n is an integer of from 1 to about 6 and M is a cation, such as sodium, potassium, other monovalent cations, or the like, and linear alkyl ether groups of the formula —(CH


2


)


n


OR


3


wherein n is an integer of from 0 to about 6 and R


3


is a hydrogen atom or a linear alkyl group of the formula —(CH


2


)


m


CH


3


wherein n is an integer of from 0 to about 6. Specific examples of preferred 3,4-ethylenedioxypyrrole monomers include those with R


1


and R


3


as hydrogen groups and R


2


and R


4


groups as follows:



















R


2






R


4















H




H







(CH


2


)


n


CH


3


n = 0-14




H







(CH


2


)


n


CH


3


n = 0-14




(CH


2


)


n


CH


3


n = 0-14







(CH


2


)


n


SO


3


−Na


+


n = 1-6




H







(CH


2


)


n


SO


3


−Na


+


n = 1-6




(CH


2


)


n


SO


3


−Na


+


n = 1-6







(CH


2


)


n


OR


6


n = 0-4 R


6 = H,






H







(CH


2


)


m


CH


3


m = 0-4







(CH


2


)


n


OR


6


n = 0-4 R


6 = H,






(CH


2


)


n


OR


6


n = 0-4 R


6 = H,









(CH


2


)


m


CH


3


m = 0-4




(CH


2


)


m


CH


3


m = 0-4















Examples of suitable thiophenes for the process of the present invention include those of the general formula











(shown in the reduced form) wherein R and R′ each, independently of the other, is a hydrogen atom, an alkyl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 16 carbon atoms, and preferably with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, a heterocyclic group, including substituted heterocyclic groups, wherein the hetero atoms can be (but are not limited to) nitrogen, oxygen, sulfur, and phosphorus, typically with from about 4 to about 6 carbon atoms, and preferably with from about 4 to about 5 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, alkylaryloxy, and heterocyclic groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring. One example of a suitable thiophene is simple thiophene, of the formula











(shown in the reduced form). The polymerized thiophene (shown in the reduced form) is of the formula











wherein R and R′ are as defined above and n is an integer representing the number of repeat monomer units.




One particularly preferred class of thiophenes is that of 3,4-ethylenedioxythiophenes, of the general formula











(shown in the reduced form), wherein each of R


1


, R


2


, R


3


, and R


4


, independently of the others, is a hydrogen atom, an alkyl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 16 carbon atoms, and preferably with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, a heterocyclic group, including substituted heterocyclic groups, wherein the hetero atoms can be (but are not limited to) nitrogen, oxygen, sulfur, and phosphorus, typically with from about 4 to about 6 carbon atoms, and preferably with from about 4 to about 5 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, alkylaryloxy, and heterocyclic groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring. These materials are preferred because of their relative lack of color, thereby enabling their use on toner particles of a wide variety of colors without significant impairment of the toner color quality or transparency.




Particularly preferred R


1


, R


2


, R


3


, and R


4


groups on the 3,4-ethylenedioxythiophene monomer and poly(3,4-ethylenedioxythiophene) polymer include hydrogen atoms, linear alkyl groups of the formula —(CH


2


)


n


CH


3


wherein n is an integer of from 0 to about 16, linear alkyl sulfonate groups of the formula —(CH


2


)


n


SO


3


—M


+


wherein n is an integer of from 1 to about 6 and M is a cation, such as sodium, potassium, other monovalent cations, or the like, and linear alkyl ether groups of the formula —(CH


2


)


n


OR


3


wherein n is an integer of from 0 to about 6 and R


3


is a hydrogen atom or a linear alkyl group of the formula —(CH


2


)


m


CH


3


wherein n is an integer of from 0 to about 6. Specific examples of preferred 3,4-ethylenedioxythiophene monomers include those with R


1


and R


3


as hydrogen groups and R


2


and R


4


groups as follows:



















R


2






R


4















H




H







(CH


2


)


n


CH


3


n = 0-14




H







(CH


2


)


n


CH


3


n = 0-14




(CH


2


)


n


CH


3


n = 0-14







(CH


2


)


n


SO


3-Na




+


n = 1-6




H







(CH


2


)


n


SO


3-Na




+


n = 1-6




(CH


2


)


n


SO


3-Na




+


n = 1-6







(CH


2


)


n


OR


6


n = 0-4 R


6 = H,






H







(CH


2


)


m


CH


3


m = 0-4







(CH


2


)


n


OR


6


n = 0-4 R


6 = H,






(CH


2


)


n


OR


6


n = 0-4 R


6 = H,









(CH


2


)


m


CH


3


m = 0-4




(CH


2


)


m


CH


3


m = 0-4















Poly(3,4-ethylenedioxypyrrole)s and 3,4-ethylenedioxypyrrole monomers suitable for the present invention can be prepared as disclosed in, for example, Merz, A., Schropp, R., Dötterl, E.,


Synthesis


, 1995, 795; Reynolds, J. R.; Brzezinski, J., DuBois, C. J., Giurgiu, I., Kloeppner, L., Ramey, M. B., Schottland, P., Thomas, C., Tsuie, B. M., Welsh, D. M., Zong, K.,


Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem


, 1999, 40(2), 1192; Thomas, C. A., Zong, K., Schottland, P., Reynolds, J. R.,


Adv. Mater


., 2000, 12(3), 222; Thomas, C. A., Schottland, P., Zong, K, Reynolds, J. R.,


Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem


, 1999, 40(2), 615; and Gaupp, C. L., Zong, K., Schottland, P., Thompson, B. C., Thomas, C. A., Reynolds, J. R.,


Macromolecules


, 2000, 33, 1132; the disclosures of each of which are totally incorporated herein by reference.




Unsubstituted 3,4-ethylenedioxythiophene monomer is commercially available from, for example Bayer AG. Substituted 3,4-ethylenedioxythiophene monomers can be prepared by known methods. For example, the substituted thiophene monomer 3,4-ethylenedioxythiophene can be synthesized following early methods of Fager (Fager, E. W.


J. Am. Chem. Soc


. 1945, 67, 2217), Becker et al. (Becker, H. J.; Stevens, W.


Rec. Trav. Chim


. 1940, 59, 435) Guha and Iyer (Guha, P. C., lyer, B. H.;


J. Ind. Inst. Sci


. 1938, A21, 115), and Gogte (Gogte, V. N.; Shah, L. G.; Tilak, B. D.; Gadekar, K. N.; Sahasrabudhe, M. B.;


Tetrahedron


, 1967, 23, 2437). More recent references for the EDOT synthesis and 3,4-alkylenedioxythiophenes are the following: Pei, Q.; Zuccarello, G.; Ahiskog, M.; Inganas, O.


Polymer


, 1994, 35(7), 1347; Heywang, G.; Jonas, F.


Adv. Mater


. 1992, 4(2), 116; Jonas, F.; Heywang, G.;


Electrochimica Acta


. 1994, 39(8/9), 1345; Sankaran, B.; Reynolds, J. R.;


Macromolecules


, 1997, 30, 2582; Coffey, M.; McKellar, B. R.; Reinhardt, B. A.; Nijakowski, T.; Feld, W. A.;


Syn. Commun


., 1996, 26(11), 2205; Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R.


Chem. Mater


. 1998, 10, 896; Kumar, A.; Reynolds, J. R.


Macromolecules


, 1996, 29, 7629; Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R.;


Adv. Mater


. 2000, 12(7), 481; and U.S. Pat. No. 5,035,926, the disclosures of each of which are totally incorporated herein by reference.




An example of a monomer synthesis is as follows:




Thiodiglycolic acid (1, 50 grams, commercially available from Aldrich or Fluka) is dissolved in methanol (200 milliliters) and concentrated sulfuric acid (57 milliliters) is added slowly with continuous stirring. After refluxing for 16 to 24 hours, the reaction mixture is cooled and poured into water (300 milliliters). The product is extracted with diethyl ether (200 milliliters) and the organic layer is repeatedly washed with saturated aqueous NaHCO


3


, dried with MgSO


4


, and concentrated by rotary evaporation. The residue is distilled to give colorless dimethyl thiodiglycolate (2, 17 grams). If the solvent is changed to ethanol the resulting product obtained is diethyl thiodiglycolate (3).




A solution of 2 and diethyl oxalate (4, 22 grams, commercially available from Aldrich) in methanol (100 milliliters) is added dropwise into a cooled (0° C.) solution of sodium methoxide (34.5 grams) in methanol (150 milliliters). After the addition is completed, the mixture is refluxed for 1 to 2 hours. The yellow precipitate that forms is filtered, washed with methanol, and dried in vacuum at room temperature. A pale yellow powder of disodium 2,5-dicarbomethoxy-3,4-dioxythiophene (5) is obtained in 100 percent yield (28 grams). The disodium 2,5-dicarbethyoxy-3,4-dioxythiophene (6) derivative of 5 can also be used instead of the methoxy derivative. This material is prepared similarly to 5 except 3 and diethyl oxalate (4) in ethanol is added dropwise into a cooled solution of sodium ethoxide in ethanol.




The salt either 5 or 6 is dissolved in water and acidified with 1 Molar HCl added slowly dropwise with constant stirring until the solution becomes acidic. Immediately following, thick white precipitate falls out. After filtration, the precipitate is washed with water and air-dried to give 2,5-dicarbethoxy-3,4-dihydroxythiophene (7). The salt either (5, 2.5 grams) or 6 can be alkylated directly or the dihydrothiophene derivative (7) can be suspended in the appropriate 1,2-dihaloalkane or substituted 1,2-dihaloalkane and refluxed for 24 hours in the presence of anhydrous K


2


CO


3


in anhydrous DMF. To prepare EDOT, either 1,2-dicholorethane (commercially available from Aldrich) or 1,2-dibromoethane (commercially from Aldrich) is used. To prepare the various substituted EDOT derivatives the appropriate 1,2-dibromoalkane is used, such as 1-dibromodecane, 1,2-dibromohexadecane (prepared from 1-hexadecene and bromine), 1,2-dibromohexane, other reported 1,2-dibromoalkane derivatives, and the like. The resulting 2,5-dicarbethoxy-3,4-ethylenedioxythiophene or 2,5-dicarbethoxy-3,4-alkylenedioxythiophene is refluxed in base, for example 10 percent aqueous sodium hydroxide solution for 1 to 2 hours, and the resulting insoluble material is collected by filtration. This material is acidified with 1 Normal HCl and recrystallized from methanol to produce either 2,5-dicarboxy-3,4-ethylenedioxythiophene or the corresponding 2,5-dicarboxy-3,4-alkylenedioxythiophene. The final step to reduce the carboxylic acid functional groups to hydrogen to produce the desired monomer is given in the references above.




Examples of suitable oxidants include water soluble persulfates, such as ammonium persulfate, potassium persulfate, and the like, cerium (IV) sulfate, ammonium cerium (IV) nitrate, ferric salts, such as ferric chloride, iron (III) sulfate, ferric nitrate nanohydrate, tris(p-toluenesulfonato)iron (III) (commercially available from Bayer under the tradename Baytron C), and the like. The oxidant is typically employed in an amount of at least about 0.1 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer, preferably at least about 0.25 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer, and more preferably at least about 0.5 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer, and typically is employed in an amount of no more than about 5 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer, preferably no more than about 4 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer, and more preferably no more than about 3 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer, although the relative amounts of oxidant and pyrrole and/or thiophene can be outside of these ranges.




The polarity to which the toner particles prepared by the process of the present invention can be charged can be determined by the choice of oxidant used during the oxidative polymerization of the pyrrole and/or thiophene monomers. For example, using oxidants such as ammonium persulfate and potassium persulfate for the oxidative polymerization of the pyrrole and/or thiophene monomers tends to result in formation of toner particles that become negatively charged when subjected to triboelectric or inductive charging processes. Using oxidants such as ferric chloride and tris(p-toluenesulfonato)iron (III) for the oxidative polymerization of the pyrrole and/or thiophene monomers tends to result in formation of toner particles that become positively charged when subjected to triboelectric or inductive charging processes. Accordingly, toner particles can be obtained with the desired charge polarity without the need to change the toner resin composition, and can be achieved independently of any dopant used with the polypyrrole, polythiophene, or poly-co-pyrrole/thiophene.




The molecular weight of the polypyrrole, polythiophene, or poly-co-pyrrole/thiophene formed on the toner particle surfaces need not be high; typically the polymer can have three to six or more repeat pyrrole and/or thiophene units to enable the desired toner particle conductivity. If desired, however, the molecular weight of the polymer formed on the toner particle surfaces can be adjusted by varying the molar ratio of oxidant to pyrrole or thiophene monomer, the acidity of the medium, the reaction time of the oxidative polymerization, and/or the like. Molecular weights wherein the number of pyrrole and/or thiophene repeat monomer units is about 1,000 or higher can be employed, although higher molecular weights tend to make the material more insoluble and therefore more difficult to process.




