The present invention involves a microsystem with an element which can be deformed by the action of a thermal sensor. Such microsystems can be applied to microswitches for opening or closing electric circuits and microvalves for microfluid applications.
These microsystems include an element in the form of a beam or a membrane which is deformed by heat. Strongly non-linear behaviour is sought in order to obtain a rapid shift between the two states, an open state and a closed state.
It must be possible to design these microsystems so that they can be compatible with the making of microelectronic components.
The microsensors used to trigger the deformation of the deformable element of a microsystem can be put in three main categories as a function of the principles used. First, thermal sensors which use thermal dilatation of one or several of their components. There are also electrostatic sensors which use the electrostatic force generated between two elements with different charges. Lastly there are magnetic sensors which use forces induced by a magnetic field.
There are also sensors which use piezoelectric and magnetostrictive materials.
The thermal sensors appear to be the most useful because they generally allow for larger deformations then electrostatic sensors whereas magnetic sensors, or those which use piezoelectric and magnetostrictive materials, are generally difficult to use with classic micro-machining processes, particularly, for manufacturing which requires technological compatibility with microelectronics. In addition, with a thermal sensor, it is easy to generalise the use of a controlled microswitch to a thermal microswitch (change of state as of a critical temperature) or to a micro-circuit breaker (change of state as of a certain critical current intensity).
The simplest way to make a thermal sensor is to use a bimetal. This technique involves two layers of materials having different thermal dilatation coefficients so that a variation in temperature of the whole unit causes a deflection of the bimetal. Temperature elevation is obtained by the Joule effect either by directly passing an electrical current into one of the two layers of the bimetal or into the resistors formed on one of these layers and obtained, for example, by implantation if one of the layers is made of silicon.
The deformation of the bimetal depends on the type of attachment to its support.
If the deformable structure is embedded at its ends, it is preferable, because of the appearance of the deformity, to place the bimetal in the areas where the dilatation effect acts in the direction of the curvature. Depending on the location of the bimetal, an increase in temperature may deflect the structure in one direction or another.
The amplitude f of the deformation is proportional to the temperature and the deformation thus depends on the surrounding temperature. It is possible however to find structural configurations so that the deformation is independent of the surrounding temperature.
Due to the complex mechanisms involved during the opening and closing of an electric circuit however (electric arc, bounce phenomena, etc.), it is preferable to seek systems for which the change in state (the shift from the open state of the circuit to its closed state) is as rapid as possible. The ideal would be designing systems having a critical temperature beyond which the mechanical equilibrium state changes. This cannot be obtained with just a bimetal however.
The U.S. Pat. No. 5,463,233 discloses a micro-machined thermal switch which combines a bimetal and an electrostatic sensor. In the absence of deformation of the bimetal, the electrostatic force is weak, the bimetal is in equilibrium between the electrostatic force and the mechanical restoring force of the structure. When the temperature increases, the bimetal effect brings the electrodes of the sensor closer until the electrostatic force becomes sufficiently strong to overcome the mechanical restoring force and to thus trigger the instantaneous shift of the structure.
Another way to generate a displacement by a change in temperature is to heat an embedded beam or membrane.
The theory also shows that the amplitude f of the deformity of the structure is given by the equation:
In the case of a square membrane, A is 2.298 h. One of the drawbacks of this method is the indeterminate nature of the sign of f. As
Another solution derived from the preceding one is to use a naturally buckled membrane. This is obtained by using silicon oxide membranes for example. The system thus has two stable positions
where S is the internal stress and Scr is the critical buckling stress. To shift from one position to another an additional mechanical action is needed. In the article mentioned above by D. S. Popescu et al., this additional mechanical action is from a field of pressure on the membrane.
