The present invention relates to a process for producing a polycrystalline silicon ingot to be used for a solar cell or the like.
As a conventional process for producing a polycrystalline silicon ingot for a solar cell, a method of melting and solidifying a silicon raw material in an argon atmosphere under reduced pressure similar to a single crystal pulling method is generally known.
Polycrystalline silicon for a solar cell has a crystal grain boundary, has unbonded active bonds (atomic defects), and contains impurities aggregated at the grain boundary compared with those of single crystal silicon to trap electrons in silicon during electron transfer and degrade life time characteristics of a silicon ingot. Further, a crystal grain itself has crystal defects including atomic defects and causes degradation of life time characteristics.
As described above, a method of producing polycrystalline silicon from a silicon ingot having a composition and a structure accelerating grain growth has been studied. However, acceleration of grain growth requires a long solidification time, and causes problems of increasing generation amounts of oxygen and carbon from a silicon dioxide sintered sagger to be used for a melting container in an argon atmosphere under reduced pressure and a carbon sagger, and carbon from a heater, dissolving oxygen and carbon in a silicon ingot, and increasing a concentration of oxygen, carbon, and other impurities to be melted in the silicon ingot. The increase of oxygen, carbon, and the impurities causes degradation of life time characteristics.
Meanwhile, grain growth is inhibited in the presence of atomic or lattice defects in crystal grains or in the presence of impurities at a crystal grain boundary. Grain growth for obtaining a target crystal grain size involves disadvantages in that a solidification rate must be low and ingot production requires a long period of time.
In a liquid phase solidification method, anisotropic growth is significant in grain growth with a low solidification rate for formation of crystals with few impurity defects or lattice defects, and non-uniform grains are formed. The formation of non-uniform grains involves formation of fine grains and causes mechanical damages in thickness reduction of a solar wafer.
A semiconductor wafer technique generally involves hydrogen treatment under low temperature heating for passivation of a dangling bond (active bond) to a single crystal silicon wafer. However, the hydrogen treatment is effective only for a surface layer of several tens μm, and a passivation effect cannot be obtained inside silicon. A solar cell wafer utilizes a total wafer thickness of several hundreds μm, and thus the hydrogen treatment is not in practical use for a method of producing a solar cell wafer because of problems including the passivation effect and increase in production cost such as a heat treatment cost. For a solar cell amorphous silicon wafer, hydrogen treatment employing plasma or the like is in practical use for crystallization acceleration and passivation of a dangling bond.
As described above, a conventional method involves the following phenomena. (1) For accelerating grain growth of a polycrystalline silicon melt, a long solidification time is required, and an electric power cost for production increases. (2) Melting for a long period of time increases concentrations of oxygen, carbon, and other impurities in an ingot and causes degradation of life time characteristics. (3) A liquid phase solidification method through argon/reduced pressure melting is liable to cause atomic and lattice defects during crystal formation and is more liable to form fine crystals. Such phenomena cause problems of degrading mechanical strength with thickness reduction and degrading life time characteristics.
An object of the present invention is to provide a method of polycrystalline silicon ingot having improved life time characteristics compared with those of a conventional product capable of: producing a polycrystalline silicon ingot having a structure with few crystal defects and few fine crystal grains at low cost; and forming a high-purity silicon ingot compared with that produced by a conventional method by suppressing formation of impurities such as oxygen from a melting sagger and carbon from a furnace member, preventing melting and mixing of light-element impurities in a silicon melt, and removing the impurities in the melt through crystallization.
For solving problems described above, a process for producing a polycrystalline silicon ingot of the present invention includes: melting a silicon raw material in a 100% hydrogen atmosphere under ordinary pressure or elevated pressure to prepare a silicon melt and simultaneously dissolving hydrogen in the silicon melt; solidifying the silicon melt containing hydrogen dissolved therein; maintaining the solid at a high temperature of about a solidification temperature for crystal growth to obtain a polycrystalline silicon ingot. The method of the present invention allows production of a polycrystalline silicon ingot having reduced fine crystals and reduced crystal defects.
