Process for producing liquid developer, liquid developer, and image forming apparatus

Abstract
A process for producing a liquid developer includes: providing a dispersion liquid containing an aqueous dispersion medium and toner mother particles including a rosin resin; chemically modifying surfaces of the toner mother particles with an amine-based material by mixing the amine-based material with the dispersion liquid to obtain toner particles; and dispersing the toner particles in an insulating liquid.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The entire disclosure of Japanese Patent Application No. 2008-177153, filed Jan. 7, 2008 is expressly incorporated by reference herein.


BACKGROUND

1. Technical Field


The present invention relates to a process for producing a liquid developer, a liquid developer, and an image forming apparatus.


2. Related Art


As a developer to be used for developing an electrostatic latent image formed on a latent image carrying member, a liquid developer obtained by dispersing toner particles made of a material containing a colorant such as a pigment and a binder resin in an electrically insulating carrier liquid (insulating liquid) is known.


In toner particles constituting such a liquid developer, a resin material such as a polyester resin, a styrene-acrylic ester copolymer or an epoxy resin has been used. Such a resin material has characteristics that it is easy to handle, a color developing property of the resulting image is good and a high fixing property can be obtained.


However, in a past liquid developer, a resin material constituting toner particles and an insulating liquid had a low affinity for each other, and it was difficult to make the dispersibility of the toner particles in the insulating liquid sufficiently high.


In order to improve the dispersibility of such toner particles, an attempt to use a rosin resin with a high affinity for an insulating liquid as the resin material constituting the toner particles has been made (see, for example, Japanese Patent No. 3332961).


However, in the liquid developer described in Japanese Patent No. 3332961, although the initial dispersibility of the toner particles was good, the toner particles were aggregated over time and it was difficult to maintain the dispersibility for a long period of time. Further, in the past liquid developer, sufficient chargeability could not be obtained, and particularly it was difficult to obtain positive chargeability.


SUMMARY

An advantage of some aspects of the invention is to provide a liquid developer excellent in positive chargeability and long-term dispersion stability of toner particles, and also to provide an image forming apparatus using such a liquid developer.


Such an advantage of some aspects of the invention can be achieved by the invention described below.


A process for producing a liquid developer according to a first aspect of the invention includes:


providing a dispersion liquid containing an aqueous dispersion medium and toner mother particles including a rosin resin;


chemically modifying surfaces of the toner mother particles with an amine-based material by mixing the amine-based material with the dispersion liquid to obtain toner particles; and


dispersing the toner particles in an insulating liquid.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the process further includes separating the toner particles from the aqueous dispersion medium and drying the toner particles between the chemically modifying step and the dispersing step.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the dispersion liquid is prepared as a suspension liquid through:


preparing a resin solution in which the rosin resin is dissolved in an organic solvent;


preparing an O/W emulsion liquid by adding an aqueous liquid to the resin solution via a W/O emulsion liquid;


coalescing dispersoids contained in the O/W emulsion liquid to obtain coalescent particles; and


removing the organic solvent contained in the coalescent particles to form the toner mother particles.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the process further includes washing the toner mother particles between the organic solvent removing step and the chemically modifying step.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the chemically modifying step is performed in a condition where a hydrogen ion exponent (pH) of the dispersion liquid is adjusted to 3.5 to 5.0.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the amine-based material is a secondary amine.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that a used amount of the amine-based material in the chemically modifying step is from 0.1 to 15 parts by weight based on 100 parts by weight of the rosin resin.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the rosin resin has a weight average molecular weight of from 500 to 100000.


In the process for producing a liquid developer according to the first aspect of the invention, it is preferred that the insulating liquid mainly contains a vegetable oil.


A liquid developer according to a second aspect of the invention includes:


an insulating liquid; and


toner particles obtained by chemically modifying surfaces of toner mother particles made of a material containing a rosin resin with an amine-based material.


An image forming apparatus according to a third aspect of the invention includes:


plural developing parts configured to form plural monochrome images corresponding to plural liquid developers of different colors using the plural liquid developers;


an intermediate transfer part configured such that the plural monochrome images formed in the plural developing parts are sequentially transferred thereon to form an intermediate transfer image by superimposing the transferred plural monochrome images;


a secondary transfer part configured to transfer the intermediate transfer image to a recording medium to form an unfixed color image on the recording medium; and


a fixing part configured to fix the unfixed color image on the recording medium,


wherein the liquid developers each contain an insulating liquid and toner particles obtained by chemically modifying surfaces of toner mother particles made of a material containing a rosin resin with an amine-based material.


According to the above configuration, a liquid developer excellent in positive chargeability and long-term dispersion stability of toner particles can be provided. Further, an image forming apparatus using such a liquid developer can be provided.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.



FIG. 1 is a schematic view showing an example of an image forming apparatus to which a liquid developer according to an embodiment of the invention is applied.



FIG. 2 is an enlarged view of a part of the image forming apparatus shown in FIG. 1.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, preferred embodiments of the invention will be described in detail.


Liquid Developer


First, the liquid developer of the invention will be described.


The liquid developer of the invention includes an insulating liquid and toner particles obtained by chemically modifying surfaces of toner mother particles made of a material containing a rosin resin with an amine-based material.


Incidentally, in order to improve the dispersibility of toner particles in an insulating liquid, an attempt to use a rosin resin with a high affinity for the insulating liquid as the resin material constituting the toner particles has heretofore been made. However, in the past liquid developer, although the initial dispersibility of the toner particles was good, the toner particles were aggregated over time and it was difficult to maintain the dispersibility for a long period of time. Further, in the past liquid developer, sufficient chargeability was not obtained and particularly, it was difficult to obtain positive chargeability.


In view of the above problems, the present inventors made intensive studies, and as a result, they completed the invention. That is, in the invention, by chemically modifying surfaces of toner mother particles made of a material containing a rosin resin with an amine-based material, a liquid developer which is excellent in positive chargeability of toner particles and also is capable of stably dispersing toner particles in an insulating liquid for a long period of time can be provided. That is, a liquid developer excellent in positive chargeability and also long-term dispersion stability of toner particles can be provided. Further, since the liquid developer is excellent in chargeability and long-term dispersion stability, it is also excellent in properties such as developing efficiency and transferring efficiency.


Hereinafter, each component will be described in detail.


Toner Particles


The toner particles are obtained by chemically modifying surfaces of toner mother particles made of a material containing a rosin resin with an amine-based material.


Toner Mother Particles


The toner mother particles include at least a binder resin (resin material) and a colorant.


1. Resin Material (Binder Resin)


The toner mother particles are made of a material containing a resin material as a major component.


In the invention, the toner mother particles contain a rosin resin as the resin material.


The rosin resin is a material which is advantageous in making the fixing property of a toner to a recording medium excellent and is easily and surely chemically modified with an amine-based material by a method as described below. When the rosin resin is once chemically modified in this manner, it is even less likely to cause detachment or release of the amine-based material from the chemically modified rosin resin. In other words, in the liquid developer of the invention, the amine-based material is rigidly attached to the rosin resin constituting the toner mother particles. Accordingly, while making the fixing property of the toner particles excellent, the dispersibility and dispersion stability (long-term dispersion stability) of the toner particles in the insulating liquid and the positive chargeability of the toner particles can be made excellent.


Incidentally, the rosin resin may exist on at least a part of the surface of the toner mother particle, or may be contained in the entire of the toner mother particle or may be localized on the surface of the toner mother particle. Further, the rosin resin may exist such that it covers the surface of the toner mother particle.


Examples of the rosin resin include rosin-modified phenol resins, rosin-modified maleic resins, rosin-modified polyester resins, rosin-modified fumaric resins and ester gums. These can be used alone or in combination of two or more of them.


A softening point of the rosin resin as described above is preferably from 60 to 190° C., more preferably from 65 to 170° C., further more preferably from 70 to 160° C. According to this, while making the long-term dispersion stability and chargeability of the toner particles excellent, both fixing property and heat resistant storage stability of the toner particles can be achieved at a higher level.


Further, a weight average molecular weight of the rosin resin is preferably from 500 to 100000, more preferably from 1000 to 80000, furthermore preferably from 1000 to 50000. According to this, while making the long-term dispersion stability and chargeability of the toner particles excellent, both fixing property and heat resistant storage stability of the toner particles can be achieved at a higher level.


Further, an acid value of the rosin resin is preferably 40 mg KOH/g or less, more preferably 30 mg KOH/g or less, further more preferably from 5 to 25 mg KOH/g. According to this, chemical modification of the surfaces of the toner mother particles with the amine-based material can be more preferably performed, and while making the long-term dispersion stability and chargeability of the toner particles particularly excellent, both fixing property and heat resistant storage stability of the toner particles can be achieved at a higher level.


Further, a content of the rosin resin in the resin material constituting the toner mother particles is preferably from 1 to 50 wt %, more preferably from 5 to 40 wt %. According to this, while making the long-term dispersion stability and chargeability of the toner particles particularly excellent, both fixing property and heat resistant storage stability of the toner particles can be achieved at a higher level.


Further, the toner mother particles may contain a known resin other than the rosin resin as described above. Examples of the resin include polyester resins, styrene-acrylic ester copolymers and methacrylic resins. Among these, it is particularly preferred that a polyester resin is used. The polyester resin has a high transparency and when it is used as a binder resin, a color developing property of the resulting image can be made high.


When the toner mother particles contain the polyester resin, an acid value thereof is preferably from 5 to 20 mg KOH/g, more preferably from 5 to 15 mg KOH/g.


Further, when the toner mother particles contain the polyester resin, a softening point thereof is not particularly limited, however, it is preferably from 50 to 130° C., more preferably from 50 to 120° C., further more preferably from 60 to 115° C. According to this, the fixing property of the toner particles can be made particularly excellent. Incidentally, the softening point as used herein refers to a softening initiation temperature defined by using a koka-type flow tester (manufactured by Shimadzu Corporation) under the following measurement conditions: temperature increasing rate: 5° C./min; and die diameter: 1.0 mm.


2. Colorant


Further, the toner mother particles may contain a colorant. The colorant is not particularly limited, and for example, a known pigment, dye or the like can be used.


3. Other Components


Further, the toner mother particles may contain components other than the above components. Examples of such components include known waxes and magnetic powder.


Further, as a constituent material (component) of the toner mother particles, for example, zinc stearate, zinc oxide, cerium oxide, silica, titanium oxide, iron oxide, a fatty acid, a fatty acid metal salt or the like may be used other than the above-mentioned material.


Amine-Based Material


As described above, the surfaces of the toner mother particles made of the material containing the rosin resin are chemically modified with an amine-based material.


