The present invention relates to the processes used in manufacturing semiconductor circuits. In particular, the present invention relates to processes used in manufacturing 3-dimensional arrays of thin-film transistors, such as thin-film memory transistors.
3-dimensional arrays of thin-film memory cells have been described, for example, in U.S. Pat. No. 10,121,553, entitled “Capacitive-Coupled Non-Volatile Thin-Film Transistor NOR Strings In 3-Dimensional Arrays,” issued on Nov. 6, 2018. The '553 patent discloses a 3-dimensional array of NOR-type memory strings in which each NOR-type memory string comprises thin-film memory transistors formed along a horizontal strip of semiconductor materials, with each strip of semiconductor materials comprising a horizontal layer of channel material between two horizontal conductive semiconductor layers. The conductive semiconductor layers form a common drain region and a common source region, respectively, for the thin-film transistors of the NOR-type memory string.
The detailed description below refers to thin-film transistors formed above a planar surface of a semiconductor substrate. The terms “horizontal” and “vertical” refer to a direction substantially parallel and substantially orthogonal to the planar surface, respectively. For illustrative purpose, the X-direction and the Y-direction refer to two orthogonal directions parallel to the planar surface, and the Z-direction is orthogonal to both the X-direction and the Y-directions.
In one implementation, each active stack includes eight active strips 110-1, 110-2, . . . , 110-8. For convenience of illustration only three active strips (e.g., active strips 110-1, 110-2 and 110-3) are shown for each of active stacks 101-1, 101-2, and 101-3. Generally, in a 3-dimensional thin-film transistor array, any suitable number of active stacks (e.g., 1, 2, 4, 16, 32, 64, 128, . . . ) and any suitable number of active strips (e.g., 1, 2, 4, 8, 16, . . . ) may be provided. In
In a prior step, body oxide layers 104 (e.g., body oxide layers 104-1, 104-2 and 104-3) are isotropically etched to recess from the sidewalls of trenches 109. Thereafter, an intrinsic or lightly doped semiconductor material (“channel semiconductor material”) is conformally deposited on the sidewalls of trenches 109. This channel semiconductor material, shown in
To create the channel regions, a separation etch—typically an anisotropic etch—is subsequently carried out to remove the channel semiconductor material from the sidewalls of trench 109, without damaging the channel semiconductor material that has been deposited in the recesses over body oxide layers 104.
According to one embodiment of the present invention, a process includes (a) providing a semiconductor substrate having a planar surface; (b) forming a plurality of thin-film layers above the planar surface of the semiconductor substrate, one on top of another, including among the thin-film layers first and second isolation layers, wherein a significantly greater concentration of a first dopant specie is provided in the first isolation layer than in the second isolation layer; (c) etching along a direction substantially orthogonal to the planar surface through the thin-films to create a trench having sidewalls that expose the thin-film layers; (d) depositing conformally a semiconductor material (e.g., an amorphous silicon and a polysilicon) on the sidewalls of the trench; (e) annealing the first isolation layer at a predetermined temperature and a predetermined duration such that the first isolation layer act as a source of the first dopant specie which dopes a portion of the semiconductor material adjacent the first isolation layer; and (f) selectively etching (e.g., wet or dry etch) the semiconductor material to remove the doped portion of the semiconductor material without removing the remainder of the semiconductor material. The process may also include etching the thin-film layers such that the first isolation layer recesses from the sidewalls of the trench.
In one embodiment, the first isolation layer may include an organosilicon layer (e.g., SiOCH or SiOC), a silicon nitride layer or a silicate glass (e.g., BSG or PSG), and (ii) the selective etching uses an etchant that that may include tetra-methyl ammonium hydroxide (TMAH), potassium hydroxide (KOH), or ethylene diamine and pyrocatechol (EDP). In these cases, the annealing step may include a rapid thermal annealing step, and wherein the predetermined temperature is between 650° C. and 820° C., preferably about 750° C.
In another embodiment, the first isolation layer may be carbon-doped with a carbon dopant concentration of about 1020 cm−3 or greater, and the selective etching uses an etchant that comprises ethylene diamine and pyrocatechol (EDP). In that case, the annealing step comprises a rapid thermal annealing step, and the predetermined temperature is between about 600° C. and about 820° C., preferably about 750° C.
In yet another embodiment, an additional material that is highly doped with a second dopant may be deposited adjacent and over the semiconductor material. An annealing step diffuses the second dopant specie into the semiconductor material, so as to adjust an effective dopant concentration in the semiconductor material. That effective dopant concentration may determine a threshold voltage of a thin-film transistor in which the semiconductor material serve as a channel region. In some embodiments, the first dopant specie may be boron and the second dopant specie may be phosphorus, or vice versa.
