1. Field of the Invention
The present invention relates to a process for producing a toner for use in an image forming method such as an electrophotographic method, an electrostatic recording method, or an electrostatic printing method. 2. Description of the Related Art
In general, processes for producing toner particles are classified into a process using a pulverization method and a process using a polymerization method. At present, toner particles produced according to the pulverization method have an advantage in that the production cost is low as compared to that of the polymerization method, and have been currently used for a toner to be used in a wide variety of copying machines and printers. The production of toner particles according to the pulverization method involves: mixing predetermined amounts of a binder resin, a colorant, and the like; melting and kneading the mixture; cooling the kneaded product to solidify the kneaded product; pulverizing the solidified kneaded product; and classifying the pulverized product to obtain toner particles having a predetermined particle diameter distribution. Then, a flowability improver is externally added to the resultant toner particles to obtain a toner.
In recent years, high image quality, energy conservation, compatibility with the environment, and the like have been demanded for copying machines and printers. In view of those demands, a technical concept of a toner has been shifting in the direction of conglobating toner particles in order to achieve high transfer efficiency and to reduce the amount of waste toner. To achieve such a technical concept according to the pulverization method, JP 09-085741 A proposes a method for conglobating toner particles according to a mechanical pulverization method. In addition, JP 2000-029241 A proposes a method for conglobating toner particles by means of hot air. However, sufficient conglobation cannot be achieved with the method for conglobating toner particles according to a mechanical pulverization method. Moreover, in the method for conglobating toner particles by means of hot air, when the toner particles contain wax, it becomes difficult to control the surface properties of the toner particles if the wax starts to melt. Thus, there remains a problem in terms of quality stability of the toner particles. In view of the above, JP 2002-233787 A proposes a surface modification apparatus for modifying the surface of toner particles, the surface modification apparatus being capable of performing a high-performance surface treatment and removing fine powder. However, the surface modification apparatus tends to have low fine powder removal efficiency (so-called classification yield) and to cause an image fogging phenomenon when a high degree of sphericity is maintained. Therefore, further improvement has been demanded.
An object of the present invention is to provide a process for producing a toner which has overcome the above problems.
That is, an object of the present invention is to provide a process for producing a toner with which toner particles can be highly conglobated and an yield of toner particles is increased.
Another object of the present invention is to provide a process for producing a toner with which a toner that hardly causes fogging in an image can be efficiently produced.
The objects of the present invention can be achieved by providing a process for producing a toner containing toner particles, comprising:
the surface modification apparatus comprises:
Other objects and advantages of the present invention will become apparent during the following discussion conjunction with the accompanying drawings, in which:
The inventors of the present invention have made extensive studies to find that a specific particle diameter distribution of a finely pulverized product is achieved by using a surface modification apparatus that simultaneously performs classification and a surface modification treatment, thereby achieving a process for producing a toner with which an yield of toner particles is increased and a toner capable forming a good image can be produced.
The surface modification apparatus to be used in the production process of the present invention will be described.
The surface modification apparatus used in the present invention is a batch-wise surface modification apparatus that simultaneously performs a step of classifying and removing fine powder and ultra-fine powder in a finely pulverized product and a step of subjecting particles in the finely pulverized product to a surface modification treatment.
The surface modification apparatus used in the present invention includes:
The loading portion is formed on a side wall of the casing main body and the fine powder discharging portion is formed on a top face of the casing main body, and when, in a top projection drawing of the surface modification apparatus, a straight line extending from a central position S1 of the loading pipe of the loading portion in a direction of loading the finely pulverized product into the first space is denoted by L1 and a straight line extending from a central position O1 of the fine powder discharging pipe of the fine powder discharging portion in a direction of discharging fine powder and ultra-fine powder is denoted by L2, an angle θ formed between the straight line L1 and the straight line L2 is in a range of 210 to 330° with reference to the direction in which the classification rotor rotates.
The batch-wise surface modification apparatus shown in
The surface of the liner 34 preferably has grooves as shown in FIGS. 9(A) and 9(B) in order to efficiently perform the surface modification of the toner particles. The number of the square disks 33 is preferably an even number as shown in FIGS. 6(A) and 6(B) in view of balance of rotation. FIGS. 8(A) and 8(B) are explanatory drawings of the square disks 33. As shown in FIGS. 2(A) and 2(B), the direction in which the dispersion rotor 32 rotates is usually a counterclockwise direction when viewed from the top face of the apparatus.