When the marking material is used in a process in which the toner particles are triboelectrically charged, the polypyrrole, polythiophene, poly-co-pyrrole/thiophene, or mixture thereof (hereinafter referred to thiophene or pyrrole polymer) can be in its reduced form. To achieve the desired toner particle conductivity for marking materials suitable for nonmagnetic inductive charging processes or ballistic aerosol marking processes, it is sometimes desirable for the thiophene or pyrrole polymer to be in its oxidized form. The thiophene or pyrrole polymer can be shifted to its oxidized form by doping it with dopants such as sulfonate, phosphate, or phosphonate moieties, iodine, or the like. For example, poly(3,4-ethylenedioxythiophene) in its doped and oxidized form is believed to be of the formula











wherein R


1


, R


2


, R


3


, and R


4


are as defined above, D





corresponds to the dopant, and n is an integer representing the number of repeat monomer units. For example, poly(3,4-ethylenedioxythiophene) in its oxidized form and doped with sulfonate moieties is believed to be of the formula











wherein R


1


, R


2


, R


3


, and R


4


are as defined above, R corresponds to the organic portion of the sulfonate dopant molecule, such as an alkyl group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkyl groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an alkoxy group, including linear, branched, saturated, unsaturated, cyclic, and substituted alkoxy groups, typically with from 1 to about 20 carbon atoms and preferably with from 1 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryl group, including substituted aryl groups, typically with from 6 to about 16 carbon atoms, and preferably with from 6 to about 14 carbon atoms, although the number of carbon atoms can be outside of these ranges, an aryloxy group, including substituted aryloxy groups, typically with from 6 to about 17 carbon atoms, and preferably with from 6 to about 15 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyl group or an alkylaryl group, including substituted arylalkyl and substituted alkylaryl groups, typically with from 7 to about 20 carbon atoms, and preferably with from 7 to about 16 carbon atoms, although the number of carbon atoms can be outside of these ranges, an arylalkyloxy or an alkylaryloxy group, including substituted arylalkyloxy and substituted alkylaryloxy groups, typically with from 7 to about 21 carbon atoms, and preferably with from 7 to about 17 carbon atoms, although the number of carbon atoms can be outside of these ranges, wherein the substituents on the substituted alkyl, alkoxy, aryl, aryloxy, arylalkyl, alkylaryl, arylalkyloxy, and alkylaryloxy groups can be (but are not limited to) hydroxy groups, halogen atoms, amine groups, imine groups, ammonium groups, cyano groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, nitrile groups, mercapto groups, nitro groups, nifroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the like, as well as mixtures thereof, and wherein two or more substituents can be joined together to form a ring, and n is an integer representing the number of repeat monomer units.




Poly(3,4-ethylenedioxypyrrole) in its doped and oxidized form is believed to be of the formula











wherein R


1


, R


2


, R


3


, R


4


, and R


5


are as defined above, D





corresponds to the dopant, and n is an integer representing the number of repeat monomer units. For example, poly(3,4-ethylenedioxypyrrole) in its oxidized form and doped with sulfonate moieties is believed to be of the formula











wherein R


1


, R


2


, R


3


, R


4


, and R


5


are as defined above, R corresponds to the organic portion of the sulfonate dopant molecule and is as defined hereinabove for the doped poly(3,4-ethylenedioxythiophene), and n is an integer representing the number of repeat monomer units.




One method of causing the thiophene or pyrrole polymer to be doped is to select as the toner resin a polymer wherein at least some of the repeat monomer units have groups such as sulfonate groups thereon, such as sulfonated polyester resins and sulfonated vinyl resins. The sulfonated resin has surface exposed sulfonate groups that serve the dual purpose of anchoring and doping the coating layer of thiophene or pyrrole polymer onto the toner particle surface.




Another method of causing the thiophene or pyrrole polymer to be doped is to place groups such as sulfonate moieties on the toner particle surfaces during the toner particle synthesis. For example, when the toner particles are made by an emulsion aggregation process, the ionic surfactant selected for the emulsion aggregation process can be an anionic surfactant having a sulfonate group thereon, such as sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate, dodecylbenzene sulfonic acid, dialkyl benzenealkyl sulfonates, such as 1,3-benzene disulfonic acid sodium salt, para-ethylbenzene sulfonic acid sodium salt, and the like, sodium alkyl naphthalene sulfonates, such as 1,5-naphthalene disulfonic acid sodium salt, 2-naphthalene disulfonic acid, and the like, sodium polylstyrene sulfonate), and the like, as well as mixtures thereof. During the emulsion polymerization process, the surfactant becomes grafted and/or adsorbed onto the latex particles that are later aggregated and coalesced. While the toner particles are washed subsequent to their synthesis to remove surfactant therefrom, some of this surfactant still remains on the particle surfaces, and in sufficient amounts to enable doping of the thiophene or pyrrole polymer so that it is desirably conductive.




Yet another method of causing the thiophene or pyrrole polymer to be doped is to add small dopant molecules containing sulfonate, phosphate, or phosphonate groups to the toner particle solution before, during, or after the oxidative polymerization of the thiophene or pyrrole polymer. For example, after the toner particles have been suspended in the solvent and prior to addition of the thiophene or pyrrole, the dopant can be added to the solution. When the dopant is a solid, it is allowed to dissolve prior to addition of the thiophene or pyrrole monomer, typically for a period of about 0.5 hour. Alternatively, the dopant can be added after addition of the thiophene or pyrrole and before addition of the oxidant, or after addition of the oxidant, or at any other time during the process. The dopant is added to the thiophene or pyrrole polymer in any desired or effective amount, typically at least about 0.1 molar equivalent of dopant per molar equivalent of thiophene or pyrrole monomer, preferably at least about 0.25 molar equivalent of dopant per molar equivalent of thiophene or pyrrole monomer, and more preferably at least about 0.5 molar equivalent of dopant per molar equivalent of thiophene or pyrrole monomer, and typically no more than about 5 molar equivalents of dopant per molar equivalent of thiophene or pyrrole monomer, preferably no more than about 4 molar equivalents of dopant per molar equivalent of thiophene or pyrrole monomer, and more preferably no more than about 3 molar equivalents of dopant per molar equivalent of thiophene or pyrrole monomer, although the amount can be outside of these ranges.




Examples of suitable dopants include p-toluene sulfonic acid, camphor sulfonic acid, dodecane sulfonic acid, benzene sulfonic acid, naphthalene sulfonic acid, dodecylbenzene sulfonic acid, sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate, dialkyl benzenealkyl sulfonates, such as 1,3-benzene disulfonic acid sodium salt, para-ethylbenzene sulfonic acid sodium salt, and the like, sodium alkyl naphthalene sulfonates, such as 1,5-naphthalene disulfonic acid sodium salt, 2-naphthalene disulfonic acid, and the like, poly(styrene sulfonate sodium salt), and the like.




Still another method of doping the thiophene or pyrrole polymer is to expose the toner particles that have the thiophene or pyrrole polymer on the particle surfaces to iodine vapor in solution, as disclosed in, for example, Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z. H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K.;


Macromolecules


, 1992, 25, 1214 and Yamamoto, T.; Abla, M.; Shimizu, T.; Komarudin, D.; Lee, B-L.; Kurokawa, E.


Polymer Bulletin


, 1999, 42, 321, the disclosures of each of which are totally incorporated herein by reference.




The thiophene or pyrrole polymer thickness on the toner particles is a function of the surface area exposed for surface treatment, which is related to toner particle size and particle morphology, spherical vs potato or raspberry. For smaller particles the weight fraction of thiophene and/or pyrrole monomer used based on total mass of particles can be increased to, for example, 20 percent from 10 or 5 percent. The coating weight typically is at least about 5 weight percent of the toner particle mass, and typically is no more than about 20 weight percent of the toner particle mass. The solids loading of the toner particles can be measured using a heated balance which evaporates off the water, and, based on the initial mass and the mass of the dried material, the solids loading can be calculated. Once the solids loading is determined, the toner slurry is diluted to a 10 percent loading of toner in water. For example, for 20 grams of toner particles the total mass of toner slurry is 200 grams and 2 grams of thiophene and/or pyrrole is used. Then the thiophene and/or pyrrole and other reagents are added as indicated hereinabove. For example, for a 5 micron toner particle using a 10 weight percent of 3,4-ethylenedioxypyrrole, 2 grams for 20 grams of toner particles the thickness of the conductive polymer shell was 20 nanometers. Depending on the surface morphology, which also can change the surface area, the shell can be thicker or thinner or even incomplete.




The marking materials of the present invention typically are capable of exhibiting triboelectric surface charging of from about + or −2 to about + or −60 microcoulombs per gram, and preferably of from about + or −10 to about + or −50 microcoulombs per gram, although the triboelectric charging capability can be outside of these ranges. Charging can be accomplished triboelectrically, either against a carrier in a two component development system, or in a single component development system, or inductively.




The marking materials of the present invention can be employed for the development of electrostatic images in processes such as electrography, electrophotography, ionography, and the like. Another embodiment of the present invention is directed to a process which comprises (1) preparing toner particles by (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected; (2) generating an electrostatic latent image on an imaging member, and (3) developing the latent image by contacting the imaging member with the charged toner particles. In one embodiment of the present invention, the toner particles are charged triboelectrically, in either a single component development process or a two-component development process. In another embodiment of the present invention, the toner particles are charged by an inductive charging process. In one specific embodiment employing inductive charging, the developing apparatus comprises a housing defining a reservoir storing a supply of developer material comprising the conductive toner; a donor member for transporting toner on an outer surface of said donor member to a development zone; means for loading a toner layer onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level. In a particular embodiment, the inductive charging means comprises means for biasing the toner reservoir relative to the bias on the donor member. In another particular embodiment, the developing apparatus further comprises means for moving the donor member into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image. In yet another specific embodiment, the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude. Yet another specific embodiment of the present invention is directed to a process for developing a latent image recorded on a surface of an image receiving member to form a developed image, said process comprising (a) moving the surface of the image receiving member at a predetermined process speed; (b) storing in a reservoir a supply of toner particles according to the present invention; (c) transporting the toner particles on an outer surface of a donor member to a development zone adjacent the image receiving member; and (d) inductive charging said toner particles on said outer surface of said donor member prior to the development zone to a predefined charge level. In a particular embodiment, the inductive charging step includes the step of biasing the toner reservoir relative to the bias on the donor member. In another particular embodiment, the donor member is brought into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image. In yet another particular embodiment, the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.




The marking materials of the present invention can be employed in ballistic aerosol marking processes. Another embodiment of the present invention is directed to a process which comprises (1) preparing toner particles by (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected; (2) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing the toner particles into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the toner particles to impact the substrate, said toner particles having an average bulk conductivity of at least about 10


−11


Siemens per centimeter.




Specific embodiments of the invention will now be described in detail. These examples are intended to be illustrative, and the invention is not limited to the materials, conditions, or process parameters set forth in these embodiments. All parts and percentages are by weight unless otherwise indicated.




The particle flow values of the marking materials were measured with a Hosokawa Micron Powder tester by applying a 1 millimeter vibration for 90 seconds to 2 grams of the marking particles on a set of stacked screens. The top screen contained 150 micron openings, the middle screen contained 75 micron openings, and the bottom screen contained 45 micron openings. The percent cohesion is calculated as follows:






% cohesion=50·A+30·B+10·C






wherein A is the mass of marking material remaining on the 150 micron screen, B is the mass of marking material remaining on the 75 micron screen, and C is the mass of marking material remaining on the 45 micron screen. (The equation applies a weighting factor proportional to screen size.) This test method is further described in, for example, R. Veregin and R. Bartha, Proceedings of IS&T 14th International Congress on Advances in Non-impact Printing Technologies, pg 358-361, 1998, Toronto, the disclosure of which is totally incorporated herein by reference. For the ballistic aerosol marking materials, the input energy applied to the apparatus of 300 millivolts was decreased to 50 millivolts to increase the sensitivity of the test. The lower the percent cohesion value, the better the toner flowability.




Conductivity values of the marking materials was determined by preparing pellets of each material under 1,000 to 3,000 pounds per square inch and then applying 10 DC volts across the pellet. The value of the current flowing was then recorded, the pellet was removed and its thickness measured, and the bulk conductivity for the pellet was calculated in Siemens per centimeter.