In yet another embodiment, the first isolation layer includes an organosilicon layer (e.g., BSG or PSG, with a dopant concentration greater than 1.0×1022 cm−3), a silicon nitride layer or a silicate glass, and the selective etching uses an etchant that may include atomic chlorine, HF (gaseous or in an aqueous solution) or a fluorocarbon gas. In this case, the annealing step may include a rapid thermal annealing step, and the predetermined temperature is between about 600° C. and about 820° C., preferably about 750° C. A suitable aqueous HF solution may include HF, nitric acid and acetic acid, in various suitable proportions. A capping layer may be deposited over the conformally deposited semiconductor material.
The present invention is better understood upon consideration of the detailed description below in conjunction with the accompanying drawings.
The present invention avoids both the excessive thinning of the channel semiconductor material adjacent the body oxide layer and the stringers on the sidewalls of the trenches. Rather than depending on the directionality of the separation etch, the methods of the present invention chemically convert either the portions of the channel semiconductor material in the recesses adjacent the body oxide layers, or the portions of the channel semiconductor material on the sidewalls of the trenches, or both, such that a subsequent etch may selectively removes the portions of the channel semiconductor material from the sidewalls of the trenches.
According to a first embodiment of the present invention, body oxide layers 104 of structure 100 of
A selective etch using, for example, tetra-methyl ammonium hydroxide (TMAH) may be used to remove channel semiconductor material 107-1 from the sidewalls of trenches 109, leaving behind channel semiconductor material 107-2 in the recesses of body oxide layers 104, as TMAH has an etch rate that is at least 5 times higher for undoped polysilicon than doped polysilicon of dopant concentration of at least about 1018 cm−3. The selective etch may an isotropic wet etch or dry etch. The resulting structure is shown in
Other etchants with high selectivity of undoped polysilicon over doped polysilicon may also be used. For example, potassium hydroxide (KOH) has a selectivity of 20:1 for undoped polysilicon over doped polysilicon of a dopant concentration exceeding 1020 cm−3. Likewise, an aqueous solution of ethylene diamine and pyrocatechol (EDP) has a selectivity of 50:1 for undoped polysilicon over doped polysilicon of a dopant concentration exceeding 7.0×1019 cm−3.
According to another embodiment of the present invention, body oxide layers 104 of structure 100 of
A selective etch using, for example, EDP may be used to remove channel semiconductor material 107-1 from the sidewalls of trenches 109, leaving behind carbon-doped channel semiconductor material 107-2 in the recesses of body oxide layers 104, as EDP has an etch rate that is at least 100 times higher for undoped polysilicon than carbon-doped polysilicon of dopant concentration of at least about 1020 cm−3. The selective etch may an isotropic wet etch or dry etch.
One consideration associated with the methods of the present invention is their effects on the threshold voltage (Vth) of the resulting thin-film transistor. In one embodiment, at a dopant concentration of 5.0×1019 cm−3, the resulting Vth may be much greater than the more desirable 1.5 volts achievable at the lesser dopant concentration of 5.0×1018 cm−3. In that regard, to take advantage of the high selectivity of either KOH or EDP, the Vth of the resulting thin-film transistors may be too high. To fine-tune the dopant concentration, one may counter-dope channel semiconductor material 107-2 after the selective etch of
Alternatively, rather than converting the dopant concentration in the portions of channel semiconductor material 107 adjacent body oxide layers 104, one may instead convert portions of channel semiconductor material 107 on the sidewalls of trenches 109. According to one embodiment of the present invention, isolation layers 106 are initially deposited as heavily doped n++-type c-silicon (SiOC), with a phosphorus dopant concentration of greater than 5.0×1020 cm−3, for example. In this embodiment, channel semiconductor material 107 may be deposited in situ doped to the desired dopant concentration for the channel regions (e.g., 1.0×1018 cm−3). Without a high dopant concentration in body oxide layers 104, a subsequent RTA annealing step turns the portions of channel semiconductor material 107 adjacent isolation layers 106 into n-type semiconductor material 107-3, as shown
According to another embodiment of the present invention, isolation layers 106 are initially deposited as heavily doped p++-type borosilicate (BSG), with a boron dopant concentration of greater than 5.0×1021 cm−3, for example. In this embodiment, a 10-nm thick channel semiconductor material 107 may be deposited in situ doped to the desired dopant concentration for the channel regions (e.g., 1.0×1018 cm−3). An RTA annealing step (e.g., at 600° C. for a duration of 14 minutes, including the deposition time of channel semiconductor material 107) turns the portions of channel semiconductor material 107 adjacent isolation layers 106 into 10-nm thick p-type semiconductor material 107-3, as shown in
Using an aqueous HF solution (e.g., one part HF to 50 parts nitric acid and 100 parts acetic acid, by volume), p-type channel semiconductor material 107-3 may be removed at up to a 50:1 selectivity of p-type polysilicon (e.g., dopant concentration of 5.0×1021 cm−3 or greater) over undoped or lightly-doped polysilicon. An even greater selectivity may be achieved using a lower percentage of nitric acid (HNO3). To achieve the same result in a dry-etch step, HF, HNO3 and acetic acid (CH3COOH) vapors may be used. (See, e.g., U.S. Pat. No. 4,681,657 to Hwang et al.). The resulting structure is shown in
Alternatively, rather than BSG, PSG may be used as isolation layers 106.