The classification rotor 35 shown in
The fine powder discharging pipe has a fine powder discharging port 45 for discharging the fine powder and ultra-fine powder removed by the classification rotor 35 to the outside of the apparatus.
As shown in FIGS. 7(A) and 7(B), the surface modification apparatus further has a cylindrical guide ring 36 in the casing main body 30, the cylindrical guide ring 36 serving as guide means having an axis perpendicular to the top panel 43. The guide ring 36 is arranged so that the top end of the ring is distant from the top panel by a predetermined distance. In addition, the guide ring 36 is fixed to the casing main body 30 by a support in such a manner that at least part of the classification rotor 36 is covered with the guide ring 36. The bottom end of the guide ring 36 is distant from each of the square disks 33 on the dispersion rotor 32 by a predetermined distance. In the surface modification apparatus, the guide ring 36 divides a space between the classification rotor 35 and the dispersion rotor 32 into a first space 47 outside the guide ring 36 and a second space 48 inside the guide ring 36. The first space 47 is a space for introducing a finely pulverized product and surface-modified particles into the classification rotor 35 whereas the second space 48 is a space for introducing the finely pulverized product and the surface-modified particles into the dispersion rotor. A gap between the multiple square disks 33 placed on the dispersion rotor 32 and the liner 34 is a surface modification zone 49 whereas the space where classification rotor 35 is placed and a peripheral portion of the classification rotor 35 is a classification zone 50.
The finely pulverized product to be introduced into the surface modification apparatus can be prepared by introducing a coarsely pulverized product obtained by coarsely pulverizing a melt-kneaded product that has been solidified by cooling into, for example, a fine pulverization system shown in
The finely pulverized product preferably has a weight average particle diameter in the range of 3.5 to 9.0 μm and a ratio of particles each having a particle diameter of 4.00 μm or less in the range of 50 to 80% by number in order to efficiently perform the classification step and the step of treating the particle surface at the same time in the surface modification apparatus in the subsequent step.
As shown in
Fine powder and ultra-fine powder to be removed by the classification rotor 35 are sucked from a slit (see
The toner particles subjected to surface modification to have a predetermined weight average particle diameter, a predetermined particle diameter distribution, and a predetermined circularity are transported to a step of externally adding an external additive by toner particle transporting means 321.
The inventors of the present invention have made studies to find that a relationship between the position of the loading pipe of the finely pulverized product (raw material) and the position of the fine powder discharging pipe has influences on an increase in yield of toner particles and on alleviation of a fogging phenomenon of toner. Those influences appear when a relationship between a central position of the raw material supply port 39 of the loading pipe and a central position of the fine powder discharging port 45 of the fine powder discharging pipe satisfies the following relationship. When, in the top projection drawings shown in FIGS. 2(A) and 2(B) when viewed from the top face of the surface modification apparatus, a straight line extending from a central position S1 of the loading pipe (raw material supply port 39) in a loading direction is denoted by L1 and a straight line extending from a central position O1 of the fine powder discharging portion in a discharging direction is denoted by L2, an angle e formed between the straight line L1 and the straight line L2 at the intersection M2 is in the range of 210° to 330° with reference to the direction in which the classification rotor 35 rotates. In FIGS. 2(A) and 2(B), M1 denotes a central position of the fine powder discharging casing 44. As shown in
As shown in FIGS. 2(A) and 2(B), the central position S1 of the loading portion indicates the middle point of the diameter (or width) of the loading pipe whereas the central position O1 of the fine powder discharging portion indicates the middle point of the diameter (or width) of the fine powder discharging pipe. The angle θ is an angle formed between a straight line S1-M2 and a straight line O1-M2 where M2 denotes an intersection point of the straight line L1 passing through the central position S1 and extending in parallel with the raw material loading direction and the straight line L2 passing through the central position O1 and extending in the fine powder discharging direction. The angle θ is defined to be positive in the direction in which the dispersion rotor 32 and the classification rotor 35 rotate. As described above, in the case of FIGS. 2(A) and 2(B), the dispersion rotor 32 and the classification rotor 35 rotate counterclockwise around M1. When the angle e is 1801, the loading direction and the discharging direction are identical to and parallel with each other. When the angle θ is 0°, the loading direction and the discharging direction are opposite to and parallel with each other.