COMPARATIVE EXAMPLE A




Black toner particles were prepared by aggregation of a styrene/n-butyl acrylate/β-carboxy ethyl acrylate latex with pigment using a poly(aluminum chloride) flocculant followed by particle coalescence at elevated temperature. The polymeric latex was prepared by semi-continuous emulsion polymerization at the 300 gallon scale of styrene/n-butyl acrylate/β-carboxy ethyl acrylate (monomer ratio 77.5 parts by weight styrene, 22.5 parts by weight of n-butyl acrylate, and 3 parts by weight β-carboxy ethyl acrylate) in an anionic surfactant system using DOWFAX® 2A1 surfactant at a solids loading of 40 percent by weight of solids in the aqueous surfactant solution. The initiator used for the emulsion polymerization was ammonium persulfate at 1.5 weight percent of total monomer, the chain transfer agent 1-dodecanethiol (obtained from Aldrich Chemical Co.) was present in an amount of 1.71 weight percent of monomer, and a cross-linking agent 1,10-decanediol diacrylate (supplied by NK Shin Nakamura in Japan) was present in an amount of 0.35 percent by weight of monomer. (This latex can also be prepared as described in, for example, Copending Application U.S. Ser. No. 09/173,405, the disclosure of which is totally incorporated herein by reference.) The resulting latex had a solids loading of 43.04 percent, a weight average molecular weight M


w


of 37,700, a number average molecular weight M


n


of 10,600, a glass transition onset temperature of 50.5° C. and a glass transition midpoint temperature of 55.7° C., and a resulting latex particle size as measured on a Disc Centrifuge of 207 nanometers. A portion of this latex was then aggregated with 6 weight percent Regal® 330 carbon black and 8 weight percent Polywax 725 polyethylene wax dispersion by addition of polyaluminum chloride in an amount of 1.5 percent by weight of the monomers. The final dried particle size of the black toner particles was d


50


=5.33 microns and GSD


v


=1.213 and GSD


n


=1.243. The weight average molecular weight was 31,200 and number average molecular weight was 8,600. The onset of the glass transition temperature was 49.8° C. One hundred parts by weight of the toner thus prepared was then admixed with a 50/50 mixture by weight of hydrophobic conductive titanium dioxide (STT100H, obtained from Titan Kogyo Kabushiki Kaisha (IK Inabata America Corporation, New York)) and a hydrophobic silicon dioxide (Aerosil R812 obtained from Degussa) for an additive total weight percent of 1.5 by weight of the toner. The percent cohesion of this toner was measured to be 3.5 percent by a Hosokawa flow tester. The conductive toner particles were charged by blending 24 grams of carrier particles (65 micron Hoegänes core having a coating in an amount of 1 percent by weight of the carrier, said coating comprising a mixture of poly(methyl methacrylate) and SC Ultra carbon black in a ratio of 80 to 20 by weight) with 1.0 gram of toner particles to produce a developer with a toner concentration (Tc) of 4 weight percent. This mixture was conditioned overnight at 50 percent relative humidity at 22° C., followed by roll milling the developer (toner and carrier) for 30 minutes to reach a stable developer charge. The total toner blow off method was used to measure the average charge ratio (Q/M) of the developer with a Faraday Cage apparatus (such as described at column 11, lines 5 to 28 of U.S. Pat. No. 3,533,835, the disclosure of which is totally incorporated herein by reference). The conductive particles reached a triboelectric charge of −53 microCoulombs per gram. The measured average bulk conductivity of a pressed pellet of this toner was 1×10


−11


Siemens per centimeter. The conductivity was determined by preparing a pressed pellet of the material under 1,000 to 3,000 pounds per square inch of pressure and then applying 10 DC volts across the pellet. The value of the current flowing through the pellet was recorded, the pellet was removed and its thickness measured, and the bulk conductivity for the pellet was calculated in Siemens per centimeter.




This example demonstrates a negative charging tribo value with this additive package. To change the tribo charge polarity either a new additive package would have to be developed or the monomer-composition used to prepare the latex would need to be changed, resulting in a totally different toner. Changing charge polarity without major compositional changes is not easily done.




COMPARATIVE EXAMPLE B




Unpigmented toner particles were prepared by aggregation of a styrene/n-butyl acrylate/acrylic acid latex using a flocculent (poly(aluminum chloride)) followed by particle coalescence at elevated temperature. The polymeric latex was prepared by the emulsion polymerization of styrene/n-butyl acrylate/acrylic acid (monomer ratio 82 parts by weight styrene, 18 parts by weight n-butyl acrylate, 2 parts by weight acrylic acid) in a nonionic/anionic surfactant solution (40.0 percent by weight solids) as follows; 279.6 kilograms of styrene, 61.4 kilograms of n-butyl acrylate, 6.52 kilograms of acrylic acid, 3.41 kilograms of carbon tetrabromide, and 11.2 kilograms of dodecanethiol were mixed with 461 kilograms of deionized water in which had been dissolved 7.67 kilograms of sodium dodecyl benzene sulfonate anionic surfactant (Neogen RK; contains 60 percent active component), 3.66 kilograms of a nonophenol ethoxy nonionic surfactant (Antarox CA-897, 100 percent active material), and 3.41 kilograms of ammonium persulfate polymerization initiator dissolved in 50 kilograms of deionized water. The emulsion thus formed was polymerized at 70° C. for 3 hours, followed by heating to 85° C. for an additional 1 hour. The resulting latex contained 59.5 percent by weight water and 40.5 percent by weight solids, which solids comprised particles of a random copolymer of poly(styrene/n-butyl acrylate/acrylic acid); the glass transition temperature of the latex dry sample was 47.7° C., as measured on a DuPont DSC. The latex had a weight average molecular weight of 30,600 and a number average molecular weight of 4,400 as determined with a Waters gel permeation chromatograph. The particle size of the latex as measured on a Disc Centrifuge was 278 nanometers.




Thereafter, 375 grams of the styrene/n-butyl acrylate/acrylic acid anionic latex thus prepared was diluted with 761.43 grams of deionized water. The diluted latex solution was blended with an acidic solution of the flocculent (3.35 grams of poly(aluminum chloride) in 7.86 grams of 1 molar nitric acid solution) using a high shear homogenizer at 4,000 to 5,000 revolutions per minute for 2 minutes, producing a flocculation or heterocoagulation of gelled particles consisting of nanometer sized latex particles. The slurry was heated at a controlled rate of 0.25° C. per minute to 50° C., at which point the average marking particle size was 4.5 microns and the particle size distribution was 1.17. At this point the pH of the solution was adjusted to 7.0 using 4 percent sodium hydroxide solution. The mixture was then heated at a controlled rate of 0.5° C. per minute to 95° C. Once the particle slurry reacted at the reaction temperature of 95° C., the pH was dropped to 5.0 using 1 molar nitric acid, followed by maintenance of this temperature for 6 hours. The particles were then cooled to room temperature. From this toner slurry 150 grams was removed and washed 6 times by filtration and resuspension in deionized water. The particles were then dried with a freeze dryer for 48 hours. The average particle size of the toner particles was 5.2 microns and the particle size distribution was 1.21. The bulk conductivity of this sample when pressed into a pellet was 7.2×10


−15


Siemens per centimeter. The percent cohesion was measured to be 21.5 percent by a Hosokawa flow tester and the triboelectric charge measured by the method and with the carrier described in Comparative Example A was +0.51 microCoulombs per gram.




EXAMPLE I




Unpigmented toner particles were prepared by the method described in Comparative Example B. Into a 250 milliliter beaker was added 150 grams of a pigmentless toner size particle slurry (average particle diameter 5.7 microns; particle size distribution GSD 1.24) providing a total of 11.25 grams of solid material in the solution. The pH of the solution was then adjusted by adding the dopant, para-toluene sulfonic acid (PTSA) until the pH was 2.73. Into this stirred solution was dissolved the oxidant ammonium persulfate (1.81 grams; 7.93 mmole). After 15 minutes, 0.45 grams (3.17 mmole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of oxidant to EDOT was 2.5:1, and EDOT was present in an amount of 4 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The resulting greyish toner particles (with the slight coloration being the result of the poly(3,4-ethylenedioxythiophene) (PEDOT) particle coating) were washed


6


times with distilled water and then dried with a freeze dryer for 48 hours. The chemical oxidative polymerization of EDOT to produce PEDOT occurred on the toner particle surface, and the particle surfaces were rendered slightly conductive by the presence of the sulfonate groups from the toner particle surfaces and by the added pTSA. The average particle size of the toner particles was 5.1 microns and the particle size distribution was 1.24. The bulk conductivity of this sample a when pressed into a pellet was 3.1×10


−13


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was −36.3 microCoulombs per gram.




EXAMPLE II




Unpigmented toner particles were prepared by the method described in Comparative Example B. Into a 250 milliliter beaker was added 150 grams of a pigmentless toner size particle slurry (average particle diameter 5.7 microns; particle size distribution GSD 1.24) providing a total of 20.0 grams of solid material in the solution. The pH of the solution was not adjusted before the oxidant was added. Into this stirred solution was dissolved the oxidant ammonium persulfate (3.7 grams; 0.0162 mole). After 15 minutes, 2.0 grams (0.0141 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of oxidant to EDOT was 1.1:1, and EDOT was present in an amount of 10 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The resulting greyish toner particles (with the slight coloration being the result of the PEDOT particle coating) were washed 6 times with distilled water and then dried with a freeze dryer for 48 hours. The chemical oxidative polymerization of EDOT to produce PEDOT occurred on the toner particle surfaces, and the particle surfaces were rendered slightly conductive by the presence of the sulfonate groups from the toner particle surfaces. The average particle size of the toner particles was 5.2 microns and the particle size distribution was 1.23. The bulk conductivity of this sample when pressed into a pellet was 3.8×10


−13


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was −8.8 microCoulombs per gram.




EXAMPLE III




Toner particles were prepared by aggregation of a styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid latex using a flocculent (poly(aluminum chloride)) followed by particle coalescence at elevated temperature. The polymeric latex was prepared by the emulsion polymerization of styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid (monomer ratio 81.5 parts by weight styrene, 18 parts by weight n-butyl acrylate, 0.5 parts by weight of styrene sulfonate sodium salt, 2 parts by weight acrylic acid) without a nonionic surfactant and without an anionic surfactant. The solution consisted of 40.0 percent by weight solids as follows; 277.92 kilograms of styrene, 61.38 kilograms of n-butyl acrylate, 1.7 kilograms of styrene sulfonate sodium salt, 6.52 kilograms of acrylic acid, 3.41 kilograms of carbon tetrabromide, and 11.2 kilograms of dodecanethiol were mixed with 461 kilograms of deionized water and 3.41 kilograms of ammonium persulfate polymerization initiator dissolved in 50 kilograms of deionized water. The emulsion thus formed was polymerized at 70° C. for 3 hours, followed by heating to 85° C. for an additional 1 hour. The resulting self stabilized latex contained 59.5 percent by weight water and 40.5 percent by weight solids, which solids comprised particles of a random copolymer; the glass transition temperature of the latex dry sample was 48° C., as measured on a DuPont DSC. The latex had a weight average molecular weight of 30,600 and a number average molecular weight of 5,000 as determined with a Waters gel permeation chromatograph. The particle size of the latex as measured on a Disc Centrifuge was 278 nanometers.




From the latex thus prepared 50 grams was diluted with 100 milliliters of water in a 250 milliliter beaker for a solids loading of 20 grams. The pH of the slurry was not adjusted. Into this stirred solution was dissolved the oxidant ammonium persulfate (3.7 grams; 0.0162 mole). After 15 minutes, 2.0 grams (0.0141 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) diluted in 5 milliliters of acetonitrile was added to the solution. The molar ratio of oxidant to EDOT was 1.1:1, and EDOT was present in an amount of 10 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The particles were then dried with a freeze dryer for 48 hours. The average particle size of the toner particles was in the nanometer size range. The bulk conductivity of this sample when pressed into a pellet was 1.3×10


−7


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was −3.6 microCoulombs per gram.