Embedded bimetals were studied in the article “Analysis of Mi-metal Thermostats” by TIMOSHENKO which appeared in the Journal of the Optical Society of America, vol. 11, pages 233-255, 1925. This article gives in particular a theoretical study of the structure shown in
The first and third effects favour buckling of the structure, leading to shifting of the beam once a certain critical temperature is reached. The beam then takes the position indicated by the broken lines in
The systems of the prior art; mentioned above show characteristics such that they cannot give a microsensor to deflect a membrane or a beam using the thermal dilatation effects with the following advantages:
To overcome the above-mentioned drawbacks, a microsystem is proposed which has its deformable element (beam or membrane) naturally deflected at rest, this initial deflection not being of the buckling type. The deformable element is thus non-planar, as predefined by its construction. This deformable element is embedded and the deformation caused by the thermal sensor results from a bimetal effect and a buckling phenomenon induced by thermal dilatation. In the resting state, the embedding does not place any force on the deformable element.
The invention thus involves a microsystem on a substrate which is used to produce a shift between a first state of functioning and a second state of functioning by means of a thermal sensor with a bimetal effect, the aforesaid sensor including a deformable element attached, by its opposite ends, to the substrate so that it naturally has a deflection without stress with respect to a surface of the substrate which is opposite it, this natural deflection determining the aforesaid first state of functioning, the aforesaid second state of functioning being triggered by the aforesaid thermal sensor which induces, due to a temperature variation effect, a deformation of the deformable element tending to diminish its deflection by subjecting it to a compression stress which causes its shifting by a buckling effect in the direction opposite to that of its natural deflection. When the thermal control triggered by the sensor is eliminated, the microsystem returns to its first state of functioning.
The first state of functioning can correspond to a position of the deformable element which is the furthest from the aforesaid surface of the substrate, the aforesaid second state of functioning corresponding to a position of the deformable element closest to the aforesaid surface of the substrate. The inverse situation is also possible.
The central part of the deformable element can be thicker than its peripheral part.
The invention also involves a microswitch composed of a microsystem as defined above, a system of electrodes being included in the microsystem, on the surface of the substrate and on the deformable element so that there is electrical continuity between electrodes in one of the aforesaid states of functioning and an absence of electrical continuity in the other of the aforesaid states of functioning.
The invention also involves a microvalve composed of a microsystem as defined above, a fluid flow orifice being included in the microsystem so that it is blocked in one of the aforesaid states of functioning and open in the other of the aforesaid states of functioning.
The invention also involves a process for manufacturing a microsystem as defined above, characterised in that:
The part forming the arch is advantageously obtained by a prior deposit on the aforesaid surface of the substrate of a sacrificial mass to give a definite shape to the aforesaid deformable element once the sacrificial mass has been sacrificed, the sacrificial mass being provided so that, at the end of the process, the aforesaid deformable element naturally has a deflection without stress with respect to the aforesaid surface of the substrate.
According to a first variant, the process includes the following successive steps:
In this case, the mass of material to flow can be obtained by depositing of a layer of photosensitive resin on the sacrificial material layer and by etching of this layer of photosensitive resin so that only the mass of material which flows remains.
According to a second variant, the process includes the following steps:
In this case, the sacrificial mass can be obtained by depositing on the aforesaid surface of the substrate of a layer of sacrificial material and by successive etchings of this layer of sacrificial material until the surface of the substrate is reached with the exception of the place of the deformable element where the etching lets the aforesaid sacrificial mass remain.
According to a third variant, the process includes the following successive steps:
In this case, the sacrificial mass can be obtained by depositing on the aforesaid surface of the substrate of a layer of sacrificial material and by etching of this layer of sacrificial material.
Regardless of the process used, it may be necessary to include a step involving opening the deformable element so that the opening of this deformable element allows for elimination of the sacrificial mass.
The invention will be better understood with the description which follows, given as a non-limiting example, accompanied by the appended drawings among which:
In general, structures obtained by microtechnology processes have planar geometry. Manufacturing of naturally deflected beams or membranes thus requires particular attention.
The processes which will now be described deposit the deformable element on a layer called the sacrificial layer which is then eliminated at the end of the process. A Si3N4 deformable element (beam or membrane) can be made using a sacrificial layer of tungsten.
A first variant of the process according to the invention illustrated by
The sacrificial layer 21 is then etched.