The surface modification apparatus to be used in the present invention has the dispersion rotor 32, the loading portion 39 of a finely pulverized product (raw material), the classification rotor 35, and the fine powder discharging portion from the lower side in the vertical direction. Therefore, in general, a driving unit (a motor or the like) of the classification rotor 35 is arranged above the classification rotor 35 while a driving unit of the dispersion rotor 32 is arranged below the dispersion rotor 32. It is difficult for the surface modification apparatus to be used in the present invention to supply a finely pulverized product (raw material) from above the classification rotor 35 unlike a TSP classifier (manufactured by Hosokawa Micron Corporation) having only the classification rotor 35 described in JP 2001-259451 A, for example.
In the case of the surface modification apparatus to be used in the present invention, the raw material supplying direction and the fine powder discharging direction are preferably parallel with or substantially parallel with the rotation surface of the classification rotor 35 or of the dispersion rotor 32. When the fine powder discharging direction (suction direction) is parallel with or substantially parallel with the rotation surface of the classification rotor 35, the angle e between the raw material supplying direction and the fine powder discharging direction is important for obtaining particles each having a predetermined particle diameter in high yield. When the angle e between the raw material supplying direction and the fine powder discharging direction is adjusted, a finely pulverized product can be introduced into the classification zone 50 near the classification rotor 35 after agglomerated powder in the finely pulverized product as a raw material is finely dispersed favorably.
In the positional relationship between the loading portion of a finely pulverized product and the fine powder discharging portion, when the angle e is in the range of 0° to 180°, the suction force of the blower 364 tends to act via the classification rotor 35 before the agglomerated powder in the finely pulverized product is sufficiently finely dispersed by means of a spiral air flow formed by the dispersion rotor 32. In this case, there is a tendency that dispersion of the finely pulverized product loaded into the first space 47 becomes insufficient, the classification efficiency of fine powder and ultra-fine powder reduces, the classification time is prolonged, and hence the classification yield reduces. When the angle e is in the range of 210° to 330°, the following effect is exerted. The agglomerated powder in the finely pulverized product can be sufficiently finely dispersed by means of the spiral air flow formed by the dispersion rotor 32. In addition, a centrifugal force generated by the classification rotor effectively acts. As a result, a favorable classification yield can be obtained. The angle θ is preferably in the range of 225° to 315°, more preferably in the range of 250° to 290° in order that the above effect may be further exerted.
Setting the angle of the loading pipe having the supply port 39 with respect to the casing main body to fall within a predetermined range achieves an additional increase in classification yield.
It is preferable that the tip peripheral speed of the classification rotor 35 rotating in a predetermined direction (a counterclockwise direction when viewed from the top face of the apparatus in
In the present invention, the tip peripheral speed of a portion having the largest diameter in the classification rotor 35 is preferably in the range of 30 to 120 m/sec. The tip peripheral speed of the classification rotor is more preferably in the range of 50 to 115 m/sec, still more preferably in the range of 70 to 110 m/sec. A tip peripheral speed of less than 30 m/sec is not preferable because the classification yield easily reduces and the amount of ultra-fine powder in the toner particles tends to increase. A tip peripheral speed in excess of 120 m/sec tends to increase the vibration of the apparatus.
Furthermore, the tip peripheral speed of a portion having the largest diameter in the dispersion rotor 32 is preferably in the range of 20 to 150 m/sec. The tip peripheral speed of the dispersion rotor 32 is more preferably in the range of 40 to 140 m/sec, still more preferably in the range of 50 to 130 m/sec. A tip peripheral speed of less than 20 m/sec is not preferable because it becomes difficult to obtain surface-modified particles each having a sufficient circularity. A tip peripheral speed in excess of 150 m/sec is not preferable either because the particles easily adhere inside the apparatus owing to an increase in temperature inside the apparatus and a reduction in classification yield of particles easily occurs. The classification yield of toner particles can be increased and the surface modification of particles can be performed efficiently by setting the tip peripheral speeds of the classification rotor 35 and the dispersion rotor 32 to fall within the above ranges.