EXAMPLE IV




Unpigmented toner particles were prepared by the method described in Comparative Example B. Into a 250 milliliter beaker was added 150 grams of a pigmentless toner size particle slurry (average particle diameter 5.7 microns; particle size distribution GSD 1.24) providing a total of 11.25 grams of solid material in the solution. The pH of the solution was then adjusted by adding the dopant para-toluene sulfonic acid (PTSA) until the pH was 2.73. Into this stirred solution was dissolved the oxidant ferric chloride (1.3 grams; 8.0 mmole). After 15 minutes, 0.45 grams (3.17 mmole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of oxidant to EDOT was 2.5:1, and EDOT was present in an amount of 4 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The resulting greyish toner particles (with the slight coloration being the result of the PEDOT particle coating) were washed 6 times with distilled water and then dried with a freeze dryer for 48 hours. The chemical oxidative polymerization of EDOT to produce PEDOT occurred on the toner particle surfaces, and the particle surfaces were rendered slightly conductive by the presence of the sulfonate groups from the toner particle surfaces and by the added pTSA. The average particle size of the toner particles was 5.1 microns and the particle size distribution was 1.22. The bulk conductivity of this sample when pressed into a pellet was 1.7×10


−13


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was +15.8 microCoulombs per gram.




EXAMPLE V




Toner particles were prepared by aggregation of a styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid latex using a flocculent (poly(aluminum chloride)) followed by particle coalescence at elevated temperature. The polymeric latex was prepared by the emulsion polymerization of styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid (monomer ratio 81.5 parts by weight styrene, 18 parts by weight n-butyl acrylate, 0.5 parts by weight of styrene sulfonate sodium salt, 2 parts by weight acrylic acid) without a nonionic surfactant and without an anionic surfactant. The solution consisted of 40.0 percent by weight solids as follows; 277.92 kilograms of styrene, 61.38 kilograms of n-butyl acrylate, 1.7 kilograms of styrene sulfonate sodium salt, 6.52 kilograms of acrylic acid, 3.41 kilograms of carbon tetrabromide, and 11.2 kilograms of dodecanethiol were mixed with 461 kilograms of deionized water and 3.41 kilograms of ammonium persulfate polymerization initiator dissolved in 50 kilograms of deionized water. The emulsion thus formed was polymerized at 70° C. for 3 hours, followed by heating to 85° C. for an additional 1 hour. The resulting self stabilized latex contained 59.5 percent by weight water and 40.5 percent by weight solids, which solids comprised particles of a random copolymer; the glass transition temperature of the latex dry sample was 48° C., as measured on a DuPont DSC. The latex had a weight average molecular weight of 30,600 and a number average molecular weight of 5,000 as determined with a Waters gel permeation chromatograph. The particle size of the latex as measured on a Disc Centrifuge was 278 nanometers.




From the latex thus prepared 50 grams was diluted with 100 milliliters of water in a 250 milliliter beaker for a solids loading of 20 grams. The pH of the slurry was not adjusted. Into this stirred solution was dissolved the oxidant ferric chloride (5.7 grams; 0.0352 mole). After 30 minutes, 2.0 grams (0.0141 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of oxidant to EDOT was 2.5:1, and EDOT was present in an amount of 10 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The particles were then dried with a freeze dryer for 48 hours. The average particle size of the toner particles was in the nanometer size range. The bulk conductivity of this sample when pressed into a pellet was 3.5×10


−9


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was +4.1 microCoulombs per gram.




EXAMPLE VI




Toner particles were prepared by aggregation of a styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid latex using a flocculent (poly(aluminum chloride)) followed by particle coalescence at elevated temperature. The polymeric latex was prepared by the emulsion polymerization of styrene/n-butyl acrylate/styrene sulfonate sodium salt/acrylic acid (monomer ratio 81.5 parts by weight styrene, 18 parts by weight n-butyl acrylate, 0.5 parts by weight of styrene sulfonate sodium salt, 2 parts by weight acrylic acid) without a nonionic surfactant and without an anionic surfactant. The solution consisted of 40.0 percent by weight solids as follows; 277.92 kilograms of styrene, 61.38 kilograms of n-butyl acrylate, 1.7 kilograms of styrene sulfonate sodium salt, 6.52 kilograms of acrylic acid, 3.41 kilograms of carbon tetrabromide, and 11.2 kilograms of dodecanethiol were mixed with 461 kilograms of deionized water and 3.41 kilograms of ammonium persulfate polymerization initiator dissolved in 50 kilograms of deionized water. The emulsion thus formed was polymerized at 70° C. for 3 hours, followed by heating to 85° C. for an additional 1 hour. The resulting self stabilized latex contained 59.5 percent by weight water and 40.5 percent by weight solids, which solids comprised particles of a random copolymer; the glass transition temperature of the latex dry sample was 48° C., as measured on a DuPont DSC. The latex had a weight average molecular weight of 30,600 and a number average molecular weight of 5,000 as determined with a Waters gel permeation chromatograph. The particle size of the latex as measured on a Disc Centrifuge was 278 nanometers.




From the latex thus prepared 50 grams was diluted with 100 milliliters of water in a 250 milliliter beaker for a solids loading of 20 grams. The pH of the slurry was not adjusted. Into this stirred solution was dissolved the oxidant ferric chloride (1.15 grams; 7.09 mmole). After 15 minutes, 2.0 grams (0.0141 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of oxidant to EDOT was 0.5:1, and EDOT was present in an amount of 10 percent by weight of the toner particles. The reaction was stirred overnight at room temperature. The particles were then dried with a freeze dryer for 48 hours. The average particle size of the toner particles was in the nanometer size range. The bulk conductivity of this sample when pressed into a pellet was 1.5×10


−7


Siemens per centimeter. The triboelectric charge measured by the method and with the carrier described in Comparative Example A was +7.1 microCoulombs per gram.




EXAMPLE VII




The processes of Examples I through VI are repeated except that equimolar amounts of 3,4-ethylenedioxypyrrole are substituted for the 3,4-ethylenedioxythiophene. It is believed that similar results will be obtained.




EXAMPLE VIII




A black toner composition is prepared as follows. 92 parts by weight of a styrene-n-butylmethacrylate polymer containing 58 percent by weight styrene and 42 percent by weight n-butylmethacrylate, 6 parts by weight of Regal 330® carbon black from Cabot Corporation, and 2 parts by weight of cetyl pyridinium chloride are melt blended in an extruder wherein the die is maintained at a temperature of between 130 and 145° C. and the barrel temperature ranges from about 80 to about 100° C., followed by micronization and air classification to yield toner particles of a size of 12 microns in volume average diameter.




The black toner of 12 microns thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene). Into a 500 milliliter beaker containing 250 grams of deionized water is dissolved 15.312 grams (0.044 mole) of a sulfonated water soluble surfactant sodium dodecylbenzene sulfonate (SDBS available from Aldrich Chemical Co., Milwaukee, Wis.). The sulfonated surfactant also functions as a dopant to rendered the PEDOT polymer conductive. To the homogeneous solution is added 25 grams of the dried 12 micron black toner particles. The slurry is stirred for two hours to allow the surfactant to wet the toner surface and produce a well-dispersed toner slurry without any agglomerates of toner. The toner particles are loaded at 10 percent by weight of the slurry. After 2 hours, 2.5 grams (0.0176 mole) of 3,4-ethylenedioxythiophene monomer is added to the solution. The molar ratio of dopant to EDOT is 2.5:1, and EDOT is present in an amount of 10 percent by weight of the toner particles. After 2 hours, the dissolved oxidant (ammonium persulfate 5.02 grams (0.0219 mole) in 10 milliliters of deionized water) is added dropwise over a 10 minute period. The molar ratio of oxidant to EDOT is 1.25:1. The solution is stirred overnight at room temperature and then allowed to stand for 3 days. The particles are then washed and dried. It is believed that the resulting conductive black toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE IX




A red toner composition is prepared as follows. 85 parts by weight of styrene butadiene, 1 part by weight of distearyl dimethyl ammonium methyl sulfate, available from Hexcel Corporation, 13.44 parts by weight of a 1:1 blend of styrene-n-butylmethacrylate and Lithol Scarlet NB3755 from BASF, and 0.56 parts by weight of Hostaperm Pink E from Hoechst Corporation are melt blended in an extruder wherein the die is maintained at a temperature of between 130 and 145° C. and the barrel temperature ranges from about 80 to about 100° C., followed by micronization and air classification to yield toner particles of a size of 11.5 microns in volume average diameter.




The red toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive red toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE X




A blue toner is prepared as follows. 92 parts by weight of styrene butadiene, 1 part by weight of distearyl dimethyl ammonium methyl sulfate, available from Hexcel Corporation, and 7 parts by weight of PV Fast Blue from BASF are melt blended in an extruder wherein the die is maintained at a temperature of between 130 and 145° C. and the barrel temperature ranges from about 80 to about 100° C., followed by micronization and air classification to yield toner particles of a size of 12 microns in volume average diameter.




The blue toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive blue toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE XI




A green toner is prepared as follows. 89.5 parts by weight of styrene butadiene, 0.5 part by weight of distearyl dimethyl ammonium methyl sulfate, available from Hexcel Corporation,


5


parts by weight of Sudan Blue from BASF, and 5 parts by weight of Permanent FGL Yellow from E. I. Du Pont de Nemours and Company are melt blended in an extruder wherein the die is maintained at a temperature of between 130 and 145° C. and the barrel temperature ranges from about 80 to about 100° C., followed by micronization and air classification to yield toner particles of a size of 12.5 microns in volume average diameter.




The green toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive green toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE XII




A microencapsulated toner is prepared using the following procedure. Into a 250 milliliter polyethylene bottle is added 39.4 grams of a styrene monomer (Polysciences Inc.), 26.3 grams of an n-butyl methacrylate monomer (Polysciences Inc.), 43.8 grams of a 52/48 ratio of styrene/n-butyl methacrylate copolymer resin, 10.5 grams of Lithol Scarlet D3700 pigment (BASF), and 5 millimeter diameter ball bearings which occupy 40 to 50 percent by volume of the total sample. This sample is ball milled for 24 to 48 hours to disperse the pigment particles into the monomer/polymer mixture. The composition thus formed comprises about 7 percent by weight of pigment, about 20 percent by weight of shell polymer, and about 73 percent by weight of the mixture of core monomers and polymers, which mixture comprises about 40 percent by weight of a styrene-n-butyl methacrylate copolymer with about 52 percent by weight of styrene and about 48 percent by weight of n-butyl methacrylate, about 35 percent by weight of styrene monomer, and about 24 percent by weight of n-butyl methacrylate monomer. After ball milling, 250 milliliters of the pigmented monomer solution is transferred into another polyethylene bottle, and into the solution is dispersed with a Brinkmann PT45/80 homogenizer and a PTA-20TS probe for 1 minute at 6,000 rpm 10.2 grams of terephthaloyl chloride (Fluka), 8.0 grams of 1,3,5-benzenetricarboxylic acid chloride, (Aldrich), 263 grams of 2,2′-azo-bis(2,4-dimethylvaleronitrile), (Polysciences Inc.), and 0.66 grams of 2,2′-azo-bis-isobutyronitrile (Polysciences Inc.). Into a stainless steel 2 liter beaker containing 500 milliliters of an about 2.0 percent by weight polyvinylalcohol solution, weight-average molecule weight 96,000, about 88 percent by weight hydrolyzed (Scientific Polymer Products), and 0.5 milliliters of 2-decanol (Aldrich), is dispersed the above pigmented monomer solution with a Brinkmann PT45/80 homogenizer and a PTA-35/4G probe at 10,000 rpm for 3 minutes. The dispersion is performed in a cold water bath at 15° C. This mixture is transferred into a 2 liter glass reactor equipped with a mechanical stirrer and an oil bath under the beaker. While stirring the solution vigorously, an aqueous solution of 8.0 grams of diethylene triamine (Aldrich), 5.0 grams of 1,6-hexanediamine (Aldrich), and 25 milliliters of distilled water is added dropwise over a 2 to 3 minute period. Simultaneously, from a separatory dropping funnel a basic solution comprising 13.0 grams of sodium carbonate (Baker) and 30 milliliters of distilled water is also added dropwise over a 10 minute period. After complete addition of the amine and base solutions, the mixture is stirred for 2 hours at room temperature. During this time the interfacial polymerization occurs to form a polyamide shell around the core material. While still stirring, the volume of the reaction mixture is increased to 1.5 liters with distilled water, and an aqueous solution containing 3.0 grams of potassium iodide (Aldrich) dissolved in 10.0 milliliters of distilled water is added. After the initial 2 hours and continuous stirring, the temperature is increased to 65° C. for 4 hours to initiate the free radical polymerization of the core. Following this 4 hour period, the temperature is increased again to 85° C. for 8 hours to complete the core polymerization and to minimize the amount of residual monomers encapsulated by the shell. The solution is then cooled to room temperature and is washed 7 times with distilled water by settling and decanting off the supernatant.




