Process for preparing dry mix brake lining

Information

  • Patent Grant
  • 4085179
  • Patent Number
    4,085,179
  • Date Filed
    Wednesday, April 7, 1976
    48 years ago
  • Date Issued
    Tuesday, April 18, 1978
    46 years ago
Abstract
This invention relates to a process for increasing the coefficient of friction of dry mix organic brake linings by coating a finely divided phenolic resin with rubber latex, thoroughly mixing with friction brake material and molding and curing the resulting compound under pressure.
Description
Claims
  • 1. In a dry mix process for forming an organic brake lining, comprising:
  • (A) blending a mixture of dry finely divided phenolic resin particles with dry particulate brake lining friction materials and
  • (B) molding and curing the resulting blend at a temperature in the range of about 275.degree. to about 325.degree. F. and at a pressure of about 250 to about 50,000 psi to bond the resin and friction particles into a unitary brake lining, the improvement comprising, prior to step (A), forming a rubber coating on said phenolic resin particles by
  • (1) forming a slurry of said phenolic resin particles having a particle size of less than about 325 Tyler mesh with water containing sufficient sulfuric acid and alum to have a pH in the range of about 4 to about 6 at the end of the following step (2),
  • (2) mixing said aqueous resin slurry with an aqueous styrene/butadiene rubber latex to coagulate said rubber latex onto said resin particles to form finely divided rubber coated resin particles,
  • (3) adding styrene/butadiene resin to further coat said coagulated rubber coated phenolic resin particles and to prevent surface tack thereon, and
  • (4) drying said finely divided coated phenolic resin particles for use in said step (A).
  • 2. The process of claim 1 wherein the dry particulate brake lining friction materials are selected from the group consisting of asbestos, barites, diatomaceous earth, graphite and copper sulfide, and optionally containing additional materials selected from the group consisting of bronze powder, silicon carbide and iron oxide.
Parent Case Info