A ratio R1/R2 of the tip peripheral speed R1 of the dispersion rotor 32 to the tip peripheral speed R2 of the classification rotor 35 in the range of 0.40 to 2.50 enables toner particles each having a high circularity to be efficiently obtained, resulting in improved classification yield. A ratio R1/R2 of less than 0.40 makes it difficult to obtain a sufficient circularity in a short time period so that toner particles having good quality may be hardly obtained. A ratio R1/R2 in excess of 2.50 is not preferable because the velocity of the spiral air flow formed by the dispersion rotor 32 relatively increases so that the spiral air flow around the classification rotor 35 is easily disturbed and hence the classification yield of toner particles reduces. The ratio R1/R2 is more preferably in the range of 0.85 to 2.45. The ratio R1/R2 is preferably in the range of 1.01 to 2.40 in order to efficiently obtain surface-modified toner particles having an average circularity in the range of 0.935 to 0.980 from a finely pulverized product having an average circularity of 0.929 or less.
In the process for producing a toner of the present invention, a finely pulverized product (raw material) to be supplied to the raw material loading port 37 of the surface modification apparatus preferably has a specific particle diameter distribution. Furthermore, the ultra-fine powder content in the toner particles after the treatment in the surface modification apparatus (surface-modified particles) is preferably controlled at a predetermined value. In the present invention, it is preferable that the finely pulverized product have a weight average particle diameter in the range of 3.5 to 9.0 μm and a ratio of particles each having a particle diameter of 4.00 μm or less in the range of 50 to 80% by number, and the resultant toner particles have a weight average particle diameter in the range of 4.5 to 9.0 μm, a ratio of particles each having a particle diameter of 4.00 μm or less (fine powder) in the range of 5 to 40% by number, and a ratio of toner particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm (ultra-fine powder) in the range of 0 to 15% by number in a number-basis particle diameter distribution of particles each having a circle-equivalent diameter, measured with a flow-type particle image measuring device, of 0.6 μm or more and 400 μm or less.
The particle diameter distribution of the finely pulverized product affects the classification efficiency. When the content of fine particles in the finely pulverized product is high, the classification time is prolonged and even particles which essentially do not have to be classified and removed are removed through classification. The above phenomenon may be responsible for a reduction in classification yield. Furthermore, agglomeration property of the finely pulverized product increases when classification is performed, and hence the case where ultra-fine powder which essentially has to be removed from the toner particles cannot be removed easily occurs. Therefore, the resultant toner easily causes fogging.
Therefore, a weight average particle diameter of the finely pulverized product of less than 3.5 μm may increase the agglomeration property between particles, thereby making it difficult to perform efficient classification. In addition, a weight average particle diameter of the finely pulverized product in excess of 9.0 μm is not preferable because it becomes difficult to form a sharp image with the resultant toner. In addition, a ratio of particles each having a particle diameter of 4.00 μm or less of less than 50% by number is not preferable because it becomes difficult to form a sharp image with the resultant toner. On the other hand, a ratio of particles each having a particle diameter of 4.00 μm or less of much more than 80% by number increases the agglomeration property of the finely pulverized product, thereby making it difficult to obtain a good classification yield. Furthermore, a ratio of particles each having a particle diameter of 4.00 μm or less of much more than 80% by number is not preferable because the content of ultra-fine powder in the finely pulverized product tends to increase. The ratio of particles each having a particle diameter of 4.00 μm or less in the finely pulverized product is more preferably in the range of 55 to 75% by number.
In a number-basis particle diameter distribution of particles each having a circle-equivalent diameter, measured with a flow-type particle image measuring device, of 0.6 μm or more and 400 μm or less out of the toner particles treated in the surface modification apparatus, a ratio of toner particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm (ultra-fine powder) is preferably controlled to fall within the range of 0 to 15% by number. A ratio of toner particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm in excess of 15% by number is not preferable because the resultant toner easily causes a fogging phenomenon. A ratio of toner particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm is more preferably 13% by number or less.
Furthermore, in the process for producing a toner of the present invention, the finely pulverized product to be introduced into the raw material loading port 37 preferably has a specific gravity in the range of 1.0 to 1.5.