The polyester resins, styrene-acrylic ester copolymers, methacrylic resins and rosin resins as described above generally have negative chargeability. When such a resin material with negative chargeability was used, it was difficult to positively charge the toner particles (liquid developer). Further, it was conceivable that the toner particles using such a resin material with negative chargeability is positively charged by adding a charge control agent, however, it was difficult to obtain a sufficient charge amount. Further, it was conceivable that a resin material with positive chargeability was used as a constituent material of toner particles, however, there are few cases that the resin material with positive chargeability was put into practical use, although intensive studies for improving such resin material have been carried out at present, and further there were problems in that properties required for a toner such as a fixing property, a color developing property and colorant dispersibility were insufficient, it was difficult to obtain solubility or compatibility necessary in chemical pulverization, the stability of the resin itself was low, etc., and therefore, it was difficult to apply it as the material constituting toner particles. Further, it was conceivable that the entire toner particle was positively charged by using a charge control agent or a dispersant with positive chargeability. However, by such a method, the charge control agent or dispersant could not be chemically attached rigidly to the toner particles, and therefore, a phenomenon occurred that the charge control agent or dispersant was gradually detached or released from the toner particles over time. Accordingly, although the initial dispersibility of the toner particles was good, it was difficult to maintain stable positive chargeability for a long period of time. In particular, in an image forming apparatus having a mechanism of recycling a liquid developer recovered in a developing part or the like as described below, stress was applied to the toner particles when the liquid developer was recovered. Therefore, in the case of a toner using only a charge control agent or a dispersant with positive chargeability, the charge control agent or dispersant was detached or released from the toner particles (toner mother particles) and the chargeability of the toner particles was liable to rapidly decrease. Further, when toner particles were tried to be sufficiently positively charged by using a charge control agent with positive chargeability, due to the effect of the charge control agent, the color of the toner particles were adversely affected in some cases.


On the other hand, in the invention, by chemically modifying the surfaces of the toner mother particles made of the material containing the rosin resin with the amine-based material with positive chargeability, while allowing the characteristics of the rosin resin to be sufficiently exhibited, the occurrence of the problems as described above is surely prevented and the long-term dispersion stability of the toner particles in the liquid developer and the positive chargeability thereof can be made sufficiently excellent. Further, in an image forming apparatus as described below, when the liquid developer recovered in a developing part and the like is recycled, the toner particles in the recovered liquid developer can be easily redispersed and can be easily recycled.


Further, the amine-based material has a high affinity for an insulating liquid as described below, and by chemically modifying the surfaces of the toner mother particles with the amine-based material, the dispersion stability of the toner particles can be made particularly excellent.


Incidentally, the excellent effect as described above is obtained by chemically modifying the surfaces of the toner mother particles with the amine-based material and is not obtained only by incorporating the amine-based material in the liquid developer.


Examples of the amine-based material include primary amines, secondary amines, tertiary amines and quaternary ammonium salts. Among these, preferred are primary amines and secondary amines, and more preferred are secondary amines. According to this, the surfaces of the toner mother particles can be more favorably chemically modified, and the long-term dispersion stability and positive chargeability of the toner particles can be made more excellent.


Further, the amine-based material may have a hydroxy group in the molecule thereof. According to this, the affinity between the amine-based material and the insulating liquid as described below can be made particularly excellent, and the long-term dispersion stability of the toner particles can be made particularly excellent.


More specific examples of the amine-based material include monoethanolamine, diethanolamine, triethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, N-di-n-butylethanolamine, N-methylethanolamine, N-methyldiethanolamine, N-ethylethanolamine, N-n-butylethanolamine, N-n-butyldiethanolamine, N-t-butylethanolamine, N-t-butyldiethanolamine, tetrabutyl ammonium bromide, tetramethyl ammonium chloride, alkyl trimethyl ammonium chloride, hexadecyl trimethyl ammonium chloride, octadecyl trimethyl ammonium chloride, alkylamine acetate, tetrabutyl ammonium sulfate, benzyl triethyl ammonium chloride and benzyl tributhyl ammonium chloride, and one kind or a combination of two or more kinds selected from these compounds can be used.


Shape of Toner Particles


An average particle diameter of the toner particles made of the material as described above is preferably from 0.5 to 3 μm, more preferably from 1 to 2.5 μm, further more preferably from 1 to 2 μm. When the average particle diameter of the toner particles falls within the above-mentioned range, a variation in properties among the toner particles can be made small, whereby the resolution of a toner image formed with the liquid developer can be made sufficiently high while making the reliability of the liquid developer as a whole high. Further, the dispersion of the toner particles in the insulating liquid can be made favorable and the storage stability of the liquid developer can be made high. The term “average particle diameter” as used herein refers to an average particle diameter by volume.


A content of the toner particles in the liquid developer is preferably from 10 to 60 wt %, more preferably from 20 to 50 wt %.


Insulating Liquid


Subsequently, the insulating liquid will be described.


The insulating liquid may be any as long as it is a liquid having a sufficiently high insulating property, however, specifically, the insulating liquid has an electric resistance at room temperature (20° C.) of preferably 1×109 Ωcm or more, more preferably 1×1011 Ωcm or more, further more preferably 1×1013 Ωcm or more.


Further, a relative dielectric constant of the insulating liquid is preferably 3.5 or less.


Examples of the insulating liquid that satisfies the above-mentioned conditions include mineral oils (hydrocarbon liquids) such as Isopar E, Isopar G, Isopar H and Isopar L (“Isopar” is the trade name of Exxon Chemical Company), Shellsol 70 and Shellsol 71 (“Shellsol” is the trade name of Shell Oil Company), Amsco OMS and Amsco 460 solvents (“Amsco” is the trade name of Spirits Co.) and low-viscosity/high-viscosity liquid paraffins (Wako Pure Chemical Industries, Ltd.), fatty acid glycerides, fatty acid esters and vegetable oils containing the same, octane, isooctane, decane, isodecane, decalin, nonane, dodecane, isododecane, cyclohexane, cyclooctane, cyclodecane, benzene, toluene, xylene and mesitylene. These can be used alone or in combination of two or more of them. Among these, especially, vegetable oils have a particularly high affinity for (compatibility with) the above-mentioned rosin resin or amine-based material and therefore can further improve the dispersion stability of the toner particles.


Incidentally, the liquid developer (insulating liquid) may further contain a known antioxidant, a charge control agent or the like other than the above-mentioned components.


A viscosity of the insulating liquid is not particularly limited, however, it is preferably from 5 to 1000 mPa·s, more preferably from 50 to 800 mPa·s, further more preferably from 50 to 500 mPa·s. In the case where the viscosity of the insulating liquid falls within the above-mentioned range, the dispersibility of the toner particles can be made higher and also in an image forming apparatus as described below, the liquid developer can be more uniformly supplied to a coating roller and also dripping or the like of the liquid developer from a coating roller or the like can be effectively prevented, and therefore, the developing property and transferring property of a toner image can be made particularly excellent. In addition, aggregation or precipitation of the toner particles can be more effectively prevented and the dispersibility of the toner particles in the insulating liquid can be made higher. On the other hand, when the viscosity of the insulating liquid is less than the above-mentioned lower limit, in an image forming apparatus as described below, a problem such as dripping of the liquid developer from a coating roller or the like may arise. Meanwhile, when the viscosity of the insulating liquid exceeds the above-mentioned upper limit, in an image forming apparatus as described below, the liquid developer cannot be uniformly supplied to a coating roller in some cases. In this connection, the term “viscosity” as used herein refers to a value obtained by measurement at 25° C.


Incidentally, the liquid developer of the invention may further contain a component (such as an external additive) other than the above-mentioned components.


Process for Producing Liquid Developer


Subsequently, a preferred embodiment of the process for producing a liquid developer according to the invention will be described.


The process for producing a liquid developer according to this embodiment includes a dispersion liquid providing step of providing a dispersion liquid in which toner mother particles containing a rosin resin are dispersed in an aqueous dispersion medium; an amine modifying step of chemically modifying surfaces of the toner mother particles with an amine-based material by mixing the amine-based material with the dispersion liquid to obtain toner particles; and an insulating liquid dispersing step of dispersing the toner particles in an insulating liquid.


Hereinafter, the respective steps constituting the process for producing a liquid developer will be described in detail.


Dispersion Liquid Providing Step (Aqueous Dispersion Liquid Providing Step)


First, a dispersion liquid (aqueous dispersion liquid) in which toner mother particles containing a rosin resin are dispersed in an aqueous dispersion medium is prepared.


The aqueous dispersion liquid may be prepared by any method, however, it is preferably prepared as a suspension liquid through a resin solution preparing step of preparing a resin solution in which a constituent material (a mother particle material) of toner mother particles containing a rosin resin and the like is dissolved in an organic solvent; an O/W emulsion liquid preparing step of preparing an O/W emulsion liquid via a W/O emulsion liquid by adding an aqueous liquid to the resin solution; a coalescing step of coalescing dispersoids contained in the O/W emulsion liquid to obtain coalescent particles; and an organic solvent removing step of removing the organic solvent contained in the coalescent particles to form the toner mother particles. In this manner, the uniformity of the size and shape of the dispersoids contained in the aqueous dispersion liquid can be made particularly high, the particle size distribution of the toner particles contained in a finally obtained liquid developer can be made extremely sharp and the variation in properties among the toner particles can be made particularly small. In the following description, the case in which the aqueous dispersion liquid is prepared through the resin solution preparing step, the O/W emulsion liquid preparing step, the coalescing step and the organic solvent removing step will be described as a representative example.


Resin Solution Preparing Step


First, a resin solution in which a rosin resin and the like are dissolved in an organic solvent is prepared.


The thus prepared resin solution contains a constituent material of toner mother particles as described above and an organic solvent as described below.


The organic solvent may be any as long as it can dissolve at least a portion of the resin material, however, it is preferred to use an organic solvent having a boiling point lower than that of an aqueous liquid described below. According to this, the organic solvent can be easily removed.


Further, the organic solvent preferably has a low compatibility with an aqueous liquid (aqueous dispersion medium) described below (for example, an organic solvent having a solubility in 100 g of the aqueous liquid at 25° C. of 30 g or less). According to this, the dispersoids made of the mother particle material can be finely dispersed in an O/W emulsion liquid (aqueous emulsion liquid) described below in a stable state.


Further, the composition of the organic solvent can be appropriately selected depending on, for example, the resin material as described above, the composition of the colorant, the composition of the aqueous liquid (aqueous dispersion medium) or the like.


Such an organic solvent is not particularly limited, and examples thereof include ketone solvents such as MEK and organic solvents such as THF, ethyl acetate and butyl acetate.


The resin solution can be obtained by mixing, for example, a resin material, a colorant, an organic solvent and the like using a stirrer or the like. Examples of the stirrer which can be used in the preparation of the resin solution include high-speed stirrers such as DESPA (manufactured by Asada Iron Works Co., Ltd.) and T K. Robomix/T K. Homo Disper Model 2.5 (manufactured by Primix Corporation).