In the method of the present invention, hydrogen dissolved in the silicon melt reacts with, gasifies, and removes light-element impurities such as oxygen and silicon monoxide in the silicon melt. Further, metal impurities including transition elements such as iron are removed through crystallization, and purification of the polycrystalline silicon ingot to be obtained is accelerated. A concentration of hydrogen dissolved in the silicon melt is high, and dissolution of other impurities in the silicon melt is reduced. Those effects improve life time characteristics of the polycrystalline silicon ingot to be obtained.
According to the method of the present invention, alignment of silicon atoms is accelerated through hydrogen dissolution in the silicon melt to form silicon crystals with little atomic defects. Further, hydrogen is bonded to atomic defects in a lattice to correct the atomic defects and improve life time characteristics. Generation of silicon monoxide through a reaction of a sagger formed of a silicon dioxide material to be used in melting of the silicon raw material and the silicon melt is suppressed through the hydrogen dissolution to reduce an oxygen concentration in the polycrystalline silicon ingot. Further, diffusion of impurities to be generated from a melting member, a releasing material, a heater, and the like to be used in melting of the silicon raw material into the silicon melt can be prevented.
According to the method of the present invention, a silicon raw material is melted in a 100% hydrogen atmosphere under ordinary pressure or elevated pressure to dissolve hydrogen in a silicon melt, and formation of atomic and lattice defects of a polycrystalline silicon ingot can be suppressed during solidification and solid phase growth. The dissolved hydrogen is subjected to reactive gasification with oxygen, accelerates crystallization of impurities in the silicon melt, and provides an effect of highly purifying the polycrystalline silicon ingot.
The method of the present invention accelerates lattice alignment at a grain boundary during grain growth after solidification and provides an effect of accelerating a crystal growth rate, leading to saving of electric power for melting.
The method of the present invention provides a passivation effect of hydrogen atoms to a dangling bond through solidification and solid phase growth of silicon in a state where hydrogen is dissolved in the silicon melt, and improves life time characteristics of the polycrystalline silicon ingot. Note that hydrogen passivation refers to an action of hydrogen atoms bonding to free bonds of silicon atomic defects, to thereby prevent electron annihilation during electron transfer in silicon.
10
a, 10b: melting furnace, 12: sagger, 14: heating means, 14a: upper side heating means, 14b: lower side heating means, 14c: upper heating means, 16: support means, 18: heat insulation material, 20: chamber, 22a, 22b: gas introduction port, 24: discharge port, 26: silicon melt, 28: inner cylinder tube, 30: furnace hearth
Hereinafter, embodiments of the present invention will be described based on attached drawings. However, the drawings are mere examples, and it is obvious that various changes may be made without departing from the scope of the invention.
The present invention refers to a process for producing a polycrystalline silicon ingot having reduced fine crystals of silicon including: removing through a reaction light-element impurities such as oxygen and nitrogen in a silicon melt during melting and solidification of a high-purity silicon raw material in a 100% hydrogen atmosphere under ordinary pressure or elevated pressure; reducing crystal defects through crystallization of other metal impurities; and conducting crystal growth. Through those effects, life time characteristics of the polycrystalline silicon ingot can be improved.
In the present invention, hydrogen is bonded to atomic defects in a lattice to be developed in the polycrystalline silicon ingot to correct the atomic defects, to thereby improve life time characteristics. Further, diffusion of impurities from silicon nitride used for a melting member or a releasing material to be used in melting of the silicon raw material in a hydrogen atmosphere into the polycrystalline silicon ingot can be prevented.
In
An operation of this structure will be described. The hydrogen gas is introduced into the melting furnace 10b from the introduction port 22b for operation of the furnace in a 100% hydrogen atmosphere under ordinary pressure or elevated pressure. In the chamber 20 in a hydrogen atmosphere under ordinary pressure or elevated pressure, the sagger 12 having a silicon raw material charged therein is heated by the upper heating means 14c provided above the sagger 12 and the upper side heating means 14a provided in an upper side part the sagger 12, and the silicon raw material is melted under heating into a silicon melt 26. Then, a furnace hearth 30 having the sagger 12 placed thereon is lowered and is positioned halfway between the upper side heating means 14a and the lower side heating means 14b for providing a vertical temperature gradient in the sagger 12, and the support means 16 is rotated. The upper heating means 14c, the upper side heating means 14a, and the lower side heating means 14b are controlled, to thereby cool and solidify the silicon melt from a lower part of the sagger 12 to a crystal growth temperature. Then, the heating means 14c, 14a, and 14b are maintained at a certain temperature for sufficient crystal growth, and the support means 16 is lowered, to thereby produce a polycrystalline silicon ingot.