When the classification yield of a finely pulverized product having a specific gravity in excess of 1.5 (for example, a finely pulverized product for preparing magnetic toner particles containing about 30% by mass or more of magnetic substance) and the classification yield of a finely pulverized product having a specific gravity of 1.5 or less (the finely pulverized product being nonmagnetic or containing a small amount of magnetic substance), are investigated by using a surface modification apparatus, in general, there is a tendency that the finely pulverized product having a specific gravity in excess of 1.5 can be more easily dispersed and hardly causes a reduction in classification yield. Therefore, when the finely pulverized product having a specific gravity of 1.5 or less is subjected to classification and surface modification, the effect of the use of the surface modification apparatus of the present invention tends to be further exerted as compared to the finely pulverized product having a specific gravity in excess of 1.5. In the present invention, the finely pulverized product more preferably has a specific gravity in the range of 1.0 to 1.5. The finely pulverized product having a specific gravity of less than 1.0 tends to increase cohesion between particles. Therefore, it becomes difficult to favorably disperse the finely pulverized product by means of a spiral air flow and hence the classification yield tends to reduce.
The term “surface modification” in the present invention means making the irregularities on the particle surface smooth, in other words, bringing the appearance of a particle close to a spherical shape. The present invention adopts an average circularity as an indication of the degree of surface modification of such a surface-modified particle.
The average circularity in the present invention is calculated by using the following expressions after measurement with a flow-type particle image measuring device “FPIA-2100” (manufactured by Sysmex Corporation).
Circle-equivalent diameter=(Particle projected area/π)1/2×2
The term “particle projected area” is defined as an area of a binarized particle image whereas the term “circumferential length of a particle projected image” is defined as the length of a borderline obtained by connecting the edge points of the particle image. The measurement is performed by using the circumferential length of a particle image that has been subjected to image processing at an image processing resolution of 512 ×512 (a pixel measuring 0.3 μm×0.3 μm).
The circularity in the present invention is an indication of the degree of irregularities on a particle. The circularity is 1.000 when the particle has a completely spherical shape. The more complicated the surface shape, the lower the circularity.
In addition, the average circularity C which means the average value of a circularity frequency distribution is calculated from the following expression when the circularity (central value) of a divisional point i in a circularity distribution is denoted by ci and the number of measured particles is denoted by m.
Average circularity
A circularity standard deviation SD is calculated from the following expression by using the average circularity C, the circularity ci of each particle, and the number m of measured particles.
Circularity standard deviation
The measuring device “FPIA-2100”, which is used in the present invention, calculates the average circularity and the circularity standard deviation according to the following procedure. First, the circularities of the respective particles are calculated. Then, the particles are classified into classes, which are obtained by equally dividing the circularity range of 0.4 to 1.0 at an interval of 0.01, depending on the resultant circularities. After that, the average circularity and the circularity standard deviation are calculated by using the central value of each divisional point and the number of measured particles.
Specific measurement method is as follows. 20 ml of ion-exchanged water from which an impurity solid and the like have been removed in advance are prepared in a vessel. A surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to the ion-exchanged water, and then a measurement sample is added to the ion-exchanged water in order that the content of the measurement sample will be 2,000 to 5,000 number/μl, and uniformly dispersed into the mixture. The resultant mixture is subjected to a dispersion treatment for 1 minutes by using an ultrasonic disperser “ULTRASONIC CLEANER VS-150” (manufactured by AS ONE Co., Ltd.) as dispersion means to prepare a dispersion for measurement. At that time, the dispersion is appropriately cooled in order that the temperature of the dispersion may not be 40° C. or higher. To suppress a variation in circularity, the temperature of an environment in which the flow-type particle image measuring device FPIA-2100 is placed is controlled at 23° C.±0.5° C. in such a manner that the temperature inside the device is in the range of 26 to 27° C. Automatic focusing is performed by using a 2-μm latex particle at a predetermined time interval, preferably at an interval of 2 hours.