Further, a temperature of the material during stirring is preferably from 20 to 60° C., more preferably from 30 to 50° C.


A solid content in the resin solution is not particularly limited, however, it is preferably from 40 to 75 wt %, more preferably from 50 to 73 wt %, further more preferably from 50 to 70 wt %. When the solid content falls within the above-mentioned range, the sphericity of the dispersoids constituting the dispersion liquid (aqueous dispersion liquid) described below can be made higher (a shape close to a sphere), and the shape of the finally obtained toner particles can be more surely made favorable.


Further, in the preparation of the resin solution, all constituent components of the resin solution to be prepared may be mixed simultaneously, or a part of the constituent components of the resin solution to be prepared are mixed to obtain a mixture (master mix) and thereafter, the mixture (master mix) may be mixed with the other components.


O/W Emulsion Liquid Preparing Step


Subsequently, an O/W emulsion liquid is prepared via a W/O emulsion liquid by adding an aqueous liquid to the resin solution.


As the aqueous liquid, an aqueous liquid mainly containing water can be used.


The aqueous liquid may contain, for example, a solvent excellent in compatibility with water (for example, a solvent having a solubility in 100 parts by weight of water at 25° C. of 50 parts by weight or more).


Further, to the aqueous liquid, an emulsifying dispersant may be added as needed. By adding an emulsifying dispersant thereto, the aqueous emulsion liquid can be more easily prepared. The emulsifying dispersant is not particularly limited, and for example, a known emulsifying dispersant can be used.


Further, when the O/W emulsion liquid is prepared, for example, a basic substance may be used. By using the basic substance, for example, a functional group (such as a carboxyl group) of the resin material can be neutralized, and the uniformity of the shape and size of the dispersoids in the O/W emulsion liquid to be prepared, and the dispersibility of the dispersoids can be made particularly excellent. Consequently, the resulting toner particles have a particularly sharp particle size distribution. The basic substance may be added to, for example, the resin solution or the aqueous liquid. Further, in the preparation of the O/W emulsion liquid, the basic substance may be added plural times in divided portions.


Examples of the basic substance include sodium hydroxide, potassium hydroxide and ammonia, and one kind or a combination of two or more kinds selected from these compounds can be used.


A used amount of the basic substance is preferably an amount corresponding to 1 to 3 times (1 to 3 equivalents), more preferably an amount corresponding to 1 to 2 times (1 to 2 equivalents) the amount necessary to neutralize all the carboxyl groups of the resin material. According to this, the formation of irregularly shaped dispersoids can be effectively prevented, and further, the particle size distribution of particles obtained in the coalescing step described in detail below can be made sharper.


The addition of the aqueous liquid to the resin solution may be performed by any method, however, it is preferred that the aqueous liquid containing water is added to the resin solution while stirring the resin solution. That is, it is preferred that the aqueous liquid is gradually added (dropwise) to the resin solution while applying a shearing force to the resin solution using a stirrer or the like to cause phase conversion from a W/O-type emulsion liquid (W/O emulsion liquid) into an O/W-type emulsion liquid (O/W emulsion liquid). In this manner, the uniformity of the size and shape of the dispersoids contained in the O/W emulsion liquid can be made particularly high, the particle size distribution of the toner particles contained in the finally obtained liquid developer can be made extremely sharp and the variation in properties among the toner particles can be made particularly small.


Examples of the stirrer which can be used in the preparation of the O/W emulsion liquid include high-speed stirrers and high-speed dispersers such as DESPA (manufactured by Asada Iron Works Co., Ltd.), T K. Robomix/T K. Homo Disper Model 2.5 (manufactured by Primix Corporation), Slasher (manufactured by Mitsui Mining Co., Ltd.) and Cavitron (manufactured by Eurotec, Ltd.).


Further, during the addition of the aqueous liquid to the resin solution, stirring is preferably performed such that a blade tip speed falls within a range from 10 to 20 m/sec, more preferably from 12 to 18 m/sec. When the blade tip speed falls within the above-mentioned range, the O/W emulsion liquid can be efficiently obtained and also the variation in shape and size of the dispersoids in the O/W emulsion liquid can be made particularly small, and the uniform dispersibility of the dispersoids can be made particularly excellent while preventing the generation of too small dispersoids and coarse particles.


A solid content in the O/W emulsion liquid is not particularly limited, however, it is preferably from 5 to 55 wt %, more preferably from 10 to 50 wt %. According to this, the productivity of the liquid developer can be made particularly excellent while more surely preventing unwanted aggregation of the dispersoids in the O/W emulsion liquid.


Further, a temperature of the material in this treatment is preferably from 20 to 60° C. more preferably from 20 to 50° C.


Coalescing Step


Subsequently, coalescent particles are obtained by coalescing plural dispersoids. The coalescence of the dispersoids usually proceeds such that the dispersoids containing an organic solvent collide and combine with one another.


The coalescence of plural dispersoids is performed by adding an electrolyte to the O/W emulsion liquid while stirring the O/W emulsion liquid. By doing this, coalescent particles can be easily and surely obtained. Further, by controlling an addition amount of the electrolyte, the particle diameter and particle size distribution of the coalescent particles can be easily and surely controlled.


The electrolyte is not particularly limited and known organic and inorganic water-soluble salts and the like can be used alone or in combination of two or more of them.


Further, the electrolyte is preferably a monovalent cationic salt. By using this, the particle size distribution of the resulting coalescent particles can be made particularly sharp. In addition, by using a monovalent cationic salt, the generation of coarse particles can surely be prevented in this step.


Further, among the above-mentioned substances, the electrolyte is preferably a sulfate (such as sodium sulfate or ammonium sulfate) or a carbonate, and is particularly preferably a sulfate. According to this, the particle diameter of the coalescent particles can be particularly easily controlled.


An amount of the electrolyte to be added in this step is preferably from 0.5 to 3 parts by weight, more preferably from 1 to 2 parts by weight based on 100 parts by weight of the solid content in the O/W emulsion liquid to which the electrolyte is added. According to this, the particle diameter of the coalescent particles can be particularly easily and surely controlled, and also the generation of coarse particles can surely be prevented.


Further, the electrolyte is preferably added in a state of an aqueous solution. According to this, the electrolyte can be promptly diffused throughout the entire O/W emulsion liquid and also an addition amount of the electrolyte can be easily and surely controlled. As a result, the coalescent particles having a desired particle diameter and a very sharp particle size distribution can be obtained.


When the electrolyte is added in a state of an aqueous solution, a concentration of the electrolyte in the aqueous solution is preferably from 2 to 10 wt %, more preferably from 2.5 to 6 wt %. According to this, the electrolyte can be particularly promptly diffused throughout the entire O/W emulsion liquid and also an addition amount of the electrolyte can be easily and surely controlled. Further, by adding such an aqueous solution, a content of water in the O/W emulsion liquid after completion of addition of the electrolyte is made favorable. Accordingly, a growing rate of the coalescent particles after adding the electrolyte can be made adequately slow to such an extent that the productivity is not decreased. As a result, the particle diameter thereof can be more surely controlled. In addition, unwanted coalescence of the coalescent particles can surely be prevented.


Further, when the electrolyte is added in a state of an aqueous solution, an addition rate of the aqueous electrolyte solution is preferably from 0.5 to 10 parts by weight per minute, more preferably from 1.5 to 5 parts by weight per minute based on 100 parts by weight of the solid content in the O/W emulsion liquid to which the aqueous electrolyte solution is added. According to this, occurrence of uneven concentration of the electrolyte in the O/W emulsion liquid can surely be prevented, and generation of coarse particles can surely be prevented. In addition, the particle size distribution of the coalescent particles becomes further sharper. Moreover, by adding the electrolyte at such a rate, the coalescence rate can be particularly easily controlled, and controlling of the average particle diameter of the coalescent particles becomes particularly easy, and also the productivity of the liquid developer can be made particularly excellent.


The electrolyte may be added plural times in divided portions. By doing this, the coalescent particles having a desired size can be easily and surely obtained, and also the degree of circularity of the resulting coalescent particles can surely be made sufficiently high.


Further, this step is performed while stirring the O/W emulsion liquid. By doing this, the coalescent particles having a particularly small variation in shape and size among the particles can be obtained.


For stirring the O/W emulsion liquid, a stirring blade such as an anchor blade, a turbine blade, a pfaudler blade, a fullzone blade, a max blend blade or a crescentic blade can be used, and in particular, a max blend blade or a fullzone blade is preferred. According to this, the added electrolyte can be promptly and uniformly dispersed or dissolved, and occurrence of uneven concentration of the electrolyte can surely be prevented. Further, while efficiently coalescing the dispersoids, once formed coalescent particles can be more surely prevented from disintegrating. As a result, the coalescent particles having a small variation in shape and particle diameter among the particles can be efficiently obtained.


A blade tip speed of the stirring blade is preferably from 0.1 to 10 m/sec, more preferably from 0.2 to 8 m/sec, further more preferably from 0.2 to 6 m/sec. When the blade tip speed falls within the above-mentioned range, the added electrolyte can be uniformly dispersed or dissolved, and occurrence of uneven concentration of the electrolyte can surely be prevented. Further, while more efficiently coalescing the dispersoids, once formed coalescent particles can be more surely prevented from disintegrating.


An average particle diameter of the resulting coalescent particles is preferably from 0.5 to 5 μm, more preferably from 1.5 to 3 μm. According to this, the particle diameter of the finally obtained toner particles can be more surely made adequate.


Organic Solvent Removing Step


Thereafter, the organic solvent contained in the O/W emulsion liquid (particularly in the dispersoids) is removed. By doing this, a dispersion liquid (aqueous dispersion liquid) in which the toner mother particles are dispersed in an aqueous dispersion medium can be obtained.


The removal of the organic solvent may be performed by any method. However, for example, it can be performed under reduced pressure. By doing this, the organic solvent can be efficiently removed while sufficiently preventing the degeneration, etc. of the constituent material such as the resin material.


Further, a treatment temperature in this step is preferably lower than the glass transition point (Tg) of the resin material constituting the coalescent particles.


Further, this step may be performed in a state where an antifoaming agent is added to the O/W emulsion liquid (dispersion liquid). According to this, the organic solvent can be efficiently removed.


As the antifoaming agent, for example, a lower alcohol, a higher alcohol, an oil or fat, a fatty acid, a fatty acid ester, a phosphoric acid ester or the like as well as a mineral oil antifoaming agent, a polyether antifoaming agent, or a silicone antifoaming agent can be used.