This is a continuation, of application Ser. No. 515,960 filed Oct. 18, 1974 now abandoned. This invention relates to a process for making organic brake linings. More specifically this invention relates to a method for increasing the coefficient of friction of dry mix organic brake linings by incorporating therein a rubbery latex which is deposited on a finely divided phenolic resin. Organic brake linings have long been known to the art. Previously these linings have been formed by a process designated in the art as a "wet mix" process. In the wet mix process rubber and a phenolic resin are placed in a common solvent to form a cement and insuring an intimate dispersion of the rubber and phenolic resin. Friction materials, such as asbestos, and other fillers are added to the cement and thoroughly dispersed. The resulting compound is then molded and cured. The wet mix process is expensive because of solvent costs. The process also exposes process personnel to the solvent fumes and asbestos, currently strongly suspected of possessing carcinogenic properties. Protection of process personnel from contacting potentially dangerous materials requires a process which eliminates solvents and allows asbestos to be incorporated into the compound in a closed environment. Such a process is known in the art as the "dry mix" process wherein all ingredients of the lining are mixed without benefit of a solvent while in a closed environment. Current dry mix processes have no rubber ingredient. Dry mix processes do not disperse the rubber uniformly as does the wet mix process, and rubber has therefore not heretofore been effective. The differences in results are obtained because of a lack of homogeniety of the phenolic resin and the rubbery polymer as used in the dry mix process. The rubber tends to "bleed" from the brake lining during the molding process and is lost to the cured lining. The loss of the rubbery polymer lowers the coefficient of friction of the lining, thus lowering its braking capacity. In addition, removal of the lining from the mold after cure has often resulted in broken linings even when mold release agents are used. The linings resist removal from the mold and the force required to remove them often causes breakage. The latex addition aids in the release characteristics of the molded part. It is therefore an object of the present invention to provide a process for obtaining a dry mix organic brake lining with a satisfactory high coefficient of friction. Other objects will become apparent to those skilled in this art as the description proceeds. It has been discovered that a dry mix organic brake lining with a high coefficient of friction can be obtained by the process of first coating the finely divided phenolic resin with a rubbery latex before blending with asbestos and other friction materials, producing a finely dispersed mixture which can be molded into brake linings. The linings so produced are also more easily removed from the molds after curing. Phenolic resins referred to in the present invention are the reaction products of phenols and formaldehydes. These resins are well known to those skilled in this art. Representative examples of such resins are SP6240, SP6280, CRJ416, and BRJ377 which are manufactured by Schenectady Chemicals Inc.; Varcum 5169 and Varcum 3048 which are manufactured by Reichhold Chemical Corp., Varcum Division; CR503 and Synco 9469 which are manufactured by Catalin Resin Co.; and CR145 which is manufactured by Ashland Chemical Co. Examples of the softening point and hot plate cure (time to resin crosslinking) are given for some of these resins in Table I. The finely divided (less than 325 Tyler mesh) phenolic resins of choice are coated with a rubbery latex. The final product of the coating procedure also will pass a 325 Tyler mesh screen. Representative examples of such latices are styrene/butadiene (SBR) rubbers and acrylonitrile rubbers. Styrene/butadiene latices are preferred. The latex can be deposited on the phenolic resin from about 1 to about 32 parts by weight based on the weight of the phenolic resin. Usually from about 5 to about 25 parts by weight of the latex are used. The styrene portion of the SBR latex can range from 15 to 40 percent by weight. Generally a latex containing from 20 to 30 percent styrene by weight will be used. The phenolic resin/latex composition is intimately blended with the remaining friction materials in an internal mixing apparatus such as a Banbury mixer, intermix, V-shell blender or ball mixer. After intimately blending the ingredients of the lining the compound is placed in a compression mold for curing. Compression molding is used to hold the uncured resin material together until crosslinking under heat occurs. Usually from about 250 to about 50,000 pounds per square inch pressure is used, but from about 5,000 to about 10,000 pounds per square inch pressure is preferred. The organic liner is comprised of friction materials bonded together by an organic resinous matrix. The matrix forms when the compound is heated to a temperature from about 250.degree. to 350.degree. F., but usually a temperature of from about 275.degree. to 325.degree. F. is used. The temperature can be maintained for from about 1 to 50 minutes but from about 25 to 40 minutes is usually sufficient. After curing, a post-cure "bake" can be used to insure complete crosslinking of the organic resinous material. The cured organic brake linings are placed in an oven which usually ranges from room temperature to 500.degree. F. The temperature can be raised to about 1,000.degree. F. at which time the linings are removed. Any unreacted crosslinking sites are thus joined. The post-cure bake is usually not necessary and is used merely to insure complete crosslinking. Resins effective in the present invention are heat-reactive, one-step alkaline phenolic formaldehyde resins. Two-step phenolic resins are also effective. The phenolic resins can be coated with latex by any means known to those skilled in the art. Many means of coating resins are available. The resin need only retain a finely divided state at the conclusion of the coating procedure. These coated resins are sometimes referred to as "frosted" resins. In the examples given herein the phenolic resin was coated with polymer coagulated from the latex form. Phenolic resin (Varcum 5169 sold by Reichhold Chemical Company) was slurried in 120.degree. F. water which contained approximately a 1.5:1 mixture of sulfuric acid and alum in sufficient quantity to have a final pH of between 4 and 6 after coagulation of the rubber latex. Styrene/butadiene latex (5 percent total solids 23.5 percent styrene) containing a weight of dry rubber equal to 20 percent of the weight of the phenolic resin was slowly added to the resin slurry at 120.degree. F. while the mixture was agitated. After addition of the styrene/butadiene latex, the styrene/butadiene coagulated onto the slurried phenolic resin. The slurried particles were then coated with 92/8 styrene/butadiene resin to prevent surface tack. The styrene/butadiene resin was added at 2 percent total solids and 120.degree. F. to the slurried masterbatch in an amount equal to 5 percent by weight of the phenolic resin. When all the resin latex had coagulated onto the masterbatch the masterbatch was filtered or centrifuged, followed by oven air drying between 140.degree. F. to 150.degree. F. The process will be effective at any temperature between about 100.degree. F. and 160.degree. F. Styrene/butadiene compositions containing 60 percent or more of styrene by weight are considered to be non-elastomeric and resinous. The resin applied to prevent surface tack does not appear to have any significant effect on the coefficient or function of the compounds of the present invention. The coated phenolic resin prepared as described above could be used in any typical brake lining formulation. A typical brake lining formulation includes (a) asbestos, (b) metal scavengers such as brass chips or bronze powder, (c) fillers such as barites, diatomaceous earth, iron oxide or silicone carbide, (d) binders such as coated phenolic resin, and (e) lubricants such as copper sulfide or graphite.

US Referenced Citations (3)
Number Name Date Kind
3316195 Grosner et al. Apr 1967
3505446 Griffith Apr 1970
3814713 Honda et al. Jun 1974
Continuations (1)
Number Date Country
Parent 515960 Oct 1974