Particle size is determined by screening the particles through 425 and 250 micron sieves and then spray drying using a Yamato-Ohkawara spray dryer model DL-41. The average particle size is about 14.5 microns with a GSD of 1.7 as determined with a Coulter Counter.




While the toner particles are still suspended in water (prior to drying and measuring particle size), the particle surfaces are treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer and doped to produce a conductive polymeric shell on top of the polyamide shell encapsulating the red toner core. Into a 250 milliliter beaker is added 150 grams of the red toner particle slurry thus prepared, providing a total of 25.0 grams of solid material in the solution. The solution is then further diluted with deionized water to create a 250 gram particle slurry. Into this stirred solution is added 8.37 grams (0.0440 mole) of the dopant para-toluene sulfonic acid (p-TSA). After 15 minutes, 2.5 grams (0.0176 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) is added to the solution. The molar ratio of dopant to EDOT is 2.5:1, and EDOT is present in an amount of 10 percent by weight of the toner particles. After 2 hours, the dissolved oxidant (ammonium persulfate 5.02 grams (0.0219 mole) in 10 milliliters of deionized water) is added dropwise over a 10 minute period. The molar ratio of oxidant to EDOT is 1.25:1. The solution is stirred overnight at room temperature and then allowed to stand for 3 days. The particles are washed once with distilled water and then dried with a freeze dryer for 48 hours. The chemical oxidative polymerization of EDOT to produce PEDOT occurs on the toner particle surfaces, and the particle surfaces are rendered conductive by the presence of the dopant sulfonate groups. It is believed that the average bulk conductivity of a pressed pellet of this toner will be about 10


−4


to about 10


−3


Siemens per centimeter.




EXAMPLE XIII




A microencapsulated toner is prepared using the following procedure. Into a 250 milliliter polyethylene bottle is added 10.5 grams of Lithol Scarlet D3700 (BASF), 52.56 grams of styrene monomer (Polysciences Inc.), 35.04 grams of n-butyl methacrylate monomer (Polysciences Inc.), 21.9 grams of a 52/48 ratio of styrene/n-butyl methacrylate copolymer resin, and 5 millimeter diameter ball bearings which occupy 40 percent by volume of the total sample. This sample is ball milled overnight for approximately 17 hours to disperse the pigment particles into the monomer/polymer mixture. The composition thus formed comprises 7 percent by weight pigment, 20 percent by weight shell material, and 73 percent by weight of the mixture of core monomers and polymers, wherein the mixture comprises 20 percent polymeric resin, a 52/48 styrene/n-butyl methacrylate monomer ratio, 48 percent styrene monomer, and 32 percent n-butyl methacrylate. After ball milling, the pigmented monomer solution is transferred into another 250 milliliter polyethylene bottle, and into this is dispersed with a Brinkmann PT45/80 homogenizer and a PTA-20TS generator probe at 5,000 rpm for 30 seconds 12.0 grams of sebacoyl chloride (Aldrich), 8.0 grams of 1,35-benzenetricarboxylic acid chloride (Aldrich), 1.8055 grams of 2,2′-azo-bis(2,3-dimethylvaleronitrile), (Polysciences Inc.), and 0.5238 gram of 2,2′-azo-bis-isobutyronitrile, (Polysciences Inc.). Into a stainless steel 2 liter beaker containing 500 milliliters of 2.0 percent polyvinylalcohol solution, weight-average molecular weight 96,000, 88 percent hydrolyzed (Scientific Polymer Products), 0.3 gram of potassium iodide (Aldrich), and 0.5 milliliter of 2-decanol (Aldrich) is dispersed the above pigmented organic phase with a Brinkmann PT45/80 homogenizer and a PTA-20TS probe at 10,000 rpm for 1 minute. The dispersion is performed in a cold water bath at 15° C. This mixture is transferred into a 2 liter glass reactor equipped with a mechanical stirrer and an oil bath under the beaker. While stirring the solution vigorously, an aqueous solution of 8.0 grams of diethylene triamine (Aldrich), 5.0 grams of 1,6-hexanediamine (Aldrich), and 25 milliliters of distilled water is added dropwise over a 2 to 3 minute period. Simultaneously, from a separatory dropping funnel a basic solution comprising 13.0 grams of sodium carbonate (Baker) and 30 milliliters of distilled water is also added dropwise over a 10 minute period. After complete addition of the amine and base solutions, the mixture is stirred for 2 hours at room temperature. During this time, interfacial polymerization occurs to form a polyamide shell around the core materials. While stirring, the volume of the reaction mixture is increased to 1.5 liters with distilled water, followed by increasing the temperature to 54° C. for 12 hours to polymerize the core monomers. The solution is then cooled to room temperature and is washed 7 times with distilled water by settling the particles and decanting off the supernatant. Before spray drying, the particles are screened through 425 and 250 micron sieves and then spray dried using a Yamato-Ohkawara spray dryer model DL-41 with an inlet temperature of 120° C. and an outlet temperature of 65° C. The average particle size is about 14.5 microns with a GSD value of 1.66 as determined with a Coulter Counter.




While the toner particles are still suspended in water (prior to drying and measuring particle size), the particle surfaces are treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer and doped to produce a conductive polymeric shell on top of the shell encapsulating the toner core by the method described in Example XII. It is believed that the average bulk conductivity of a pressed pellet of the resulting toner will be about 10


−4


to about 10


−3


Siemens per centimeter.




EXAMPLE XIV




A microencapsulated toner is prepared by the following procedure. Into a 250 milliliter polyethylene bottle is added 13.1 grams of styrene monomer (Polysciences Inc.), 52.6 grams of n-butyl methacrylate monomer (Polysciences Inc.), 33.3 grams of a 52/48 ratio of styrene/n-butyl methacrylate copolymer resin, and 21.0 grams of a mixture of Sudan Blue OS pigment (BASF) flushed into a 65/35 ratio of styrene/n-butyl methacrylate copolymer resin wherein the pigment to polymer ratio is 50/50. With the aid of a Burrell wrist shaker, the polymer and pigment are dispersed into the monomers for 24 to 48 hours. The composition thus formed comprises 7 percent by weight of pigment, 20 percent by weight shell, and 73 percent by weight of the mixture of core monomers and polymers, which mixture comprises 9.6 percent copolymer resin (65/35 ratio of styrene/n-butyl methacrylate monomers), 30.4 percent copolymer resin (52/48 ratio of styrene/n-butyl methacrylate monomers), 12 percent styrene monomer, and 48.0 percent n-butyl methacrylate monomer. Once the pigmented monomer solution is homogeneous, into this mixture is dispersed with a Brinkmann PT45/80 homogenizer and a PTA-20TS probe for 30 seconds at 5,000 rpm 20.0 grams of liquid isocyanate (tradename Isonate 143L or liquid MDI), (Upjohn Polymer Chemicals), 1.314 grams of 2,2′-azo-bis(2,4-dimethylvaleronitrile) (Polysciences Inc.), and 0.657 gram of 2,2′-azo-bis-isobutyronitrile (Polysciences Inc.). Into a stainless steel 2 liter beaker containing 600 milliliters of 1.0 percent polyvinylalcohol solution, weight-average molecular weight 96,000, 88 percent hydrolized (Scientific Polymer Products) and 0.5 milliliters of 2-decanol (Aldrich) is dispersed the above pigmented monomer solution with a Brinkmann PT45/80 homogenizer and a PTA-35/4G probe at 10,000 rpm for 1 minute. The dispersion is performed in a cold water bath at 15° C. This mixture is transferred into a 2 liter reactor equipped with a mechanical stirrer and an oil bath under the beaker. While stirring the solution vigorously, an aqueous solution of 5.0 grams of diethylene triamine (Aldrich), 5.0 grams of 1,6-hexanediamine (Aldrich), and 100 milliliters of distilled water is poured into the reactor and the mixture is stirred for 2 hours at room temperature. During this time interfacial polymerization occurs to form a polyurea shell around the core material. While still stirring, the volume of the reaction mixture is increased to 1.5 liters with 1.0 percent polyvinylalcohol solution and an aqueous solution containing 0.5 gram of potassium iodide (Aldrich) dissolved in 10.0 milliliters of distilled water is added. The pH of the solution is adjusted to pH 7 to 8 with dilute hydrochloric acid (BDH) and is then heated for 12 hours at 85° C. while still stirring. During this time, the monomeric material in the core undergoes free radical polymerization to complete formation of the core material. The solution is cooled to room temperature and is washed 7 times with distilled water. The particles are screened wet through 425 and 250 micron sieves and then spray dried using a Yamato-Ohkawara spray dryer model DL-41. The average particle size is about 164 microns with a GSD of 1.41 as determined by a Coulter Counter.




While the toner particles are still suspended in water (prior to drying and measuring particle size), the particle surfaces are treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer and doped to produce a conductive polymeric shell on top of the shell encapsulating the toner core by the method described in Example XII. It is believed that the average bulk conductivity of a pressed pellet of the resulting toner will be about 10


−4


to about 10


−3


Siemens per centimeter.




EXAMPLE XV




Toner particles comprising about 92 percent by weight of a poly-n-butylmethacrylate resin with an average molecular weight of about 68,000, about 6 percent by weight of Regal® 330 carbon black, and about 2 percent by weight of cetyl pyridinium chloride are prepared by the extrusion process and have an average particle diameter of 11 microns.




The black toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive black toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE XVI




A blue toner composition is prepared containing 90.5 percent by weight Pliotone® resin (obtained from Goodyear), 7.0 percent by weight PV Fast Blue B2G-A pigment (obtained from Hoechst-Celanese), 2.0 percent by weight Bontron E-88 aluminum compound charge control agent (obtained from Orient Chemical, Japan), and 0.5 percent by weight cetyl pyridinium chloride charge control agent (obtained from Hexcel Corporation). The toner components are first dry blended and then melt mixed in an extruder. The extruder strands are cooled, chopped into small pellets, ground into toner particles, and then classified to narrow the particle size distribution. The toner particles have a particle size of 12.5 microns in volume average diameter.




The blue toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive blue toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE XVII




A red toner composition is prepared as follows. 91.72 parts by weight Pliotone® resin (obtained from Goodyear), 1 part by weight distearyl dimethyl ammonium methyl sulfate (obtained from Hexcel Corporation), 6.72 parts by weight Lithol Scarlet NB3755 pigment (obtained from BASF), and 0.56 parts by weight Magenta Predisperse (Hostaperm Pink E pigment dispersed in a polymer resin, obtained from Hoechst-Celanese) are melt blended in an extruder wherein the die is maintained at a temperature of between 130 and 145° C. and the barrel temperature ranges from about 80 to about 100° C., followed by micronization and air classification to yield toner particles of a size of 12.5 microns in volume average diameter.




The red toner thus prepared is then resuspended in an aqueous surfactant solution and surface treated by oxidative polymerization of 3,4-ethylenedioxythiophene monomer to render the insulative toner surface conductive by a shell of intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) by the method described in Example VIII. It is believed that the resulting conductive red toner particles will have a bulk conductivity in the range of 10


−4


to 10


−3


Siemens per centimeter.




EXAMPLE XVIII




The processes of Examples VIII through XVII are repeated except that equimolar amounts of 3,4-ethylenedioxypyrrole are substituted for the 3,4-ethylenedioxythiophene. It is believed that similar results will be obtained.




EXAMPLE XIX




The processes of Examples VIII through XVIII are repeated except that equimolar or greater amounts of ferric chloride are substituted for the ammonium persulfate. It is believed that similar results will be obtained except that the materials will become positively charged instead of negatively charged when triboelectrically charged with the carrier described in Comparative Example A.