A used amount of the antifoaming agent is not particularly limited, however, it is preferably from 20 to 300 ppm by weight, more preferably from 30 to 100 ppm by weight based on the solid content in the O/W emulsion liquid.


Further, in this step, at least a portion of the aqueous liquid may be removed along with the organic solvent.


Further, in this step, it is not necessary that all the organic solvent (the total amount of the organic solvent contained in the dispersion liquid) be removed. Even if all the organic solvent is not removed, the remaining organic solvent can be sufficiently removed in a step described below.


Washing Step (First Washing Step)


Subsequently, the thus obtained toner mother particles are washed. By doing this, a dispersion liquid (aqueous dispersion liquid) containing washed toner mother particles can be obtained.


By performing this step, even if the organic solvent and the like are contained as impurities, these can be efficiently removed. Further, by performing this step, the electrolyte, basic substance or acidic substance used in the above-mentioned steps, or a salt generated by an acid-base reaction can be efficiently removed. As a result, the total volatile organic compound (TVOC) concentration in the finally obtained toner particles can be made particularly low. Further, the electric resistance of the insulating liquid can be made particularly high and also the stability of the properties of the toner particles is improved.


This step can be performed by, for example, separating the toner mother particles through solid-liquid separation (separation from the aqueous liquid), and thereafter redispersing the solid matter (toner mother particles) in an aqueous liquid (aqueous dispersion medium). The solid-liquid separation and redispersion of the solid matter in water may be repeated more than once.


Amine Modifying Step


Subsequently, the toner mother particles as described above are chemically modified with an amine-based material by mixing the dispersion liquid (aqueous dispersion liquid) containing the toner mother particles with the amine-based material.


This step may be performed in any condition as long as it is performed by mixing the aqueous dispersion liquid with an amine-based material. However, it is preferably performed in a condition where the hydrogen ion exponent (pH) of the dispersion liquid (aqueous dispersion liquid) is adjusted to 3.5 to 5.0. By doing this, while surely preventing unwanted degeneration, etc. of the constituent material of the toner mother particles, the amine-based material can be more rigidly attached to the toner mother particles made of the material containing the rosin resin. As a result, the long-term dispersion stability of the toner particles and the stability of the chargeability thereof can be made particularly excellent. As described above, the hydrogen ion exponent (pH) of the dispersion liquid (aqueous dispersion liquid) in this step is preferably from 3.5 to 5.0, more preferably from 3.6 to 4.8, further more preferably from 3.8 to 4.5. According to this, the effect as described above is more remarkably exhibited.


As the amine-based material to be used in this step, a secondary amine is preferred among the compounds described above. According to this, the amine-based material can be more rigidly attached to the toner mother particles made of the material containing the rosin resin. As a result, the long-term dispersion stability of the toner particles and the stability of the chargeability thereof can be made particularly excellent.


A used amount of the amine-based material in this step is preferably from 0.1 to 15 parts by weight, more preferably from 0.3 to 9.0 parts by weight, further more preferably from 0.5 to 6.0 parts by weight based on 100 parts by weight of the rosin resin. When the used amount of the amine-based material falls within the above-mentioned range, in the finally obtained liquid developer, the long-term dispersion stability and positive chargeability of the toner particles can be made particularly excellent while surely preventing the occurrence of inconvenience such as elution of excess amine-based material into the insulating liquid.


Washing Step (Second Washing Step)


Subsequently, the thus obtained toner particles are washed.


By performing this step, even in the case where an organic solvent and the like are contained as impurities, these can be efficiently removed. As a result, the total volatile organic compound (TVOC) concentration in the finally obtained toner particles can be made particularly low. Also, the stability of the properties of the toner particles is improved.


Incidentally, as described above, the amine-based material is rigidly attached to the toner mother particles containing the rosin resin. Therefore, unlike a dispersant or the like to be used in a liquid developer in the past, even if a washing treatment is performed, detachment or release of the amine-based material from the toner mother particles is surely prevented.


This step can be performed by, for example, separating the toner particles through solid-liquid separation (separation from the aqueous liquid), and thereafter redispersing the solid matter (toner particles) in an aqueous liquid (aqueous dispersion medium) and then performing solid-liquid separation (separation of the toner particles from the aqueous liquid). The redispersion of the solid matter in water and solid-liquid separation may be repeated more than once.


Drying Step


Thereafter, by performing a drying treatment, toner particles can be obtained. By performing such a step, a water content in the toner particles can surely be made sufficiently low and the storage stability of the finally obtained liquid developer and the stability of the properties thereof can be made particularly excellent.


The drying step can be performed using, for example, a vacuum dryer (such as Ribocone (manufactured by Okawara MFG. CO., LTD.) or Nauta (manufactured by Hosokawa Micron Corporation)), a fluidized bed dryer (manufactured by Okawara MFG. CO., LTD.) or the like. In the invention, the toner particles have a configuration such that the surfaces of the toner mother particles made of the material containing the rosin resin are chemically modified with the amine-based material, and therefore, even if the drying step is performed, aggregation of the toner particles can surely be prevented.


Insulating Liquid Dispersing Step


Subsequently, the thus obtained toner particles are dispersed in the insulating liquid, whereby the liquid developer is obtained.


The dispersion of the toner particles in the insulating liquid may be performed using any method, and can be performed by, for example, mixing the insulating liquid with the toner particles using a bead mill, a ball mill, an emulsifying disperser or the like.


Further, at the time of this dispersion, a component other than the insulating liquid and the toner particles may be mixed.


Further, the dispersion of the toner particles in the insulating liquid may be performed using the total amount of the insulating liquid constituting the finally obtained liquid developer or using a portion of the insulating liquid.


In the case where the toner particles are dispersed using a portion of the insulating liquid, after completion of the dispersion, the same liquid as used in the dispersion may be added as the insulating liquid, or a liquid different from the liquid used in the dispersion may be added as the insulating liquid. In the latter case, the properties such as viscosity of the finally obtained liquid developer can be easily adjusted.


when the liquid developer is produced by the process as described above, the toner particles contained in the liquid developer have characteristics that the surfaces of the toner mother particles made of the material containing the rosin resin are chemically modified with the amine-based material and the variation in shape and properties among the toner particles is small.


Image Forming Apparatus


Subsequently, a preferred embodiment of the image forming apparatus according to the invention will be described. The image forming apparatus according to the invention forms a color image on a recording medium using the liquid developer of the invention as described above.



FIG. 1 is a schematic view showing an example of an image forming apparatus to which the liquid developer of the invention is applied; and FIG. 2 is an enlarged view of a part of the image forming apparatus shown in FIG. 1.


As shown in FIGS. 1 and 2, an image forming apparatus 1000 has four developing parts 30Y, 30M, 30C and 30K, an intermediate transfer part 40, a secondary transfer unit (secondary transfer part) 60, a fixing part (fixing device) F40, and four liquid developer replenishing parts 90Y, 90M, 90C and 90K.


The developing parts 30Y, 30M and 30C have a function of developing latent images with a yellow liquid developer (Y), a magenta liquid developer (M) and a cyan liquid developer (C), respectively, to form monochrome color images corresponding to the respective colors. Further, the developing part 30K has a function of developing a latent image with a black liquid developer (K) to form a black monochrome image.


The developing parts 30Y, 30M, 30C and 30K have the same constitution, and therefore, the developing part 30Y will be described below.


As shown in FIG. 2, the developing part 30Y has a photoreceptor 10Y as an example of an image carrying member, and has, along the rotating direction of the photoreceptor 10Y, a charging roller 11Y, an exposure unit 12Y, a developing unit 100Y, a photoreceptor squeeze device 101Y, a primary transfer backup roller 51Y, a charge removal unit 16Y, a photoreceptor cleaning blade 17Y and a developer recovery part 18Y.


The photoreceptor 10Y has a tubular substrate and a photoreceptor layer which is formed on an outer peripheral surface of the tubular substrate and made of a material such as amorphous silicon, and is rotatable about the center axis thereof. In this embodiment, the photoreceptor 10Y rotates clockwise as shown by the arrow in FIG. 2.


The liquid developer is fed to the photoreceptor 10Y from the developing unit 100Y described below, and a layer of the liquid developer is formed on the surface thereof.


The charging roller 11Y is a device for charging the photoreceptor 10Y, and the exposure unit 12Y is a device for forming a latent image on the charged photoreceptor 10Y by irradiation with laser light. The exposure unit 12Y has a semiconductor laser, a polygonal mirror, an F-θ lens and the like, and irradiates the charged photoreceptor 10Y with laser light modulated based on image signals input from a host computer (not shown) such as a personal computer or a word processor.


The developing unit 100Y is a device for developing a latent image formed on the photoreceptor 10Y with the liquid developer of the invention. The developing unit 100Y will be described in detail below.


The photoreceptor squeeze device 101Y is disposed to face the photoreceptor 10Y on the downstream side of the developing unit 100Y in the rotating direction, and is constituted by a photoreceptor squeeze roller 13Y, a cleaning blade 14Y that is in press-contact with the photoreceptor squeeze roller 13Y and removes the liquid developer adhered to the surface thereof, and a developer recovery part 15Y that recovers the liquid developer removed by the cleaning blade 14Y. The photoreceptor squeeze device 101Y has a function of recovering an excess carrier (insulating liquid) and an essentially unnecessary fogging toner from the developer having been developed on the photoreceptor 10Y to increase a proportion of the toner particles in the developed image.


The primary transfer backup roller 51Y is a device for transferring the monochrome image formed on the photoreceptor 10Y to an intermediate transfer part 40 described below.


The charge removal unit 16Y is a device for removing charge remaining on the photoreceptor 10Y after transferring the intermediate transfer image to the intermediate transfer part 40 by the primary transfer backup roller 51Y.


The photoreceptor cleaning blade 17Y is a rubber member in contact with the surface of the photoreceptor 10Y and has a function of scraping and removing the liquid developer remaining on the photoreceptor 10Y after transferring the image to the intermediate transfer part 40 by the primary transfer backup roller 51Y.


The developer recovery part 18Y has a function of recovering the liquid developer removed by the photoreceptor cleaning blade 17Y.


The intermediate transfer part 40 is an endless elastic belt member and is tensioned by a belt driving roller 41 to which a driving force of a driving motor (not shown) is transmitted and a pair of driven rollers 44 and 45. Further, the intermediate transfer part 40 is rotationally driven in a counterclockwise direction by the belt driving roller 41 in contact with the photoreceptors 10Y, 10M, 10C and 10K at respective positions of the primary transfer backup rollers 51Y, 51M, 51C and 51K.


A predetermined tension is applied to the intermediate transfer part 40 by a tension roller 49 so that the intermediate transfer part 40 is prevented from loosening. The tension roller 49 is disposed on the downstream side of the driven roller 44 in the rotating (moving) direction of the intermediate transfer part 40 and on the upstream side of the other driven roller 45 in the rotating (moving) direction of the intermediate transfer part 40.


