The subject matter disclosed herein relates to a process for preparing for casting.
Cast components have generally been formed by any one or more of stereolithographic (SLA) processes, direct metal laser sintering (DMLS) processes and selective laser sintering (SLS) processes. SLA processes are additive manufacturing processes that use an ultraviolet (UV) laser to cure resin in the formation of a part one layer at a time. SLA models can be particularly accurate for fit and function studies where fine details are important and can be used as master patterns for casting silicone and composite tooling as well as a variety of other molding techniques. In DMLS processes, a laser fuses individual part layers together to form a part having excellent surface finish and a high level of accuracy for fine details. SLS processes use a laser to sinter a powdered nylon material layer by layer to create a durable, solid object. The sintered prototype can be used for testing in almost all applications including functional prototypes using real engineering materials. These parts display extremely high durability, heat deflection and closely represent the physical properties of the production material.
Despite the advantages provided by these processes problems persist. For example, SLA hardware has been produced with limited interior features. Indeed, in most cases the interior cavity geometry is very limited in complexity and accuracy. Meanwhile, DMLS and SLS processes can be very expensive.
According to one aspect of the invention, a process for preparing for casting is provided and includes forming a cast component defining an interior having a complex and/or irregular shape, introducing a non-solid material into the cast component interior and solidifying the non-solid material to form an inner shell, forming an outer shell about the cast component and removing the cast component from between the inner and outer shells.
According to another aspect of the invention, a process for preparing for casting is provided and includes forming a cast component defining an interior in a shape of a gas turbine engine component, introducing a non-solid material into the cast component interior to fill the cast component interior, solidifying the non-solid material to form an inner shell reflective of an interior shape of the gas turbine engine component, forming an outer shell reflective of an exterior shape of the gas turbine engine component about the cast component and removing the cast component from between the inner and outer shells.
According to yet another aspect of the invention, a process for preparing for casting a gas turbine engine swozzle or swirler is provided and includes stereolithographically constructing a plastic cast component defining an interior in a shape of the gas turbine engine swozzle or swirler, introducing a non-solid material into the cast component interior to fill the cast component interior, solidifying the non-solid material to form an inner shell reflective of an interior shape of the gas turbine engine swozzle or swirler, forming an outer shell reflective of an exterior shape of the gas turbine engine swozzle or swirler about the cast component and removing the cast component from between the inner and outer shells.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
With reference to
As shown in
As shown in
The introducing operation of
As shown in
As shown in
As shown in
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.