The sacrificial mass as shown in
The surface of the substrate 20 supporting the sacrificial mass 25 is then covered with a layer 26, for example of Si3N4 or silicon, then a layer 27 of a conducting material such as aluminium, gold or nickel (see
The layer 27 is then etched (see
The layer 26 is also etched. This etching is determined as a function of the shape which is desired for the deformable element (beam or membrane). It also allows for opening the deformable element in order to allow for elimination of the sacrificial mass 25.
This yields the microsystem illustrated by
A second variant of the process according to the invention, illustrated by
As before, the layer 34 is etched to obtain the parts 35. Likewise, the layer 33 is etched as a function of the desired shape of the deformable element and to open this deformable element in order to eliminate the sacrificial mass 32.
The microsystem illustrated by
A third variant of the process according to the invention, illustrated by
A sacrificial layer is deposited on the surface of a substrate 40 and is then etched to yield a mass 41 of uniform thickness at the place of the future deformable element (see
As before, the layer 44 is etched to obtain parts 45 (see
This yields the microsystem illustrated by
For example, the deformable element could be made of a beam of Si3N4 1 μm thick and 200 μm long. The initial deflection (at room temperature) of the beam can be 2 μm. The rest of the bimetal structure can be made of aluminium and can be 1 μm thick. The structure shifts for a temperature variation between 100 and 120° C. The amplitude obtained is on the order of 5 μm while for a temperature variation from 0 to 100° C. the deflection is less than 1 μm.
The following figures illustrate examples of applications of the invention which can be obtained with the processes described above.
It is also possible to design a microswitch which is normally closed as
The normally closed state for the microswitch is obtained by using the third variant of the process according to the invention and centering the part 62 on the deformable element 61.
It is clear that when the bimetal of
In order to provide a good electrical contact between the electrodes when the microswitch is closed, it is advantageous to make the modifications shown in
Depending on the deposit thickness of the various layers, and according to the process used, it may also be advantageous to localise the areas of contact between the electrode 73 and the electrodes 74 and 75. This can be obtained by a step of planarisation of the sacrificial layer or, as shown in
Another possible improvement involves using different materials to make the other part of the bimetal, referenced as 80 on
Number | Date | Country | Kind |
---|---|---|---|
97 15931 | Dec 1997 | FR | national |
This application is a divisional application of U.S. patent application Ser. No. 09/554,272, filed on Jun. 6, 2000, entitled “MICROSYSTEM WITH A ELEMENT WHICH CAN BE DEFORMED BY A THERMAL SENSOR” by inventor Yves Fouillet, now U.S. Pat. No. 6,812,820, which claims priority from French Patent Application Serial No. 97 15931 filed Dec. 16, 1997, entitled “MICROSYSTEM WITH A ELEMENT WHICH CAN BE DEFORMED BY A THERMAL SENSOR” by inventor Yves Fouillet.
Number | Name | Date | Kind |
---|---|---|---|
4027848 | Mundil | Jun 1977 | A |
4806815 | Honma | Feb 1989 | A |
5029805 | Albarda et al. | Jul 1991 | A |
5058856 | Gordon et al. | Oct 1991 | A |
5061914 | Busch et al. | Oct 1991 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5182910 | Benecke | Feb 1993 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5490034 | Zavracky et al. | Feb 1996 | A |
5529279 | Beatty et al. | Jun 1996 | A |
5536963 | Polla | Jul 1996 | A |
5619061 | Goldsmith et al. | Apr 1997 | A |
5619177 | Johnson et al. | Apr 1997 | A |
5635750 | Schlaak et al. | Jun 1997 | A |
5638946 | Zavracky | Jun 1997 | A |
5681024 | Lisec et al. | Oct 1997 | A |
5796152 | Carr et al. | Aug 1998 | A |
5907765 | Lescouzeres et al. | May 1999 | A |
6236300 | Minners | May 2001 | B1 |
6239685 | Albrecht et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
195 16 997 | Nov 1995 | DE |
0 709 911 | May 1996 | EP |
2-3629 | Jan 1990 | JP |
06338244 | Dec 1994 | JP |
09-082199 | Mar 1997 | JP |
09-213183 | Aug 1997 | JP |
WO9931689 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20050046541 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
PCT/FR98/02719 | Dec 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09554272 | Jun 2000 | US |
Child | 10949800 | US |