Monochrome images corresponding to the respective colors formed in the developing parts 30Y, 30M, 30C and 30K are transferred sequentially to the intermediate transfer part 40 by the primary transfer backup rollers 51Y, 51M, 51C and 51K, and the monochrome images corresponding to the respective colors are superimposed on one another. In this manner, a full color developer image (intermediate transfer image) is formed on the intermediate transfer part 40.


The intermediate transfer part 40 carries the monochrome images formed on the plural photoreceptors 10Y, 10M, 10C and 10K in a state that these images are sequentially secondarily transferred so as to be superimposed on one another, and the superimposed images are secondarily transferred at one time to a recoding medium F5 such as paper, film or cloth by a secondary transfer unit 60 described below. For that reason, in transferring the toner image to the recording medium F5 in the secondary transfer process, even in the case of a sheet material in which the surface of the recording medium F5 is not smooth due to a fibrous material, the elastic belt member is employed as a measure for increasing the secondary transfer characteristic by following such a non-smooth sheet material surface.


Further, the intermediate transfer part 40 is provided with a cleaning device including an intermediate transfer part cleaning blade 46, a developer recovery part 47 and a non-contact type bias applying member 48.


The intermediate transfer part cleaning blade 46 and the developer recovery part 47 are disposed on a side of the driven roller 45.


The intermediate transfer part cleaning blade 46 has a function of scraping and removing the liquid developer adhered to the intermediate transfer part 40 after transferring the image to the recording medium F5 by the secondary transfer unit (secondary transfer part) 60.


The developer recovery part 47 has a function of recovering the liquid developer removed by the intermediate transfer part cleaning blade 46.


The non-contact type bias applying member 48 is disposed apart from the intermediate transfer part 40 at a position facing the tension roller 49. The non-contact type bias applying member 48 applies a bias voltage having a polarity opposite to that of the toner (solid matter) of the liquid developer remaining on the intermediate transfer part 40 after the secondary transfer to the toner. In this manner, the electric charge is removed from the remaining toner to decrease the electrostatic adhesion force of the toner to the intermediate transfer part 40. In this example, a corona charging device is used as the non-contact type bias applying member 48.


In this connection, the non-contact type bias applying member 48 is not necessarily disposed at the position facing the tension roller 49 and can be disposed at an arbitrary position on the downstream side of the driven roller 44 in the moving direction of the intermediate transfer part 40 and on the upstream side of the other driven roller 45 in the moving direction of the intermediate transfer part 40 such as a position between the driven roller 44 and the tension roller 49. Further, as the non-contact type bias applying member 48, any known non-contact type charging device other than the corona charging device can also be used.


Further, an intermediate transfer part squeeze device 52Y is disposed on the downstream side of the primary transfer backup roller 51Y in the moving direction of the intermediate transfer part 40.


The intermediate transfer part squeeze device 52Y is provided as a device for removing the excess insulating liquid from the liquid developer transferred to the intermediate transfer part 40 in the case where the transferred liquid developer is not in a favorable dispersed state.


The intermediate transfer part squeeze device 52Y is constituted by an intermediate transfer part squeeze roller 53Y, an intermediate transfer part squeeze cleaning blade 55Y that is in press-contact with the intermediate transfer part squeeze roller 53Y and cleans the surface thereof, and a developer recovery part 56Y that recovers the liquid developer removed by the intermediate transfer part squeeze cleaning blade 55Y.


The intermediate transfer part squeeze device 52Y has a function of recovering the excess insulating liquid from the developer primarily transferred to the intermediate transfer part 40 to increase a proportion of the toner particles in the developed image, and also recovering an essentially unnecessary fogging toner.


The secondary transfer unit 60 has a pair of secondary transfer rollers disposed apart from each other at a predetermined distance along the moving direction of the transfer member. Between these two secondary transfer rollers, the secondary transfer roller disposed on the upstream side in the moving direction of the intermediate transfer part 40 is an upstream side secondary transfer roller 64. This upstream side secondary transfer roller 64 can come in press-contact with the belt driving roller 41 via the intermediate transfer part 40.


In addition, between these two secondary transfer rollers, the secondary transfer roller disposed on the downstream side in the moving direction of the transfer member is a downstream side secondary transfer roller 65. This downstream side secondary transfer roller 65 can come in press-contact with the driven roller 44 via the intermediate transfer part 40.


That is, the upstream side secondary transfer roller 64 and the downstream side secondary transfer roller 65 each bring the recording medium F5 into contact with the intermediate transfer part 40 which is tensioned by the belt driving roller 41 and the driven roller 44 and secondarily transfer the intermediate transfer image formed on the intermediate transfer part 40 by superimposing the monochrome images of different colors to the recording medium F5.


In this case, the belt driving roller 41 and the driven roller 44 also function as backup rollers for the upstream side secondary transfer roller 64 and the downstream side secondary transfer roller 65, respectively. That is, the belt driving roller 41 also serves as an upstream side backup roller disposed on the upstream side of the driven roller 44 in the moving direction of the recording medium F5 in the secondary transfer unit 60. Further, the driven roller 44 also serves as a downstream side backup roller disposed on the downstream side of the belt driving roller 41 in the moving direction of the recording medium F5 in the secondary transfer unit 60.


Therefore, the recording medium F5 transported to the secondary transfer unit 60 is brought into close contact with the intermediate transfer part 40 in a predetermined moving region of the transfer member from a position at which press-contact between the upstream side secondary transfer roller 64 and the belt driving roller 41 starts (nip start position) to a position at which press-contact between the downstream side secondary transfer roller 65 and the driven roller 44 ends (nip end position). In this manner, the full color intermediate transfer image on the intermediate transfer part 40 is secondarily transferred to the recording medium F5 in a state of being in close contact with the intermediate transfer part 40 over a predetermined time, and thus, a favorable secondary transfer can be achieved.


Further, the secondary transfer unit 60 includes a secondary transfer roller cleaning blade 66 and a developer recovery part 67 with respect to the upstream side secondary transfer roller 64 and also includes a secondary transfer roller cleaning blade 68 and a developer recovery part 69 with respect to the downstream side secondary transfer roller 65. The secondary transfer roller cleaning blades 66 and 68 are in contact with the secondary transfer rollers 64 and 65, respectively, and scrape and remove the liquid developer remaining on the surfaces of the secondary transfer rollers 64 and 65, respectively, after secondary transfer. Further, the developer recovery parts 67 and 69 each recover and store the liquid developer scraped and removed from the respective secondary transfer rollers 64 and 65 by the respective secondary transfer roller cleaning blades 66 and 68.


The toner image (transfer image) F5a transferred to the recording medium F5 by the secondary transfer unit 60 is transported to a fixing part (fixing device) F40 and fixed to the recording medium F5 by heating and pressing.


Specifically, a fixing temperature is preferably from 80 to 160° C., more preferably from 100 to 150° C., further more preferably from 100 to 140° C.


Subsequently, the developing units 100Y, 100M, 100C and 100K will be described in detail. In the following description, the developing unit 100Y will be described as a representative example.


As shown in FIG. 2, the developing unit 100Y has a liquid developer storage part 31Y, a coating roller 32Y, a control blade 33Y, a developer stirring roller 34Y, a communication channel 35Y, a recovery screw 36Y, a developing roller 20Y and a developing roller cleaning blade 21Y.


The liquid developer storage part 31Y has a function of storing the liquid developer for developing a latent image formed on the photoreceptor 10Y and is provided with a feed part 31aY that feeds the liquid developer to the developing part, a recovery part 31bY that recovers the excess liquid developer generated in the feed part 31aY and the like, and a partition 31cY that separates the feed part 31aY and the recovery part 31bY.


The feed part 31aY has a function of feeding the liquid developer to the coating roller 32Y and has a concave portion in which the developer stirring roller 34Y is installed. Further, to the feed part 31aY, the liquid developer is fed through the communication channel 35Y from a liquid developer mixing bath 93Y.


The recovery part 31bY recovers the liquid developer excessively fed to the feed part 31aY and the excess liquid developer generated in the developer recovery parts 15Y and 24Y. The recovered liquid developer is transported to the liquid developer mixing bath 93Y described below for recycling. Further, the recovery part 31bY has a concave portion and a recovery screw 36Y is installed in the vicinity of the bottom of the concave portion.


At the boundary between the feed part 31aY and the recovery part 31bY, the wall-like partition 31cY is provided. The partition 31cY separates the feed part 31aY and the recovery part 31bY and can prevent contamination of the fresh liquid developer with the recovered liquid developer. Further, when the liquid developer is excessively fed to the feed part 31aY, the excess liquid developer can be allowed to overflow from the feed part 31aY to the recovery part 31bY across the partition 31cY. Therefore, the amount of the liquid developer in the feed part 31aY can be maintained constant, and the amount of the liquid developer to be fed to the coating roller 32Y can be maintained constant. As a result, the quality of the finally formed image becomes stable.


Further, the partition 31cY has a notch, and the liquid developer can be allowed to overflow from the feed part 31aY to the recovery part 31bY through the notch.


The coating roller 32Y has a function of feeding the liquid developer to the developing roller 20Y.


The coating roller 32Y is a so-called anilox roller which is a roller made of a metal such as iron, having grooves formed uniformly and spirally on the surface thereof and having been plated with nickel, and has a diameter of about 25 mm. In this embodiment, plural grooves are formed slantwise with respect to the rotating direction of the coating roller 32Y by a so-called cutting process, rolling process or the like. The coating roller 32Y is in contact with the liquid developer while rotating counterclockwise to carry the liquid developer in the feed part 31aY in the grooves, and transports the carried liquid developer to the developing roller 20Y.


The control blade 33Y is in contact with the surface of the coating roller 32Y to control the amount of the liquid developer on the coating roller 32Y. That is, the control blade 33Y plays a role in measuring an amount of the liquid developer on the coating roller 32Y to be fed to the developing roller 20Y by scraping and removing the excess liquid developer on the coating roller 32Y. This control blade 33Y is made of urethane rubber as an elastic material and supported by a control blade supporting member made of a metal such as iron. The control blade 33Y is disposed on a side where the coating roller 32Y rotates and comes out from the liquid developer (i.e. on a right side in FIG. 2). The control blade 33Y has a rubber hardness of about 77 according to JIS-A, and the hardness of the control blade 33Y at the part in contact with the surface of the coating roller 32Y (about 77) is lower than that of the elastic layer of the developing roller 20Y described below at the part in press-contact with the surface of the coating-roller 32Y (about 85). Further, the excess liquid developer thus scraped off is recovered in the feed part 31aY for recycling.