Thereafter, as illustrated in
Thereafter, capping layer 122 is isotropically removed. Using an atomic chlorine gas, heavily-doped n-type channel semiconductor material 107-3 may be removed at a greater than 6:1 selectivity of n-type polysilicon (e.g., dopant concentration of about 3.0×1020 cm−3 or greater) over lightly-doped p-type polysilicon, as illustrated in
The above detailed description is provided to illustrate specific embodiments of the present invention and is not intended to be limiting. Numerous modifications and variations within the scope of the present invention are possible. The present invention is set forth in the accompanying claims.
The present application is related to and claims priority of U.S. provisional patent application (“Provisional Application”) Ser. No. 62/950,390, entitled “PROCESS FOR PREPARING A CHANNEL REGION OF A THIN-FILM TRANSISTOR IN A 3-DIMENSIONAL THIN-FILM TRANSISTOR ARRAY,” filed on Dec. 19, 2019. The disclosure of the Provisional Application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5583808 | Brahmbhatt | Dec 1996 | A |
5646886 | Brahmbhatt | Jul 1997 | A |
5656842 | Iwamatsu | Aug 1997 | A |
5768192 | Eitan | Jun 1998 | A |
5789776 | Lancaster et al. | Aug 1998 | A |
5915167 | Leedy | Jun 1999 | A |
6040605 | Sano et al. | Mar 2000 | A |
6107133 | Furukawa et al. | Aug 2000 | A |
6118171 | Davies et al. | Sep 2000 | A |
6130838 | Kim et al. | Oct 2000 | A |
6313518 | Ahn et al. | Nov 2001 | B1 |
6314046 | Kamiya et al. | Nov 2001 | B1 |
6362508 | Rasovsky | Mar 2002 | B1 |
6434053 | Fujiwara | Aug 2002 | B1 |
6580124 | Cleeves et al. | Jun 2003 | B1 |
6744094 | Forbes | Jun 2004 | B2 |
6774458 | Fricke et al. | Aug 2004 | B2 |
6781858 | Fricke | Aug 2004 | B2 |
6873004 | Han et al. | Mar 2005 | B1 |
6946703 | Ryu et al. | Sep 2005 | B2 |
7005350 | Walker et al. | Feb 2006 | B2 |
7223653 | Cheng | May 2007 | B2 |
7307308 | Lee | Dec 2007 | B2 |
7489002 | Forbes et al. | Feb 2009 | B2 |
7524725 | Chung | Apr 2009 | B2 |
7612411 | Walker | Nov 2009 | B2 |
8026521 | Or-Bach et al. | Sep 2011 | B1 |
8139418 | Carman | Mar 2012 | B2 |
8178396 | Sinha et al. | May 2012 | B2 |
8278183 | Lerner | Oct 2012 | B2 |
8630114 | Lue | Jan 2014 | B2 |
8767473 | Shim et al. | Jul 2014 | B2 |
8848425 | Schloss | Sep 2014 | B2 |
8878278 | Alsmeier et al. | Nov 2014 | B2 |
9190293 | Wang et al. | Nov 2015 | B2 |
9202694 | Konevecki et al. | Dec 2015 | B2 |
9230985 | Wu et al. | Jan 2016 | B1 |
9412752 | Yeh et al. | Aug 2016 | B1 |
9748172 | Takaki | Aug 2017 | B2 |
9842651 | Harari | Dec 2017 | B2 |
9892800 | Harari | Feb 2018 | B2 |
9911497 | Harari | Mar 2018 | B1 |
10074667 | Higashi | Sep 2018 | B1 |
10096364 | Harari | Oct 2018 | B2 |
10121553 | Harari | Nov 2018 | B2 |
10157780 | Wu | Dec 2018 | B2 |
10249370 | Harari | Apr 2019 | B2 |
10254968 | Gazit et al. | Apr 2019 | B1 |
10373956 | Gupta et al. | Aug 2019 | B2 |
10381378 | Harari | Aug 2019 | B1 |
10395737 | Harari | Aug 2019 | B2 |
10431596 | Herner et al. | Oct 2019 | B2 |
10475812 | Harari | Nov 2019 | B2 |