EXAMPLE XX




A linear sulfonated random copolyester resin comprising 46.5 mole percent terephthalate, 3.5 mole percent sodium sulfoisophthalate, 47.5 mole percent 1,2-propanediol, and 2.5 mole percent diethylene glycol was prepared as follows. Into a 5 gallon Parr reactor equipped with a bottom drain valve, double turbine agitator, and distillation receiver with a cold water condenser were charged 3.98 kilograms of dimethylterephthalate, 451 grams of sodium dimethyl sulfoisophthalate, 3.104 kilograms of 1,2-propanediol (1 mole excess of glycol), 351 grams of diethylene glycol (1 mole excess of glycol), and 8 grams of butyltin hydroxide oxide catalyst. The reactor was then heated to 165° C. with stirring for 3 hours whereby 1.33 kilograms of distillate were collected in the distillation receiver, and which distillate comprised about 98 percent by volume methanol and 2 percent by volume 1,2-propanediol as measured by the ABBE refractometer available from American Optical Corporation. The reactor mixture was then heated to 190° C. over a one hour period, after which the pressure was slowly reduced from atmospheric pressure to about 260 Torr over a one hour period, and then reduced to 5 Torr over a two hour period with the collection of approximately 470 grams of distillate in the distillation receiver, and which distillate comprised approximately 97 percent by volume 1,2-propanediol and 3 percent by volume methanol as measured by the ABBE refractometer. The pressure was then further reduced to about 1 Torr over a 30 minute period whereby an additional 530 grams of 1,2-propanediol were collected. The reactor was then purged with nitrogen to atmospheric pressure, and the polymer product discharged through the bottom drain onto a container cooled with dry ice to yield 5.60 kilograms of 3.5 mole percent sulfonated polyester resin, sodio salt of (1,2-propylenedipropylene-5-sulfoisophthalate)-copoly (1,2-propylene-dipropylene aterephthalate). The sulfonated polyester resin glass transition temperature was measured to be 56.6° C. (onset) utilizing the 910 Differential Scanning Calorimeter available from E.I. DuPont operating at a heating rate of 10° C. per minute. The number average molecular weight was measured to be 3,250 grams per mole, and the weight average molecular weight was measured to be 5,290 grams per mole using tetrahydrofuran as the solvent.




A 15 percent by weight solids concentration of the colloidal sulfonated polyester resin dissipated in an aqueous medium as prepared by first heating 2 liters of deionized water to 85° C. with stirring and adding thereto 300 grams of a sulfonated polyester resin, followed by continued heating at about 85° C. and stirring of the mixture for a duration of from about one to about two hours, followed by cooling to room temperature (about 25° C.). The colloidal solution of the sodio-sulfonated polyester resin particles had a characteristic blue tinge and particle sizes in the range of from about 5 to about 150 nanometers, and typically in the range of 20 to 40 nanometers, as measured by a NiCOMP® Particle Size Analyzer.




A 2 liter colloidal solution containing 15 percent by weight of the sodio sulfonated polyester resin was then charged into a 4 liter kettle equipped with a mechanical stirrer. To this solution was added 42 grams of a carbon black pigment dispersion containing 30 percent by weight of Regal® 330 (available from Cabot, Inc.), and the resulting mixture was heated to 56° C. with stirring at about 180 to 200 revolutions per minute. To this heated mixture was then added dropwise 760 grams of an aqueous solution containing 5 percent by weight of zinc acetate dihydrate. The dropwise addition of the zinc acetate dihydrate solution was accomplished utilizing a peristaltic pump, at a rate of addition of about 2.5 milliliters per minute. After the addition was complete (about 5 hours), the mixture was stirred for an additional 3 hours. A sample (about 1 gram) of the reaction mixture was then retrieved from the kettle, and a particle size of 5.9 microns with a GSD of 1.16 was measured with a Coulter Counter. The mixture was then allowed to cool to room temperature (about 25° C.) overnight (about 18 hours) with stirring. The product Was then filtered through a 3 micron hydrophobic membrane cloth and the toner cake was reslurried into about 2 liters of deionized water and stirred for about 1 hour. The toner slurry was refiltered and dried with a freeze drier for 48 hours. The uncoated cyan polyester toner particles with average particle size of 5.9 microns and GSD of 1.16 were pressed into a pellet and the average bulk conductivity was measured to be σ=1.4×10


−12


Siemens per centimeter.




Into a 250 milliliter glass beaker was placed 75 grams of distilled water along with 6.0 grams of the resultant black polyester toner prepared as described above. This dispersion was then stirred with the aid of a magnetic stirrer to achieve an essentially uniform dispersion of polyester particles in the water. To this dispersion was added 1.01 grams of pyrrole monomer. The pyrrole monomer, with the aid of further stirring, dissolved in under 5 minutes. In a separate 50 milliliter beaker, 10.0 grams of ferric chloride were dissolved in 25 grams of distilled water. Subsequent to the dissolution of the ferric chloride, this solution was added dropwise to the toner in water/pyrrole dispersion. The beaker containing the toner, pyrrole, and ferric chloride was then covered and left overnight under continuous stirring. The toner dispersion was thereafter filtered and the supernatant aqueous solution was measured for conductivity (71 milliSiemens per centimeter). After filtration the toner was washed twice in 600 milliliters of distilled water, filtered, and freeze dried.




The dried product was then submitted for a triboelectric charging measurement. The conductive toner particles were charged by blending 24 grams of carrier particles (65 micron Hoegänes core having a coating in an amount of 1 percent by weight of the carrier, said coating comprising a mixture of poly(methyl methacrylate) and SC Ultra carbon black in a ratio of 80 to 20 by weight) with 1.0 gram of toner particles to produce a developer with a toner concentration (Tc) of 4 weight percent. This mixture was conditioned overnight at 50 percent relative humidity at 22° C., followed by roll milling the developer (toner and carrier) for 30 minutes at 80° F. and 80 percent relative humidity to reach a stable developer charge. The total toner blow off method was used to measure the average charge ratio (Q/M) of the developer with a Faraday Cage apparatus (such as described at column 11, lines 5 to 28 of U.S. Pat. No. 3,533,835, the disclosure of which is totally incorporated herein by reference). The conductive particles reached a triboelectric charge of +0.56 microCoulombs per gram. In a separate experiment another 1.0 gram of these toner particles were roll milled for 30 minutes with carrier while at 50° F. and 20 percent relative humidity. In this instance the triboelectric charge reached +1.52 microCoulombs per gram.




The measured average bulk conductivity of a pressed pellet of this toner was 1.1×10


−2


Siemens per centimeter.




This example demonstrates a positive charging tribo value at both environmental conditions studied (i.e., at 80° F. and 80 percent relative humidity and at 50° F. with 20 percent relative humidity).




EXAMPLE XXI




Black toner particles were prepared by aggregation of a polyester latex with a carbon black pigment dispersion as described in




EXAMPLE XX




Into a 250 milliliter glass beaker was placed 150 grams of distilled water along with 12.0 grams of the black polyester toner. This dispersion was then stirred with the aid of a magnetic stirrer to achieve an essentially uniform dispersion of polyester particles in the water. To this dispersion was added 2.03 grams of pyrrole monomer. The pyrrole monomer, with the aid of further stirring, dissolved in under 5 minutes. To the solution was then added 2.87 grams of p-toluene sulfonic acid. After dissolution of this acid and 30 minutes of stirring, the pH of the solution was measured to be 1.50 with an Accumet Research AR 20 pH meter. In a separate 50 milliliter beaker, 17.1 grams of ammonium persulfate were dissolved in 25 grams of distilled water. Subsequent to the dissolution of the ammonium persulfate, this solution was then added dropwise to the toner in water/pyrrole/p-toluene sulfonic acid dispersion. The beaker containing the toner, pyrrole, p-toluene sulfonic acid, and ammonium persulfate was then covered and left overnight under continuous stirring. The toner dispersion was thereafter filtered and the supernatant aqueous solution was measured for conductivity (96 milliSiemens per centimeter). After filtration, the toner was washed twice in 600 milliliters of distilled water, filtered, and freeze dried.




The dried product was then submitted for a triboelectric charging measurement. The conductive toner particles were blended with carrier particles and triboelectric charging was measured as described in Example XX. This mixture was conditioned overnight at 50 percent relative humidity at 22° C., followed by roll milling the developer (toner and carrier) for 30 minutes at 80° F. and 80 percent relative humidity to reach a stable developer charge. The conductive particles reached a triboelectric charge of −3.85 microcoulombs per gram. The triboelectric charge measured for this mixture of toner and carrier roll milled for 30 minutes at 50° F. and 20 percent relative humidity was measured to be −5.86 microCoulombs per gram.




The measured average bulk conductivity of a pressed pellet of this toner was 1.1×10


−2


Siemens per centimeter.




This example demonstrates a negative charging tribo value.




EXAMPLE XXII




Additional toners are prepared as described in Examples XX and XXI, varying the relative amount of p-toluene sulfonic acid (mole ratio p-TSA, a ratio of the relative amount of p-TSA by mole percent used with respect to the relative amount by mole percent of pyrrole) and the relative amount of pyrrole (wt. % pyrrole, a measurement of the relative amount of pyrrole by weight used with respect to the relative amount by weight of toner particles). Testing of these toners for conductivity (measured in Siemens per centimeter), tribo charging at 80° F. and 80 percent relative humidity (Q/M A zone, measured in microCoulombs per gram) and at 50° F. and 20 percent relative humidity (Q/M C zone, measured in microCoulombs per gram), and percent cohesion indicated the following:






















mole












ratio




wt. %




Q/M A




Q/M C




conduc-




% cohe-






Toner




p-TSA




pyrrole




zone




zone




tivity




sion





























1




0




0




−7.02




−13.49




9.6 × 10


−11






93.8






(control)






2




2:1




8.4




−2.58




−3.70




9.0 × 10


−5






94.9






3




1:1




16.8




−3.53




−4.39




9.8 × 10


−5






89.7






4




0.5:1  




8.4




−5.76




−5.89




1.8 × 10


−5






96.6






5




1:1




8.4




−4.09




−3.56




1.0 × 10


−5






98.1






6




2:1




16.8




−2.87




−2.58




1.3 × 10


−2






86.4














EXAMPLE XXIII




The processes of Examples XX, XXI, and YXXII are repeated except that the pyrrole is replaced with an equimolar amount of thiophene. It is believed that similar results will be observed.




EXAMPLE XXIV




A Ballistic Aerosol Marking (BAM) printing test fixture is built wherein toner particles are ejected from BAM venturi structure pipes onto a substrate for direct marking studies. The substrate moves at 0.4 millimeters per second. A cylinder of dry compressed gas (either nitrogen or ambient air) equipped with a gas regulator and gas line is split into two streams by a second pressure regulator. The toner supply air line is reduced in pressure using a third gas pressure regulator which has an operating range from 0 to 50 psi. This air supply is fed into a BAM toner flow cell used to fluidize the toner and create an aerosol toner stream into the toner compartment which continuously gates toner into the BAM venturi pipes.




About 1 to 3 grams of toner is placed on top of a porous glass frit inside the BAM flow cell device of the print test fixture. This flow cell consists of a cylindrical hollow column of plexiglass about 8 centimeters tall by 6 centimeters in diameter containing two porous glass frits. The toner is placed on the lower glass frit, which is about 4 centimeters from the bottom. The second glass frit is part of the removable top portion. A piezo actuator is also present in the flow cell to help produce a continuous aerosol stream of toner. The low pressure gas supply line is connected at the bottom of the flow cell and gas is evenly distributed through the lower glass frit to create a fluidized bed of toner in the gas stream. In the toner portion of the device is attached a {fraction (1/32)} inch diameter tube which is then connected to the toner reservoir hose barb of the BAM print head which contains the venturi structure BAM pipes. The fluidized toner is continuously ejected into the BAM pipes through this connecting tube.




The second gas stream operating at much higher pressures ranging from 20 to 100 psi is fed into the BAM venturi structure pipes through a {fraction (1/32)} inch tube connected to the BAM print head by a hose barb. The BAM printing chip is clamped in place at 1 millimeter distance from the substrate. The toner is ejected from the BAM channels in a horizontal direction onto a substrate moving in either a horizontal or vertical direction which is controlled by a Newport Universal Motion Controller/Driver model ESP 300. After capturing all of the toner on a substrate the print quality of the lines are evaluated using an optical microscope and the line width and toner scatter about the line is determined.




The toners of Examples III, V, and VI are incorporated into this test fixture and used to generate images. It is believed that the toners will perform well, that they will exhibit minimal or no clogging of the printing channels, and that they will generate images of desirable quality.




EXAMPLE XXV




Toner compositions are prepared as described in Examples I through XIX except that no dopant is employed. It is believed that the resulting toner particles will be relatively insulative and suitable for two-component development processes.




EXAMPLE XXVI




Toners are prepared as described in Examples I, II, IV, and XXV. The toners thus prepared are each admixed with a carrier as described in Comparative Example A to form developer compositions. The developers thus prepared are each incorporated into an electrophotographic imaging apparatus. In each instance, an electrostatic latent image is generated on the photoreceptor and eveloped with the developer. Thereafter the developed images are ransferred to paper substrates and affixed thereto by heat and ressure.