The developer stirring roller 34Y has a function of stirring the liquid developer to achieve a uniformly dispersed state. According to this, even in the case where plural toner particles are aggregated, the respective toner particles can be favorably dispersed. In particular, the liquid developer of the invention is excellent in dispersion stability and also redispersibility, therefore, even in the case of the recycled liquid developer, the toner particles can be easily dispersed.


In the feed part 31aY, the toner particles in the liquid developer have a positive charge, and the liquid developer is in a uniformly dispersed state by stirring with the developer stirring roller 34Y and is drawn up from the liquid developer storage part 31Y through rotation of the coating roller 32Y, and then fed to the developing roller 20Y while controlling the amount of the liquid developer by the control blade 33Y. Further, through stirring of the liquid developer by the developer stirring roller 34Y, the liquid developer can be allowed to stably overflow across the partition 31cY to the side of the recovery part 31bY, whereby the liquid developer is prevented from being retained and compressed.


Further, the developer stirring roller 34Y is installed in the vicinity of the communication channel 35Y. Therefore, the liquid developer fed from the communication channel 35Y can be promptly diffused, and even in the case where the liquid developer is being replenished to the feed part 31aY, the level of the liquid in the feed part 31aY can be maintained constant. By installing such a developer stirring roller 34Y in the vicinity of the communication channel 35Y, a negative pressure is generated in the communication channel 35Y, and therefore, the liquid developer can be naturally sucked up.


The communication channel 35Y is provided vertically beneath the developer stirring roller 34Y and communicates with the liquid developer storage part 31Y, and through which the liquid developer is sucked up from the liquid developer mixing bath 93Y to the feed part 31aY.


By installing the communication channel 35Y beneath the developer stirring roller 34Y, the liquid developer fed through the communication channel 35Y is held back by the developer stirring roller 34Y and the liquid level is prevented from rising due to ejection of the liquid developer and the liquid level is maintained substantially constant, whereby the liquid developer can be stably fed to the coating roller 32Y.


The recovery screw 36Y installed in the vicinity of the bottom of the recovery part 31bY is formed of a cylindrical material, has spiral ribs on the outer periphery thereof, and has a function of maintaining the fluidity of the recovered liquid developer and also has a function of accelerating the transport of the liquid developer to the liquid developer mixing bath 93Y.


The developing roller 20Y carries the liquid developer and transports it to the developing position facing the photoreceptor 10Y for developing the latent image carried on the photoreceptor 10Y with the liquid developer.


The developing roller 20Y has a liquid developer layer formed on the surface thereof by feeding the liquid developer from the coating roller 32Y.


The developing roller 20Y includes an inner core made of a metal such as iron and an electroconductive elastic layer provided on the outer periphery of the core, and has a diameter of about 20 mm. The elastic layer has a two-layer structure including a urethane rubber layer having a rubber hardness of about 30 according to JIS-A and a thickness of about 5 mm as an inner layer, and a urethane rubber layer having a rubber hardness of about 85 according to JIS-A and a thickness of about 30 μm as a surface (outer) layer. The developing roller 20Y is in press-contact with the coating roller 32Y and the photoreceptor 10Y while the surface layer is serving as a press-contact portion in an elastically deformed state.


Further, the developing roller 20Y is rotatable about the center axis thereof, and the center axis is located down below the rotation center axis of the photoreceptor 10Y. The developing roller 20Y rotates in the direction (the counterclockwise direction in FIG. 2) opposite to the rotating direction (the clockwise direction in FIG. 2) of the photoreceptor 10Y. When the latent image formed on the photoreceptor 10Y is developed, an electric field is generated between the developing roller 20Y and the photoreceptor 10Y.


In the developing unit 100Y, the coating roller 32Y and the developing roller 20Y are separately driven by different power sources (not shown). Therefore, by changing a ratio of a rotation speed (linear velocity) of the coating roller 32Y to that of the developing roller 20Y, an amount of the liquid developer to be fed on the developing roller 20Y can be adjusted.


Further, the developing unit 100Y has a developing roller cleaning blade 21Y made of rubber and provided in contact with the surface of the developing roller 20Y and a developer recovery part 24Y. The developing roller cleaning blade 21Y is a device for scraping and removing the liquid developer remaining on the developing roller 20Y after the development is carried out at the developing position. The liquid developer removed by the developing roller cleaning blade 21Y is recovered in the developer recovery part 24Y.


As shown in FIGS. 1 and 2, the image forming apparatus 1000 is provided with the liquid developer replenishing parts 90Y, 90M, 90C and 90K which replenish the liquid developers to the developing parts 30Y, 30M, 30C and 30K, respectively. These liquid developer replenishing parts 90Y, 90M, 90C and 90K have liquid developer tanks 91Y, 91M, 91C and 91K, insulating liquid tanks 92Y, 92M, 92C and 92K, and liquid developer mixing baths 93Y, 93M, 93C and 93K, respectively.


In each of the liquid developer tanks 91Y, 91M, 91C and 91K, a liquid developer of high concentration which corresponds to each of the respective colors is stored. Further, in each of the insulating liquid tanks 92Y, 92M, 92C and 92K, the insulating liquid is stored. Further, to each of the liquid developer mixing baths 93Y, 93M, 93C and 93K, a predetermined amount of each liquid developer of high concentration is fed from each of the liquid developer tanks 91Y, 91M, 91C and 91K and a predetermined amount of each insulating liquid is fed from each of the insulating liquid tanks 92Y, 92M, 92C and 92K.


In each of the liquid developer mixing baths 93Y, 93M, 93C and 93K, the fed liquid developer of high concentration and the fed insulating liquid are mixed and stirred by a stirring device installed in each bath to prepare a liquid developer corresponding to each of the respective colors which is to be used in each of the feed parts 31aY, 31aM, 31aC and 31aK. The liquid developers prepared in the respective liquid developer mixing baths 93Y, 93M, 93C and 93K are fed to the corresponding feed parts 31aY, 31aM, 31aC and 31aK, respectively.


Further, in the liquid developer mixing bath 93Y, the liquid developer recovered in the recovery part 31bY is recovered for recycling. The same shall apply to the liquid developer mixing baths 93M, 93C and 93K.


The image forming apparatus 1000 as described above has a mechanism of reusing (recycling) a recovered liquid developer (toner). The toner particles to be recovered have a configuration such that the surfaces of the toner mother particles containing the rosin resin are chemically modified with the amine-based material, and the amine-based material are rigidly attached to the toner mother particles as described above. Therefore, even if stress involved in the recovering procedure (for example, stress caused by the cleaning blade) is applied to the toner particles, detachment or release of the amine-based material from the toner mother particles is surely prevented, and further, the toner particles as described above has high redispersibility in the insulating liquid. Accordingly, the recovered toner particles can be favorably reused for image formation.


In the above, the invention is described based on preferred embodiments, however, the invention is not limited to these embodiments.


For example, the liquid developer of the invention is not limited to those applied to the image forming apparatus as described above.


Further, the liquid developer of the invention is not limited to those produced by the production process as described above.


Further, in the above-mentioned embodiments, it is described that coalescent particles are obtained by preparing an aqueous emulsion liquid and adding an electrolyte to the prepared aqueous emulsion liquid, however, the invention is not limited thereto. For example, the coalescent particles may be prepared using an emulsion polymerization association method in which a colorant, a monomer, a surfactant and a polymerization initiator are dispersed in an aqueous liquid, and an aqueous emulsion liquid is prepared by emulsion polymerization, and then an electrolyte is added to the aqueous emulsion liquid to effect association. Further, the coalescent particles may be prepared by subjecting the obtained aqueous emulsion liquid to spray drying.


Further, in the above-mentioned embodiments, the image forming apparatus including a corona discharging device is described, however, the apparatus may not include a corona discharging device.


EXAMPLES

1. Production of Liquid Developer


A liquid developer was produced as described below. Steps in which a temperature is not specified were performed at room temperature (25° C.).


Example 1

Dispersion Liquid Providing Step (Aqueous Dispersion Liquid Providing Step)


Preparation of Colorant Master Solution


First, 60 parts by weight of a polyester resin (trade name “DL-60” manufactured by DIC Corporation, acid value: 10 mg KOH/g, glass transition point: 56° C., softening point: 109° C.) was provided as a resin material.


Subsequently, a mixture of the above resin material and a cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.) as a colorant at a mass ratio of 50:50 was provided. These components were mixed using a 20-L Henschel mixer, whereby a raw material for producing a toner was obtained.


Then, the raw material (mixture) was kneaded using a twin-screw kneading extruder. The kneaded material extruded from the extrusion port of the twin-screw kneading extruder was cooled.


The thus cooled kneaded material was coarsely pulverized to prepare a colorant master batch having an average particle diameter of 1.0 mm or less. A hammer mill was used for coarse pulverization of the kneaded material.


Resin Solution Preparing Step


175 parts by weight of methyl ethyl ketone, 172.3 parts by weight of the polyester resin and 55.3 parts by weight of a rosin-modified polyester resin (trade name “TFS-015”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 11.8 mg KOH/g, softening point: 79° C., weight average molecular weight: 1300) were mixed in 97.5 parts by weight of the above-mentioned colorant master batch using a high-speed disperser (T K. Robomix/T K. Homo Disper Model 2.5, manufactured by Primix Corporation). Then, 1.38 parts by weight of NEOGEN SC-F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as an emulsifying agent was added to the mixture to prepare a resin solution. In this solution, the pigment was uniformly and finely dispersed.


O/W Emulsion Liquid Preparing Step


Subsequently, 72.8 parts by weight of 1 N ammonia water was added to the resin solution in a vessel and the mixture was sufficiently stirred using a high-speed disperser (T K. Robomix/T K. Homo Disper Model 2.5, manufactured by Primix Corporation) by setting a blade tip speed of the stirring blade to 7.5 m/s and then, a temperature of the solution in the flask was adjusted to 25° C. Thereafter, while stirring the mixture by setting a blade tip speed of the stirring blade to 14.7 m/s, 400 parts by weight of deionized water was added dropwise thereto. Further, while continuing stirring, 100 parts by weight of deionized water was added thereto, whereby an O/W emulsion liquid in which dispersoids containing the resin material were dispersed was obtained via a W/O emulsion liquid.


Coalescing Step


Subsequently, the O/W emulsion liquid was transferred to a stirring vessel having a max blend blade, and a temperature of the O/W emulsion liquid was adjusted to 25° C. while stirring the O/W emulsion liquid by setting a blade tip speed of the stirring blade to 1.0 m/s. Subsequently, coalescent particles were formed by adding 200 parts by weight of a 5.0% aqueous solution of sodium sulfate dropwise to the O/W emulsion liquid while maintaining the same temperature and stirring conditions as above to coalesce the dispersoids. After completion of the dropwise addition, the mixture was kept stirring until the coalescent particles grew to a 50% volume particle diameter Dv(50) (μm) of 2.5 μm. When the Dv(50) of the coalescent particles reached 2.5 μm, 200 parts by weight of deionized water was added thereto and coalescence was finished.