10622377 | Harari et al. | Apr 2020 | B2 |
20010030340 | Fujiwara | Oct 2001 | A1 |
20010053092 | Kosaka et al. | Dec 2001 | A1 |
20020028541 | Lee et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020193484 | Albee | Dec 2002 | A1 |
20040000679 | Patel | Jan 2004 | A1 |
20040214387 | Madurawe et al. | Oct 2004 | A1 |
20040246807 | Lee | Dec 2004 | A1 |
20040262681 | Masuoka et al. | Dec 2004 | A1 |
20040262772 | Ramanathan et al. | Dec 2004 | A1 |
20050128815 | Ishikawa et al. | Jun 2005 | A1 |
20050236625 | Schuele | Oct 2005 | A1 |
20050280061 | Lee | Dec 2005 | A1 |
20060155921 | Gorobets et al. | Jul 2006 | A1 |
20080160765 | Lee | Jul 2008 | A1 |
20080239812 | Naofumi et al. | Oct 2008 | A1 |
20080301359 | Smith | Dec 2008 | A1 |
20090057722 | Masuoka et al. | Mar 2009 | A1 |
20090157946 | Arya | Jun 2009 | A1 |
20090237996 | Kirsch et al. | Sep 2009 | A1 |
20090279360 | Peter et al. | Nov 2009 | A1 |
20090316487 | Lee et al. | Dec 2009 | A1 |
20100124116 | Takashi et al. | May 2010 | A1 |
20100128509 | Kim et al. | May 2010 | A1 |
20110044113 | Kim | Feb 2011 | A1 |
20110115011 | Masuoka et al. | May 2011 | A1 |
20110143519 | Lerner | Jun 2011 | A1 |
20110208905 | Shaeffer et al. | Aug 2011 | A1 |
20110298013 | Hwang et al. | Dec 2011 | A1 |
20120074478 | Sugimachi | Mar 2012 | A1 |
20120182801 | Lue | Jul 2012 | A1 |
20120223380 | Lee | Sep 2012 | A1 |
20120243314 | Takashi | Sep 2012 | A1 |
20120307568 | Banna et al. | Dec 2012 | A1 |
20120327714 | Lue | Dec 2012 | A1 |
20130031325 | Nakamoto et al. | Jan 2013 | A1 |
20130256780 | Kai et al. | Oct 2013 | A1 |
20130337646 | Cernea | Dec 2013 | A1 |
20140015036 | Fursin et al. | Jan 2014 | A1 |
20140040698 | Loh et al. | Feb 2014 | A1 |
20140117366 | Saitoh | May 2014 | A1 |
20140151774 | Rhie | Jun 2014 | A1 |
20140213032 | Kai | Jul 2014 | A1 |
20140229131 | Cohen et al. | Aug 2014 | A1 |
20140247674 | Karda et al. | Sep 2014 | A1 |
20140252454 | Rabkin | Sep 2014 | A1 |
20140252532 | Yang | Sep 2014 | A1 |
20140328128 | Louie et al. | Nov 2014 | A1 |
20140340952 | Ramaswamy et al. | Nov 2014 | A1 |
20150079743 | Pachamuthu | Mar 2015 | A1 |
20150079744 | Hwang | Mar 2015 | A1 |
20150098272 | Kasolra et al. | Apr 2015 | A1 |
20150113214 | Sutardja | Apr 2015 | A1 |
20150129955 | Mueller | May 2015 | A1 |
20150187823 | Miyairi | Jul 2015 | A1 |
20150194440 | Noh et al. | Jul 2015 | A1 |
20150206886 | Guha | Jul 2015 | A1 |
20150249143 | Sano | Sep 2015 | A1 |
20150340371 | Lue | Nov 2015 | A1 |
20160019951 | Park et al. | Jan 2016 | A1 |
20160049404 | Mariani | Feb 2016 | A1 |
20160086953 | Liu | Mar 2016 | A1 |
20160086970 | Peng | Mar 2016 | A1 |
20160225860 | Karda et al. | Aug 2016 | A1 |
20160300724 | Levy et al. | Oct 2016 | A1 |
20160314042 | Plants | Oct 2016 | A1 |
20170092370 | Harari | Mar 2017 | A1 |
20170092371 | Harari | Mar 2017 | A1 |
20170148517 | Harari | May 2017 | A1 |
20170148810 | Kai et al. | May 2017 | A1 |
20170358594 | Lu et al. | Dec 2017 | A1 |
20180108416 | Harari | Apr 2018 | A1 |
20180151419 | Wu | May 2018 | A1 |
20180269229 | Or-Bach et al. | Sep 2018 | A1 |