EXAMPLE XXVII




Toner particles were prepared by aggregation of a styrene/n-butyl acrylate/acrylic acid latex using a flocculate poly(aluminum chloride) followed by particle coalescence at elevated temperature. The polymeric latex was prepared by the emulsion polymerization of styrene/n-butyl acrylate/acrylic acid (monomer ratio 82 parts by weight styrene, 18 parts by weight n-butyl acrylate, 2 parts by weight acrylic acid) in a nonionic/anionic surfactant solution (40.0 percent by weight solids) as follows: 279.6 kilograms of styrene, 61.4 kilograms of n-butyl acrylate, 6.52 kilograms of acrylic acid, 3.41 kilograms of carbon tetrabromide, and 11.2 kilograms of dodecanethiol were mixed with 461 kilograms of deionized water, to which had been added 7.67 kilograms of sodium dodecyl benzene sulfonate anionic surfactant (Neogen RK; contained 60 percent active component), 3.66 kilograms of a nonophenol ethoxy nonionic surfactant (Antarox CA-897; contained 100 percent active material), and 3.41 kilograms of ammonium persulfate polymerization initiator dissolved in 50 kilograms of deionized water. The emulsion thus formed was polymerized at 70° C. for 3 hours, followed by heating to 85° C. for an additional 1 hour. The resulting latex contained 59.5 percent by weight water and 40.5 percent by weight solids, which solids comprised particles of a random copolymer of poly(styrene/n-butyl acrylate/acrylic acid); the glass transition temperature of the latex dry sample was 47.7° C., as measured on a DuPont DSC. The latex had a weight average molecular weight of 30,600 and a number average molecular weight of 4,400 as determined with a Waters gel permeation chromatograph. The particle size of the latex as measured on a Disc Centrifuge was 278 nanometers.




375 grams of the styrene/n-butyl acrylate/acrylic acid anionic latex thus prepared was then diluted with 761.43 grams of deionized water. The diluted latex solution was blended with an acidic solution of the flocculent, 3.345 grams of poly(aluminum chloride) in 7.86 grams of 1 molar nitric acid solution, using a high shear homogenizer at 4,000 to 5,000 revolutions per minute for 2 minutes, producing a flocculation or heterocoagulation of gelled particles consisting of nanometer sized latex particles. The slurry was heated at a controlled rate of 0.25° C. per minute to 53° C., at which point the average particle size was 5.2 microns and the particle size distribution was 1.20. At this point the pH of the solution was adjusted to 7.2 using 4 percent sodium hydroxide solution. The mixture was then heated at a controlled rate of 0.5° C. per minute to 95° C. Once the particle slurry reacted, the pH was dropped to 5.0 using 1 Molar nitric acid, followed by maintenance of the temperature at 95° C. for 6 hours. After cooling the reaction mixture to room temperature, the particles were washed and reslurried in deionized water. The average particle size of the toner particles was 5.6 microns and the particle size distribution was 1.24. A total of 5 washes were performed before the particle surface was treated by the in situ polymerization of the conductive polymer.




Into a 250 milliliter beaker was added 150 grams of the pigmentless toner size particle slurry (average particle diameter 5.6 microns; particle size distribution GSD 1.24) thus prepared, providing a total of 25.0 grams of solid material in the solution. The solution was then further diluted with deionized water to create a 250 gram particle slurry. The pH of the particle slurry was measured to be 6.02. Into this stirred solution was added 8.37 grams (0.0440 mole) of the dopant para-toluene sulfonic acid (p-TSA) and the pH was measured as 0.87. After 15 minutes, 2.5 grams (0.0176 mole) of 3,4-ethylenedioxythiophene monomer (EDOT) was added to the solution. The molar ratio of dopant to EDOT was 2.5:1, and EDOT was present in an amount of 10 percent by weight of the toner particles. After 2 hours, the dissolved oxidant (ammonium persulfate 5.02 grams (0.0219 mole) in 10 milliliters of deionized water) was added dropwise over a 10 minute period. The molar ratio of oxidant to EDOT was 1.25:1. The solution was stirred overnight at room temperature and then allowed to stand for 3 days. The resulting bluish toner particles (with the slight coloration being the result of the PEDOT particle coating) were washed 7 times with distilled water and then dried with a freeze dryer for 48 hours. The chemical oxidative polymerization of EDOT to produce PEDOT occurred on the toner particle surface, and the particle surfaces were rendered conductive by the presence of the sulfonate groups from the toner particle surfaces and by the added p-TSA. The measured average bulk conductivity of a pressed pellet of this toner was σ=4.9×10


−3


Siemens per centimeter. The bulk conductivity was remeasured one week later and found to be σ=3.7×10


−3


Siemens per centimeter. This remeasurement was done to determine if the conductivity level was stable over time.




The toner was evaluated for nonmagnetic inductive charging by placing the toner on a conductive (aluminum) grounded substrate and touching the toner with a 25 micron thick MYLAR® covered electrode held at a bias of +100 volts. Upon separation of the MYLAR® covered electrode from the toner, a monolayer of toner was adhered to the MYLAR®. The electrostatic surface potential of the induction charged monolayer was approximately −100 volts. The fact that the electrostatic surface potential is equal and opposite to the bias applied to the MYLAR® electrode indicates that the toner is sufficiently conducting to enable induction toner charging. The powder conductivity was measured to be 2.5×10


−5


Siemens per centimeter. This measured conductivity for the toner is consistent with the observed induction charging properties. The powder is more conductive than commercially available magnetic, conductive toner used in conventional single component development systems.




EXAMPLE XXVIII




Toners are prepared as described in Examples III and V to XXIII. The toners thus prepared are each tested by the method described in Example XXVII. It is believed that these materials will also be indicated to be nonmagnetically inductively chargeable.




Other embodiments and modifications of the present invention may occur to those of ordinary skill in the art subsequent to a review of the information presented herein; these embodiments and modifications, as well as equivalents thereof, are also included within the scope of this invention.



Claims
  • 1. A process which comprises (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected.
  • 2. A process according to claim 1 wherein the monomers are thiophenes.
  • 3. A process according to claim 2 wherein the monomers are of the formula wherein R and R′ each, independently of the other, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, a heterocyclic group, or mixtures thereof.
  • 4. A process according to claim 2 wherein the monomers are 3,4-ethylenedioxythiophenes.
  • 5. A process according to claim 4 wherein the monomers are of the formula wherein each of R1, R2, R3, and R4, independently of the others, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, or a heterocyclic group.
  • 6. A process according to claim 5 wherein R1 and R3 are hydrogen atoms and R2 and R4 are (a) R2=H, R4=H; (b) R2=(CH2)nCH3 wherein n=0-14, R4=H; (c) R2=(CH2)nCH3 wherein n=0-14, R4=(CH2)nCH3 wherein n=0-14; (d) R2=(CH2)nSO3—Na+ wherein n=1-6, R4=H; (e) R2=(CH2)nSO3—Na+ wherein n=1-6, R4=(CH2)nSO3—Na+ wherein n=1-6; (f) R2=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4, R4=H; or (g) R2=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4, R4=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4.
  • 7. A process according to claim 2 wherein the monomers, upon polymerization, form a poly(3,4-ethylenedioxythiophene) of the formula wherein each of R1, R2, R3, and R4, independently of the others, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group an aryalkyl group, an alkylaryl group, an arylalkyloxy group an alkylaryloxy group, or a heterocyclic group, D− is a dopant moiety, and n is an integer representing the number of repeat monomer units.
  • 8. A precess according to claim 1 wherein the monomers are pyrroles.
  • 9. A process according to claim 8 wherein the monomers are of the formula wherein R, R′, and R″ each, independently of the other, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, a heterocyclic group, or mixtures thereof, wherein R″ can further be an oligoether group.
  • 10. A process according to claim 8 wherein the monomers are 3,4-ethylenedioxypyrroles.
  • 11. A process according to claim 10 wherein the monomers are of the formula wherein each of R1, R2, R3, R4, and R5, independently of the others, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, or a heterocyclic group, wherein R5 can further be an oligoether group of the formula (CxH2xO)yR1, wherein x is an integer of from 1 to about 6 and y is an integer representing the number of repeat monomer units.
  • 12. A process according to claim 11 wherein R1 and R3 are hydrogen atoms and R2 and R4 are (a) R2=H, R4=H; (b) R2=(CH2)nCH3 wherein n=0-14, R4=H; (c) R2=(CH2)nCH3 wherein n=0-14, R4=(CH2)nCH3 wherein n=0-14; (d) R2=(CH2)nSO3—Na+ wherein n=1-6, R4=H; (e) R2=(CH2)nSO3—Na+ wherein n=1-6, R4=(CH2)nSO3—Na+ wherein n=1-6; (f) R2=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4, R4=H; or (g) R2=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4, R4=(CH2)nOR6 wherein n=0-4 and R6=(i) H or (ii) (CH2)mCH3 wherein m=0-4.
  • 13. A process according to claim 8 wherein the monomers, upon polymerization, form a poly(3,4-ethylenedioxypyrrole) of the formula wherein each of R1, R2, R3, R4, and R5, independently of the others, is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, or a heterocyclic group, wherein R5 can further be an oligoether group of the formula (CxH2xO)yR1, wherein x is an integer of from 1 to about 6 and y is an integer representing the number of repeat monomer units, D− is a dopant moiety, and n is an integer representing the number of repeat monomer units.
  • 14. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer having at least 3 repeat monomer units.
  • 15. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer having at least about 6 repeat monomer units and wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer having no more than about 100 repeat monomer units.
  • 16. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with iodine, molecules containing sulfonate groups, molecules containing phosphate groups, molecules containing phosphonate groups, or mixtures thereof.
  • 17. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with sulfonate containing anions of the formula RSO3− wherein R is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an arylalkyl group, an alkylaryl group, an arylalkyloxy group, an alkylaryloxy group, or mixtures thereof.
  • 18. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with anions selected from p-toluene sulfonate, camphor sulfonate, benzene sulfonate, naphthalene sulfonate, dodecyl sulfonate, dodecylbenzene sulfonate, dialkyl benzenealkyl sulfonates, para-ethylbenzene sulfonate, alkyl naphthalene sulfonates, poly(styrene sulfonate), or mixtures thereof.
  • 19. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with anions selected from p-toluene sulfonate, camphor sulfonate, benzene sulfonate, naphthalene sulfonate, dodecyl sulfonate, dodecylbenzene sulfonate, 1,3-benzene disulfonate, para-ethylbenzene sulfonate, 1,5-naphthalene disulfonate, 2-naphthalene disulfonate, poly(styrene sulfonate), or mixtures thereof.
  • 20. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with a dopant present in an amount of at least about 0.1 molar equivalent of dopant per molar equivalent of monomer and present in an amount of no more than about 5 molar equivalents of dopant per molar equivalent of monomer.
  • 21. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with a dopont present in an amount of at least about 0.25 molar equivalent of dopant per molar equivalent of monomer and present in an amount of no more than about 4 molar equivalents of dopant per molar equivalent of monomer.
  • 22. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer doped with a dopant present in an amount of at least about 0.5 molar equivalent of dopant per molar equivalent of pyrrole monomer and present in an amount of no more than about 3 molar equivalents of dopant per molar equivalent of pyrrole monomer.
  • 23. A process according to claim 1 wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer present in an amount of at least about 5 weight percent of the toner particle mass and wherein the pyrroles, thiophenes, or mixtures thereof, upon polymerization, form a polymer present in an amount of no more than about 20 weight percent of the toner particle mass.
  • 24. A process according to claim 1 wherein the oxidant is a persulfate salt.
  • 25. A process according to claim 1 wherein the oxidant is a ferric salt.
  • 26. A process according to claim 1 wherein the oxidant is a cerium (IV) salt.
  • 27. A process according to claim 1 wherein the oxidant is ammonium persulfate, potassium persulfate, cerium (IV) sulfate, ammonium cerium (IV) nitrate, ferric chloride, iron (III) sulfate, ferric nitrate nanohydrate, tris(p-toluenesulfonato)iron (III), or mixtures thereof.
  • 28. A process according to claim 1 wherein the toner particles are capable of being charged to a negative polarity.
  • 29. A process according to claim 1 wherein the toner particles are capable of being charged to a positive polarity.
  • 30. A process according to claim 1 wherein the oxidant is ferric chloride, tris(p-toluenesulfonato)iron (III), or a mixture thereof.
  • 31. A process according to claim 30 wherein the toner particles are capable of being charged to a negative polarity.
  • 32. A process according to claim 1 wherein the oxidant is ammonium persulfate, potassium persulfate, or a mixture thereof.
  • 33. A process according to claim 32 wherein the toner particles are capable of being charged to a positive polarity.
  • 34. A process according to claim 1 wherein the oxidant is present in an amount of at least 0.1 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer and wherein the oxidant is present in an amount of no more than about 5 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer.
  • 35. A process according to claim 1 wherein the oxidant is present in an amount of at least 0.25 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer and wherein the oxidant is present in an amount of no more than about 4 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer.
  • 36. A process according to claim 1 wherein the oxidant is present in an amount of at least 0.5 molar equivalent of oxidant per molar equivalent of pyrrole and/or thiophene monomer and wherein the oxidant is present in an amount of no more than about 3 molar equivalents of oxidant per molar equivalent of pyrrole and/or thiophene monomer.
  • 37. A process which comprises (1) preparing toner particles by (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected; (2) generating an electrostatic latent image on an imaging member, and (3) developing the latent image by contacting the imaging member with the charged toner particles.
  • 38. A process according to claim 37 wherein the toner particles are charged triboelectrically.
  • 39. A process according to claim 38 wherein the toner particles are charged triboelectrically by admixing them with carrier particles.
  • 40. A process according to claim 37 wherein the toner particles are charged inductively.
  • 41. A process according to claim 40 wherein the toner particles are charged in a developing apparatus which comprises a housing defining a reservoir storing a supply of developer material comprising the toner particles; a donor member for transporting toner particles on an outer surface of said donor member to a development zone; means for loading a layer of toner particles onto said outer surface of said donor member, and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level.
  • 42. A process according to claim 41 wherein said inductive charging means comprises means for biasing said toner reservoir relative to the bias on the donor member.
  • 43. A process according to claim 41 wherein the developing apparatus further comprises means for moving the donor member into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.
  • 44. A process according to claim 41 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.
  • 45. A process for developing a latent image recorded on a surface of an image receiving member to form a developed image, said process comprising (a) preparing toner particles by (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected; (b) moving the surface of the image receiving member at a predetermined process speed; (c) storing in a reservoir a supply of the toner particles prepared in step (a); (d) transporting the toner particles on an outer surface of a donor member to a development zone adjacent the image receiving member; and (e) inductive charging said toner particles on said outer surface of said donor member prior to the development zone to a predefined charge level.
  • 46. A process according to claim 45 wherein the inductive charging step includes the step of biasing the toner reservoir relative to the bias on the donor member.
  • 47. A process according to claim 45 wherein the donor member is brought into synchronous contact with the imaging member to detach toner in the development zone from the donor member, thereby developing the latent image.
  • 48. A process according to claim 45 wherein the predefined charge level has an average toner charge-to-mass ratio of from about 5 to about 50 microCoulombs per gram in magnitude.
  • 49. A process which comprises (1) preparing toner particles by (a) dispersing into a solvent (i) toner particles comprising a resin and an optional colorant, and (ii) monomers selected from pyrroles, thiophenes, or mixtures thereof; and (b) causing, by exposure of the monomers to an oxidant, oxidative polymerization of the monomers onto the toner particles, wherein subsequent to polymerization, the toner particles are capable of being charged to a negative or positive polarity, and wherein the polarity is determined by the oxidant selected; (2) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing the toner particles into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the toner particles to impact the substrate, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter.
  • 50. A process according to claim 49 wherein each said channel has a converging region and a diverging region, and wherein said propellant is introduced in said converging region and flows into said diverging region, whereby said propellant is at a first velocity and first pressure in said converging region and a second velocity and a second pressure in said diverging region, said first pressure greater than said second pressure and said first velocity less than said second velocity.
CROSS REFERENCES TO RELATED APPLICATIONS