Hereinafter, the present invention will be described more specifically with reference to examples. However, the examples are mere examples and are not to be interpreted limitedly.
A releasing material (high-purity silicon nitride powder) was applied and dried on an inner wall of a silica-sintered sagger (inner dimensions of 175 mm×350 mm), and a high-purity silicon raw material was charged into the sagger. The sagger was placed in a melting furnace having the same structure as that shown in
An ingot was produced by a conventional sagger-lowered solidification method in an argon atmosphere. A melting furnace having the same structure as that shown in
An ingot was produced in a hydrogen gas atmosphere in the same manner as in Example 1 by using the same temperature program shown in
An ingot was produced by using the temperature program shown in
Example 2 and Comparative Example 2 each involved production by using a conventional cooling rate of 4° C./hr and by using a temperature program including maintaining the temperature for 10 hr after solidification as shown in
Table 1 shows evaluation results of characteristics of each of the ingots produced in Examples 1 and 2 and Comparative Examples 1 and 2. Life time characteristics of the obtained polycrystalline silicon ingots were 3.13 μs for Example 1 and 0.48 μs for Comparative Example 1, indicating that the life time characteristics were improved by the method of the present invention. The polycrystalline silicon ingots obtained in Example 1 and Comparative Example 1 were each subjected to anisotropic etching treatment and observed. As a result, the polycrystalline silicon ingot of Example 1 had reduced fine crystals and improved uniformity with small variation in grain size.
Comparative Example 1 employed the method of lowering the sagger according to the existing production method, and the ingot had rather degraded life time characteristics of 0.48 μs compared with those of an existing product. The reason for the degraded life time characteristics is an effect of impurities diffused from a releasing material used for an inner surface of the sagger due to a small ingot shape. The Fe concentration was 425×1010 atoms/cc, which was a high value. The ingot of Example 1 was an ingot produced in a hydrogen atmosphere at the same cooling rate as that of Comparative Example 1. The ingot had reduced impurities such as Fe and improved life time characteristics.
The ingots of Example 2 and Comparative Example 2 each were ingots each produced in a hydrogen or argon atmosphere by using the temperature program of
As reasons for the results,
The results of a hydrogen gas analysis of the hydrogen-melt ingot (Examples 1 and 2) of the present invention confirmed hydrogen, but quantitative determination of radical hydrogen is not possible by the current analysis method. However, the silicon ingot produced by the current argon-melt method contains no hydrogen. A semiconductor wafer may be subjected to hydrogen treatment, but it is not possible costwise that an inexpensive solar wafer be subjected to hydrogen treatment because the treatment cost is high.
The method of the present invention allows melting of silicon in a hydrogen atmosphere under ordinary pressure, reduction of fine crystals by a solidification method employing a solid phase growth method, reduction of impurities through hydrogen dissolution, and purification of silicon through crystallization of the impurities.
In Example 1, rapid solidification was conducted at a cooling rate of 25° C./hr, and in Example 2, gradual solidification as in the conventional method was conducted at a cooling rate of 4° C./hr. The results revealed that the ingot of Example 2 had improved life time characteristics and reduced impurities such as Fe compared with those of the ingot of Example 1. The results revealed that a favorable ingot can be obtained through gradual solidification than rapid solidification. However, a gradual cooling rate reduces a crystal formation rate of the ingot and reduces efficiency. Thus, in an actual operation, an appropriate cooling rate is set in consideration of quality and economical effects.
Number | Date | Country | Kind |
---|---|---|---|
2004-347083 | Nov 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/21969 | 11/30/2005 | WO | 00 | 5/18/2007 |