20180342455 | Nosho et al. | Nov 2018 | A1 |
20180342544 | Lee et al. | Nov 2018 | A1 |
20180366471 | Harari et al. | Dec 2018 | A1 |
20180366489 | Harari et al. | Dec 2018 | A1 |
20190006009 | Harari | Jan 2019 | A1 |
20190019564 | Li | Jan 2019 | A1 |
20190157296 | Harari et al. | May 2019 | A1 |
20190180821 | Harari | Jun 2019 | A1 |
20190206890 | Harari et al. | Jul 2019 | A1 |
20190244971 | Harari | Aug 2019 | A1 |
20190259769 | Karda et al. | Aug 2019 | A1 |
20190325964 | Harari | Oct 2019 | A1 |
20190319044 | Harari | Nov 2019 | A1 |
20190348424 | Karda et al. | Nov 2019 | A1 |
20190355747 | Herner et al. | Nov 2019 | A1 |
20190370117 | Fruchtman et al. | Dec 2019 | A1 |
20200020718 | Harari et al. | Jan 2020 | A1 |
20200051990 | Harari et al. | Feb 2020 | A1 |
20200098738 | Herner et al. | Mar 2020 | A1 |
20200098779 | Cernea et al. | Mar 2020 | A1 |
20200176468 | Herner et al. | Jun 2020 | A1 |
20200203378 | Harari et al. | Jun 2020 | A1 |
20200219572 | Harari | Jul 2020 | A1 |
20200258897 | Yan et al. | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
2010108522 | May 2010 | JP |
2011028540 | Feb 2011 | JP |
20120085591 | Aug 2012 | KR |
2018236937 | Dec 2018 | WO |
Entry |
---|
“EP Extended Search Report EP168690149.3”, dated Oct. 18, 2019. |
“European Search Report, EP 16852238.1”, dated Mar. 28, 2019. |
“European Search Report, EP17844550.8”, dated Aug. 12, 2020, 11 pages. |
“Notification of Reasons for Refusal, Japanese Patent Application 2018-527740”, (English translation), dated Nov. 4, 2020, 8 pages. |
“Partial European Search Report EP 16869049.3”, dated Jul. 1, 2019, pp. 1-12. |
“PCT Search Report and Written Opinion, PCT/US2018/038373”, dated Sep. 10, 2018. |
“PCT Search Report and Written Opinion, PCT/US2019/014319”, dated Apr. 15, 2019. |
“PCT Search Report and Written Opinion, PCT/US2019/052446”, dated Dec. 11, 2019. |
Kim, N. , et al., “Multi-layered Vertical gate NANO Flash Overcoming Stacking Limit for Terabit Density Storage”, Symposium on VLSI Tech. Dig. of Technical Papers, 2009, pp. 188-189. |
Lue, H.T., et al., “A Highly Scalable 8-Layer 3D Vertical-gate {VG) TFT NANO Flash Using Junction-Free Buried Channel BE-SONOS Device”, Symposium on VLSI: Tech. Dig. Of Technical Papers, 2010, pp. 131-132. |
Tanaka, T. , et al., “A 768 Gb 3b/cell 3D-Floaling-Gate NANO Flash Memory”, Digest of Technical Papers, the 2016 IEEE International Solid-Slate Circuits Conference, 2016, pp. 142-144. |
Wann, H.C. , et al., “High-Endurance Ultra-Thin Tunnel Oxide in Monos Device Structure for Dynamic Memory Application”, IEEE Electron Device letters, vol. 16, No. 11, Nov. 1995, pp. 491-493. |
“PCT Search Report and Written Opinion, PCT/US2021/042607”, dated Nov. 4, 2021, 17 pages. |
“PCT Search Report and Written Opinion, PCT/US2021/42620”, dated Oct. 28, 2021, 18 pages. |
“PCT Search Report and Written Opinion, PCT/US2020/065670”, dated Apr. 5, 2021, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20210193660 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62950390 | Dec 2019 | US |