Copending Application U.S. Ser. No. 09/408,606 allowed, filed Sep. 30, 1999, entitled “Marking Materials and Marking Processes Therewith,” with the named inventors Richard P. Veregin, Carl P. Tripp, Maria N. McDougall, and T. Brian McAneney, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for depositing a particulate marking material onto a substrate, comprising (a) a printhead having defined therein at least one channel, each channel having an inner surface and an exit orifice with a width no larger than about 250 microns, the inner surface of each channel having thereon a hydrophobic coating material; (b) a propellant source connected to each channel such that propellant provided by the propellant source can flow through each channel to form propellant streams therein, said propellant streams having kinetic energy, each channel directing the propellant stream through the exit orifice toward the substrate; and (c) a marking material reservoir having an inner surface, said inner surface having thereon the hydrophobic coating material, said reservoir containing particles of a particulate marking material, said reservoir being communicatively connected to each channel such that the particulate marking material from the reservoir can be controllably introduced into the propellant stream in each channel so that the kinetic energy of the propellant stream can cause the particulate marking material to impact the substrate, wherein either (i) the marking material particles of particulate marking material have an outer coating of the hydrophobic coating material; or (ii) the marking material particles have additive particles on the surface thereof, said additive particles having an outer coating of the hydrophobic coating material; or (iii) both the marking material particles and the additive particles have an outer coating of the hydrophobic coating material. Application U.S. Ser. No. 09/410,271, filed Sep. 30, 1999, now U.S. Pat. No. 6,302,513 entitled “Marking Materials and Marking Processes Therewith,” with the named inventors Karen A. Moffat, Richard P. Veregin, Maria N. McDougall, Philip D. Floyd, Jaan Noolandi, T. Brian McAneney, and Daniele C. Boils, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having a channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/585,044 pending, filed Jun. 1, 2000, entitled “Marking Material and Ballistic Aerosol Marking Process for the Use Thereof,” with the named inventors Maria N. V. McDougall, Richard P. N. Veregin, and Karen A. Moffat, the disclosure of which is totally incorporated herein by reference, discloses a marking material comprising (a) toner particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, and (b) hydrophobic conductive metal oxide particles situated on the toner particles. Also disclosed is a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having a channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises (a) toner particles which comprise a resin and a colorant, said particles having an average particle diameter of no more than about 7 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, and (b) hydrophobic conductive metal oxide particles situated on the toner particles. Copending Application U.S. Ser. No. 09/723,778; filed concurrently herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Vinyl Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat and Maria N. V. McDougall, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter. Copending Application U.S. Ser. No. 09/723,527; filed concurrently herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Vinyl Resin and Poly(3,4-ethylenedioxypyrrole),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter. Copending Application U.S. Ser. No. 09/724,458; filed concurrently herewith, entitled “Toner Compositions Comprising Polythiophenes,” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a resin and an optional colorant, said toner particles having coated thereon a polythiophene. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a resin and an optional colorant, said toner particles having coated thereon a polythiophene. Copending Application U.S. Ser. No. 09/723,839; filed concurrently herewith, entitled “Toner Compositions Comprising Polypyrroles,” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and James R. Combes, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a resin and an optional colorant, said toner particles having coated thereon a polypyrrole. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a resin and an optional colorant, said toner particles having coated thereon a polypyrrole. Copending Application U.S. Ser. No. 09/723,787; filed concurrently herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Polyester Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Rina Carlini, Karen A. Moffat, Maria N. V. McDougall, and Danielle C. Boils-Boissier, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter. Copending Application U.S. Ser. No. 09/723,834; filed concurrently herewith, entitled “Ballistic Aerosol Marking Process Employing Marking Material Comprising Polyester Resin and Poly(3,4-ethylenedioxypyrrole),” with the named inventors Karen A. Moffat, Rina Carlini, and Maria N. V. McDougall, the disclosure of which is totally incorporated herein by reference, discloses a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a head structure, said head structure having at least one channel therein, said channel having an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through the channel to form thereby a propellant stream having kinetic energy, said channel directing the propellant stream toward the substrate, and (b) controllably introducing a particulate marking material into the propellant stream in the channel, wherein the kinetic energy of the propellant particle stream causes the particulate marking material to impact the substrate, and wherein the particulate marking material comprises toner particles which comprise a polyester resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), said toner particles having an average particle diameter of no more than about 10 microns and a particle size distribution of GSD equal to no more than about 1.25, wherein said toner particles are prepared by an emulsion aggregation process, said toner particles having an average bulk conductivity of at least about 10−11 Siemens per centimeter. Copending Application U.S. Ser. No. 09/724,064; filed concurrently herewith, entitled “Toner Compositions Comprising Polyester Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, Dan A. Hays, and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/723,851; filed concurrently herewith, entitled “Toner Compositions Comprising Vinyl Resin and Poly(3,4-ethylenedioxypyrrole),” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), wherein said toner particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/723,903; filed concurrently herewith, entitled “Toner Compositions Comprising Polyester Resin and Poly(3,4-ethylenedioxypyrrole),” with the named inventors Karen A. Moffat, Rina Carlini, Maria N. V. McDougall, Dan A. Hays, and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a polyester resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and poly(3,4-ethylenedioxypyrrole), wherein said toner particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/724,013; filed concurrently herewith, entitled “Toner Compositions Comprising Vinyl Resin and Poly(3,4-ethylenedioxythiophene),” with the named inventors Karen A. Moffat, Maria N. V. McDougall, Rina Carlini, Dan A. Hays, Jack T. LeStrange, and Paul J. Gerroir, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a vinyl resin, an optional colorant, and poly(3,4-ethylenedioxythiophene), wherein said toner particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/723,911; filed concurrently herewith, entitled “Toner Compositions Comprising Polyester Resin and Polypyrrole,” with the named inventors James R. Combes, Karen A. Moffat, and Maria N. V. McDougall, the disclosure of which is totally incorporated herein by reference, discloses a toner comprising particles of a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process. Another embodiment is directed to a process which comprises (a) generating an electrostatic latent image on an imaging member, and (b) developing the latent image by contacting the imaging member with charged toner particles comprising a polyester resin, an optional colorant, and polypyrrole, wherein said toner particles are prepared by an emulsion aggregation process. Copending Application U.S. Ser. No. 09/723,561; filed concurrently herewith, entitled “Electrophotographic Development System With Induction Charged Toner,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for developing a latent image recorded on an imaging surface, including a housing defining a reservoir storing a supply of developer material comprising conductive toner; a donor member for transporting toner on an outer surface of said donor member to a region in synchronous contact with the imaging surface; means for loading a toner layer onto a region of said outer surface of said donor member; means for induction charging said toner loaded on said donor member; means for conditioning toner layer; means for moving said donor member in synchronous contact with imaging member to detach toner from said region of said donor member for developing the latent image; and means for discharging and removing residual toner from said donor and returning said toner to the reservoir. Copending Application U.S. Ser. No. 09/723,934; filed concurrently herewith, entitled “Electrophotographic Development System With Induction Charged Toner,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses a method of developing a latent image recorded or an image receiving member with marking particles, to form a developed image, including the steps of moving the surface of the image receiving member at a predetermined process speed; storing a supply of developer material comprising conductive toner in a reservoir; transporting developer material on a donor member to a development zone adjacent the image receiving member; and; inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefined charge level. Copending Application U.S. Ser. No. 09/723,789; filed concurrently herewith, entitled “Electrophotographic Development System With Custom Color Printing,” with the named inventors Dan A. Hays and Jack T. LeStrange, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for developing a latent image recorded on an imaging surface, including: a first developer unit for developing a portion of said latent image with a toner of custom color, said first developer including a housing defining a reservoir for storing a supply of developer material comprising conductive toner; a dispenser for dispensing toner of a first color and toner of a second color into said housing, said dispenser including means for mixing toner of said first color and toner of said second color together to form toner of said custom color; a donor member for transporting toner of said custom color on an outer surface of said donor member to a development zone; means for loading a toner layer of said custom color onto said outer surface of said donor member; and means for inductive charging said toner layer onto said outer surface of said donor member prior to the development zone to a predefine charge level; and a second developer unit for developing a remaining portion of said latent image with toner being substantial different than said toner of said custom color.

US Referenced Citations (10)
Number Name Date Kind
5035926 Jonas et al. Jul 1991 A
5202211 Vercoulen et al. Apr 1993 A
5348832 Sacripante et al. Sep 1994 A
5403673 Patel et al. Apr 1995 A
5457001 Van Ritter Oct 1995 A
5487847 Mahabadi et al. Jan 1996 A
5516619 Cunningham et al. May 1996 A
5834080 Mort et al. Nov 1998 A
5853906 Hsieh Dec 1998 A
6013404 Feng et al. Jan 2000 A
Foreign Referenced Citations (3)
Number Date Country
0636943 Feb 1995 EP
61-141452 Jun 1986 JP
3-100561 Apr 1991 JP
Non-Patent Literature Citations (4)
Entry
Research Disclosure, No. 37349, No. 373, May 1995, Kenneth Mason Publications, LTD, England, p. 356.
Caplus Abstract Acc No. 1992:13303 describing JP 3-100561.
Japanese Patent Office Abstract describing JP 3-100561.
Caplus Abstract Acc. No. 1986:616683 describing JP 61-141452.