Organic Solvent Removing Step


Subsequently, the organic solvent was distilled off until the solid content became 23 wt % by placing the O/W emulsion liquid containing the coalescent particles under reduced pressure, whereby a toner mother particle slurry (dispersion liquid) was obtained.


Washing Step (First Washing Step)


Subsequently, the thus obtained slurry (dispersion liquid) was subjected to solid-liquid separation, and further a procedure of redispersion in water (reslurry) and solid-liquid separation was performed repeatedly to effect a washing treatment. Thereafter, a wet cake of the toner mother particles (toner mother particle cake) was obtained by suction filtration. Then, this wet cake was dispersed in water, whereby a dispersion liquid (aqueous dispersion liquid) containing the washed toner mother particles was obtained.


Amine Modifying Step


Subsequently, 1 N hydrochloric acid was added to the dispersion liquid (aqueous dispersion liquid) containing the washed toner mother particles to adjust the hydrogen ion exponent (pH) to 4.0.


Then, to the dispersion liquid (aqueous dispersion liquid) having a hydrogen ion exponent (pH) adjusted to 4.0, an aqueous solution of diethanolamine was added dropwise while stirring. At this time, the aqueous solution of diethanolamine was added such that an addition amount of diethanolamine became 2.8 parts by weight based on 100 parts by weight of the rosin resin. Thereafter, the resulting mixture was sufficiently stirred such that the entire dispersion liquid had a sufficiently uniform composition.


Washing Step (Second Washing Step)


Subsequently, the thus obtained dispersion liquid in which the toner particles were dispersed was subjected to solid-liquid separation, and further a procedure of redispersion in water (reslurry) and solid-liquid separation was performed repeatedly to effect a washing treatment. Thereafter, a wet cake of the toner particles (toner particle cake) was obtained by suction filtration. A content of water in the thus obtained wet cake was 35 wt %. When the liquid phase separated by the solid-liquid separation and the filtrate were examined, diethanolamine as the amine-based material was not detected.


Drying Step


Thereafter, the thus obtained wet cake was dried using a vacuum dryer, whereby toner particles containing toner mother particles whose surfaces are chemically modified with the amine-based material (diethanolamine) were obtained.


Insulating Liquid Dispersing Step


37.5 parts by weight of the toner particles obtained by the above-mentioned method, and as an insulating liquid, 150 parts by weight of rapeseed oil (trade name “high-oleic rapeseed oil” manufactured by The Nisshin Oillio Group, Ltd.) were placed in a ceramic pot (internal capacity: 600 mL), and further zirconia balls (ball diameter: 1 mm) were placed in the ceramic pot such that a volume filling ratio became 85%. Then, the mixture in the pot was dispersed using a desktop pot mill at a rotation speed of 230 rpm for 24 hours, and thus a liquid developer was obtained.


The toner particles in the thus obtained liquid developer had a Dv(50) of 1.85 μm. The 50% volume particle diameter Dv(50) (μm) of the obtained toner particles was measured using a particle analysis apparatus Mastersizer 2000 (manufactured by Malvern Instruments, Ltd.). Also, the particle diameters of particles obtained in the respective Examples and Comparative Examples described below were determined in the same manner.


Further, a viscosity of the obtained liquid developer at 25° C. was 55 mPa·s. Further, a magenta liquid developer, a yellow liquid developer and a black liquid developer were produced in the same manner as described above except that a magenta pigment (Pigment Red 238, manufactured by Sanyo Color Works, Ltd.), a yellow pigment (Pigment yellow 180, manufactured by Clariant), a black pigment (carbon black Printex L, manufactured by Degussa) were used, respectively, instead of the cyan pigment.


Examples 2 to 11

Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that the type of the rosin resin and the type and used amount of the amine-based material, and the hydrogen ion exponent (pH) of the dispersion liquid (aqueous dispersion liquid) having an adjusted hydrogen ion exponent (pH) in the amine modifying step were changed as shown in Table 1.


Comparative Example 1

Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that the rosin resin was not used and the used amount of the polyester resin was increased by just that much. When the liquid phase separated by the solid-liquid separation and the filtrate in the washing step (second washing step) were examined, it was confirmed that the amine-based material was contained.


Comparative Example 2

Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that Arakyd 251 (manufactured by Arakawa Chemical Industries, Ltd.) as a dispersant was used instead of the amine-based material (diethanolamine).


Comparative Example 3

Liquid developers corresponding to the respective colors were produced in the same manner as in Example 1 except that the amine modifying step between the first washing step and the second washing step was omitted and, instead, a step of adding the amine-based material (diethanolamine) to the insulating liquid in which the toner mother particles were dispersed was performed after the insulating liquid dispersing step.


With regard to the respective Examples and Comparative Examples, the resin material used for preparation of the liquid developer, the amine-based material (in Comparative Example 2, not the amine-based material but the dispersant), the condition of the insulating liquid, the viscosity of the liquid developer, and the hydrogen ion exponent (pH after adjustment of the dispersion liquid) of the dispersion liquid (aqueous dispersion liquid) having an adjusted hydrogen ion exponent (pH) in the amine modifying step are shown in Table 1. In the table, the polyester resin DL-60 (acid value: 10 mg KOH/g, glass transition point (Tg): 56° C., softening point: 109° C.) is denoted by PES; the styrene-acrylic ester copolymer is denoted by ST-AC; the rosin-modified polyester resin (trade name “TFS-015”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 11.8 mg KOH/g, softening point: 79° C., weight average molecular weight: 1300) is denoted by RPES; the rosin-modified phenol resin (trade name “Tamanor 135”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 18 mg KOH/g or less, softening point: 130 to 140° C., weight average molecular weight: 15000) is denoted by RPH1; the rosin-modified phenol resin (trade name “KG2212”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 22 mg KOH/g or less, softening point: 172 to 182° C., weight average molecular weight: 100000) is denoted by RPH2; the rosin-modified phenol resin (trade name “Tamanor 361”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 20 mg KOH/g or less, softening point: 154° C., weight average molecular weight: 15000) is denoted by RPH3; the rosin-modified maleic resin (trade name “Malkyd No. 1”, manufactured by Arakawa Chemical Industries, Ltd., acid value: 25 mg KOH/g or less, softening point: 120 to 130° C., weight average molecular weight: 3100) is denoted by RM; diethanolamine (a secondary amine) is denoted by DEA; monoethanolamine (a primary amine) is denoted by MEA; N-n-butylethanolamine (a secondary amine) is denoted by BEA; N-ethylethanolamine (a secondary amine) is denoted by EEA; triethanolamine (a tertiary amine) is denoted by TEA; benzyl triethyl ammonium chloride (a quaternary amine) is denoted by BTEAC; and Arakyd 251 is denoted by DA. Incidentally, in Comparative Example 2, the condition of the dispersant is shown in the columns of the amine-based material.












TABLE 1









Liquid developer













Toner mother particles


















Resin material




















Resin material other

Amine-based material



















Rosin resin
than rosin resin
With or with-

Addition amount






















Content

Content
out chemical

based on 100


pH after




in resin

in resin
modification

parts by weight
Type of

adjustment of




material

material
with amine-

of rosin resin
insulating
Viscosity
dispersion



Type
(wt %)
Type
(wt %)
based material
Type
(parts by weight)
liquid
(mPa · s)
liquid





















Example 1
RPES
20
PES
80
With
DEA
3.0
Rapeseed oil
79
4.0


Example 2
RPH1
20
PES
80
With
DEA
0.4
Rapeseed oil
104
4.0


Example 3
RPH2
20
PES
80
With
MEA
2.5
Rapeseed oil
95
8.0


Example 4
RM
20
PES
80
With
TEA
2.0
Rapeseed oil
85
5.5


Example 5
RM
20
PES
80
With
EEA
3.5
Rapeseed oil
82
7.0


Example 6
RPES
35
PES
65
With
BEA
4.5
Rapeseed oil
78
4.3


Example 7
RPH2
20
ST-AC
80
With
BTEAC
1.5
Rapeseed oil
82
4.7


Example 8
RPES
45
PES
55
With
DEA
6.2
Rapeseed oil
76
3.9


Example 9
RPH3
30
PES
70
With
BEA
3.0
Rapeseed oil
81
4.5


Example 10
RPH3
20
PES
80
With
EEA
2.5
Rapeseed oil
82
4.2


Example 11
RPES
15
PES
85
With
DEA
1.5
Rapeseed oil
85
3.8


Comparative


PES
100
Without
DEA
3.0
Rapeseed oil
232
4.0


Example 1


Comparative
RPES
20
PES
80
Without
DA
3.0
Rapeseed oil
199
4.0


Example 2


Comparative
RPES
20
PES
80
Without
DEA
3.0
Rapeseed oil
239
4.0


Example 3










2. Evaluation


The respective liquid developers obtained as described above were evaluated as follows.


2.1 Development Efficiency


Using an image forming apparatus as shown in FIGS. 1 and 2, a liquid developer layer was formed on the developing roller of the image forming apparatus with each of the liquid developers obtained in the above-mentioned respective Examples and Comparative Examples. Subsequently, a direct current voltage of 300 V was applied to the developing roller as a developing bias, and the photoreceptor was uniformly charged to a surface potential of 500 V. Then, the surface potential of the photoreceptor was attenuated to 50 V by irradiating the photoreceptor with light. The toner particles on the developing roller and the photoreceptor behind the point at which the liquid developer layer passed between the photoreceptor and the developing roller were collected using tapes, respectively. Each tape used for collecting the toner particles was stuck on a recording paper and a density of the toner particles on each tape was measured. After the measurement, a value obtained by dividing the density of the toner particles collected on the photoreceptor by the sum of the densities of the toner particles collected on the photoreceptor and the developing roller and then multiplying the resulting value by 100 was calculated as a development efficiency, which was then evaluated into the following four grades.


A: The development efficiency is 96% or more, and the development efficiency is particularly excellent.


B: The development efficiency is 90% or more and less than 96%, and the development efficiency is excellent.


C. The development efficiency is 80% or more and less than 90%, and there is no practical problem.


D: The development efficiency is less than 80%, and the development efficiency is poor.


2.2. Transfer Efficiency


Using an image forming apparatus as shown in FIGS. 1 and 2, a liquid developer layer was formed on the photoreceptor of the image forming apparatus with each of the liquid developers obtained in the respective Examples and Comparative Examples. Subsequently, the toner particles on the photoreceptor and the intermediate transfer part behind the point at which the liquid developer layer passed between the photoreceptor and the intermediate transfer part were collected using tapes, respectively. Each tape used for collecting the toner particles was stuck on a recording paper and a density of the toner particles on each tape was measured. After the measurement, a value obtained by dividing the density of the toner particles collected on the intermediate transfer part by the sum of the densities of the toner particles collected on the photoreceptor and the intermediate transfer part and then multiplying the resulting value by 100 was determined to be a transfer efficiency, which was then evaluated into the following four grades.


A: The transfer efficiency is 96% or more, and the transfer efficiency is particularly excellent.


B: The transfer efficiency is 90% or more and less than 96%, and the transfer efficiency is excellent.


C: The transfer efficiency is 80% or more and less than 90%, and there is no practical problem.


D: The transfer efficiency is less than 80%, and the transfer efficiency is poor.


2.3. Fixing Strength


Using an image forming apparatus as shown in FIGS. 1 and 2, an image having a predetermined pattern was formed on a recording paper (High quality paper LPCPPA4 manufactured by Seiko Epson Corporation) with each of the liquid developers obtained in the respective Examples and Comparative Examples. Then, the image formed on the paper was thermally fixed on the paper by setting the temperature of the thermal fixing roller to 100° C.


Then, after confirming a non-offset region, the fixed image on the recording paper was rubbed out twice using an eraser (a sand eraser. “LION 261-11”1, manufactured by LION OFFICE PRODUCTS CORP.) at a press load of 1.2 kgf. Then, the residual ratio of the image density on the recording paper was measured by “X-Rite model 404” manufactured by X-Rite Inc., which was then evaluated into the following five grades.


A: The residual ratio of the image density is 96% or more (very good).


B: The residual ratio of the image density is 90% or more and less than 96% (good).


C: The residual ratio of the image density is 80% or more and less than 90% (moderate).


D: The residual ratio of the image density is 70% or more and less than 80% (somewhat bad).


E: The residual ratio of the image density is less than 70% (very bad).


2.4. Positive Chargeability


A potential difference of each of the liquid developers obtained in the respective Examples and Comparative Examples was measured using a microscope laser zeta potentiometer “ZC-2000” manufactured by Microtec Nition Corporation, which was then evaluated into the following five grades.


The measurement was performed as follows. Each liquid developer was diluted with a dilution solvent and placed in a transparent 10×10 mm square cell. Then, a voltage of 300 V was applied between electrodes (distance of electrodes: 9 mm), and at the same time, movement of the particles in the cell was observed with a microscope to calculate their moving speed, and a zeta potential was obtained based on the calculated value of the moving speed.


A: The potential difference is +100 mV or more (very good).


B: The potential difference is +85 mV or more and less than +100 mV (good).


C: The potential difference is +70 mV or more and less than +85 mV (moderate).


D: The potential difference is +50 mV or more and less than +70 mV (somewhat bad).


E: The potential difference is less than +50 mV (very bad).


2.5. Dispersion Stability Test


2.5.1. Method 1


10 mL of each of the liquid developers obtained in the respective Examples and Comparative Examples was placed in a test tube (diameter: 12 mm, length: 120 mm), and the test tube was left stand for 10 days. Then, a depth of sediment was measured, which was evaluated into the following four grades.


A: The depth of sediment is 0 mm.


B: The depth of sediment is more than 0 mm and 2 mm or less.


C: The depth of sediment is more than 2 mm and 5 mm or less.


D: The depth of sediment is more than 5 mm.


2.5.2. Method 2


45.5 mL of each of the liquid developers obtained in the respective Examples and Comparative Examples was placed in a centrifuge tube and centrifuged for 3 minutes using a centrifuge (manufactured by Kokusan Co., Ltd.) under conditions that the rotation radius was 5 cm and the rotation speed was 500, 1000, 2000, 4000 or 5000 rpm. Then, a depth of sediment was measured for each rotation speed.


The centrifugal acceleration (rω2) (rω2=1118×(rotation radius (cm))×(rotations per minute (rpm))2×10−8×g (gravitational acceleration)) was taken along the abscissa, the depth of sediment was taken along the ordinate, and the measurement results were plotted. A slope k was determined through linear approximation based on the respective plots, which was then evaluated into the following four grades. Incidentally, it can be said that as the value of k is lower, the dispersion stability is higher.


A: 0≦k<0.004


B: 0.004≦k<0.008


C, 0.008≦k<0.012


D: 0.012≦k


2.6. Recyclability


Using an image forming apparatus as shown in FIGS. 1 and 2, an image having a predetermined pattern was formed on 10000 sheets of recording paper (High quality paper LPCPPA4 manufactured by Seiko Epson Corporation) with each of the liquid developers obtained in the respective Examples and Comparative Examples. This image formation was performed in a condition that supply of the liquid developer recovered in each of the recovery parts of respective colors to corresponding each of the liquid developer mixing baths of respective colors was stopped. After image formation on 10000 sheets of recording paper was completed, a liquid developer recycled by diluting the liquid developer recovered in each of the recovery parts with the insulating liquid such that a solid content became 20 wt % (recycled liquid developer) was tested by two methods (Method 1 and Method 2) as described below and evaluated for applicability to recycling (recyclability).


2.6.1. Method 1


10 mL of each of the recycled liquid developers for the respective Examples and Comparative Examples was placed in a test tube (diameter: 12 mm, length: 120 mm), and the test tube was left stand for 10 days. Then, a depth of sediment was measured, which was evaluated into the following four grades.


A: The depth of sediment is 1 mm or less.


B: The depth of sediment is more than 1 mm and 3 mm or less.


C: The depth of sediment is more than 3 mm and 6 mm or less.


D: The depth of sediment is more than 6 mm.


2.6.2. Method 2


45.5 mL of each of the recycled liquid developers for the respective Examples and Comparative Examples was placed in a centrifuge tube and centrifuged for 3 minutes using a centrifuge (manufactured by Kokusan Co., Ltd.) under conditions that the rotation radius was 5 cm and the rotation speed was 500, 1000, 2000, 4000 or 5000 rpm. Then, a depth of sediment was measured for each rotation speed.


The centrifugal acceleration (rω2) (rω2=1118×(rotation radius (cm))×(rotations per minute (rpm))2×10−8×g (gravitational acceleration)) was taken along the abscissa, the depth of sediment was taken along the ordinate, and the measurement results were plotted. A slope k was determined through linear approximation based on the respective plots, which was then evaluated into the following four grades. Incidentally, it can be said that as the value of k is lower, the dispersion stability is higher.


A: 0≦k<0.006


B: 0.006≦k<0.010


C, 0.010≦k<0.014


D: 0.014≦k


These results are shown in Table 2.












TABLE 2









Dispersion




stability
Recyclability
















Development
Transfer
Fixing
Positive
Method
Method
Method
Method



efficiency
efficiency
strength
chargeability
1
2
1
2



















Example 1
A
A
A
A
A
A
A
A


Example 2
B
B
B
B
A
B
A
B


Example 3
B
B
B
B
A
B
B
B


Example 4
B
B
A
A
A
B
A
B


Example 5
B
B
A
A
A
B
B
B


Example 6
A
A
A
A
A
A
A
A


Example 7
B
A
B
A
A
B
B
B


Example 8
B
A
A
A
A
A
A
B


Example 9
B
A
A
A
A
A
A
A


Example 10
B
A
A
A
A
A
A
A


Example 11
A
A
A
A
A
A
A
A


Comparative
C
D
A
E
D
D
D
D


Example 1


Comparative
C
C
A
D
C
D
D
D


Example 2


Comparative
C
C
A
D
C
D
D
D


Example 3









As is apparent from Table 2, the liquid developers according to the invention were excellent in chargeability (positive chargeability) and long-term dispersion stability of the toner particles. Further, the liquid developers according to the invention were also excellent in recyclability. Further, the liquid developers according to the invention were also excellent in development efficiency, transfer efficiency and fixing strength. On the other hand, from the liquid developers of the Comparative Examples, satisfactory results could not be obtained.


Further, using an image forming apparatus as shown in FIGS. 1 and 2, continuous image formation was performed on 50000 sheets of recording paper (High quality paper LPCPPA4 manufactured by Seiko Epson Corporation) in a condition that the liquid developer was supplied from each of the liquid developer tanks of respective colors to each of the stirring devices of respective colors. As a result, in the case of using the liquid developers according to the invention, an image with an excellent image quality could be formed even on the 50000th sheet and deterioration of image quality was not observed, however, in the case of using the liquid developers of Comparative Examples, apparent deterioration of image quality was observed.

Claims
  • 1. A process for producing a liquid developer comprising: providing a dispersion liquid containing an aqueous dispersion medium and toner mother particles including a rosin resin;chemically modifying surfaces of the toner mother particles with an amine-based material by mixing the amine-based material with the dispersion liquid to obtain toner particles; anddispersing the toner particles in an insulating liquid.
  • 2. The process for producing a liquid developer according to claim 1, further comprising separating the toner particles from the aqueous dispersion medium and drying the toner particles between the chemically modifying step and the dispersing step.
  • 3. The process for producing a liquid developer according to claim 1, wherein the dispersion liquid is prepared as a suspension liquid through: preparing a resin solution in which the rosin resin is dissolved in an organic solvent;preparing an O/W emulsion liquid by adding an aqueous liquid to the resin solution via a W/O emulsion liquid;coalescing dispersoids contained in the O/W emulsion liquid to obtain coalescent particles; andremoving the organic solvent contained in the coalescent particles to form the toner mother particles.
  • 4. The process for producing a liquid developer according to claim 3, further comprising washing the toner mother particles between the organic solvent removing step and chemically modifying step.
  • 5. The process for producing a liquid developer according to claim 1, wherein the chemically modifying step is performed in a condition where a hydrogen ion exponent (pH) of the dispersion liquid is adjusted to 3.5 to 5.0.
  • 6. The process for producing a liquid developer according to claim 1, wherein the amine-based material is a secondary amine.
  • 7. The process for producing a liquid developer according to claim 1, wherein a used amount of the amine-based material in the chemically modifying step is from 0.1 to 15 parts by weight based on 100 parts by weight of the rosin resin.
  • 8. The process for producing a liquid developer according to claim 1, wherein the rosin resin has a weight average molecular weight of from 500 to 100000.
  • 9. The process for producing a liquid developer according to claim 1, wherein the insulating liquid mainly contains a vegetable oil.
Priority Claims (1)
Number Date Country Kind
2008-177153 Jul 2008 JP national
US Referenced Citations (4)
Number Name Date Kind
3909433 Gilliams et al. Sep 1975 A
20090233214 Hiraga et al. Sep 2009 A1
20090233215 Ueno et al. Sep 2009 A1
20100074654 Hiraga et al. Mar 2010 A1
Related Publications (1)
Number Date Country
20100003054 A1 Jan 2010 US