Conditions for dispersion by means of ultrasonic oscillator are follows;
The flow-type particle image measuring device is used for the measurement of the circularity of a particle. The concentration of the dispersion is adjusted again in such a manner that the toner particle concentration at the time of measurement is in the range of 3,000 to 10,000 particles/μl, and 1,000 or more particles are measured. After the measurement, the average circularity of the particles is determined by using the data with data on particles each having a circle-equivalent diameter of less than 2 μm discarded.
The measuring device “FPIA-2100”, which is used in the present invention, has increased the accuracy of particle shape measurement as compared to a measuring device “FPIA-1000”, which has been used to calculate the shape of toner or a toner particle, by increasing the magnification of a processed particle image and by increasing the processing resolution of a captured image (256×256 to 512×512). As a result, the measuring device “FPIA-2100” has achieved more accurate capture of a fine particle. Therefore, the FPIA-2100 is more useful than the FPIA-1000 in the case where a particle shape must be measured more accurately as in the present invention.
The outline of the measurement in the present invention is as follows.
A sample dispersion is allowed to pass through a flow path (expanding along a flow direction) of a flat flow cell (having a thickness of about 200 μm). A stroboscope and a CCD camera are mounted on both sides of the flow cell in such a manner that an optical path passing while intersecting the thickness of the flow cell is formed. During the flow of the sample dispersion, light is applied from the stroboscope at an interval of {fraction (1/30)} second in order to obtain the image of a particle flowing in the flow cell. As a result, each particle is photographed as a two-dimensional image having a certain area in parallel with the flow cell. The diameter of a circle having the same area as that of the two-dimensional image of each particle is calculated as a circle-equivalent diameter. Then, the circularity of each particle is calculated by using the above expression for the circularity from the projected area of the two-dimensional image of each particle and the circumferential length of the projected image.
In addition, in the present invention, a ratio of toner particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm is preferably in the range of 0 to 15% by number in a number-basis particle diameter distribution of toner particles (after a surface modification treatment) each having a circle-equivalent diameter, measured with a flow-type particle image measuring device, of 0.6 μm or more and 400 μm or less. A ratio of toner particles each having a circle-equivalent diameter in such a range is preferably in the range of 0 to 15% by number, more preferably in the range of 0 to 13% by number, still more preferably in the range of 0 to 11% by number. A toner particle having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm significantly affects the developability of toner, in particular, the fogging property. Such a fine toner particle has excessively high chargeability so that the particle tends to be excessively developed at the time of development of the toner and appears as fogging on an image. However, in the present invention, a low ratio of such fine toner particles can alleviate fogging.
The ultra-fine powder content in the toner particles can also be suitably used as an evaluation criterion in the present invention because it has been recognized that the content has a correlation to fogging in a toner image. The ultra-fine powder content is determined from the % by number of particles each having a circle-equivalent diameter of 3.0 μm or less in a particle diameter distribution measured with the FPIA-2100. The presence amount of particles each having a circle-equivalent diameter of 3.0 μm or less is preferably 15% by number or less in order to favorably control a fogging level in image evaluation.
As shown in
In addition, a finely pulverized product to be suitably used in the present invention can be obtained by using an I-DS pulverizer (manufactured by Nippon Pneumatic MFG. Co., Ltd.), an impact air pulverizer utilizing jet air shown in FIG. 1 of JP 2003-262981 A, and a classifier shown in FIG. 7 of JP 2003-262981 A. In this case, the pressure of a high-pressure gas to be used, which is typically in the range of 0.57 to 0.62 MPa, is preferably in the range of 0.40 to 0.55 MPa in terms of suppression of ultra-fine powder to be generated.
According to the process for producing a toner of the present invention, the average circularity of surface-modified particles obtained through a surface modification step can be greater than the average circularity of a finely pulverized product to be introduced into the surface modification step by 0.01 to 0.40. This is because the surface shape of a toner particle can be arbitrarily controlled by arbitrarily controlling the surface modification time of the surface modification apparatus. The use of the apparatus results in toner particles having an average circularity in the range of 0.935 to 0.980 (surface-modified particles). The average circularity is preferably in the range of 0.940 to 0.980 in terms of increase in transfer efficiency and prevention of occurrence of void in an image.
The particle diameter distribution of toner, which can be measured according to various methods, is measured by using the following measuring device in the present invention.
A Coulter Counter TA-II or Coulter Multisizer II (each manufactured by Beckman Coulter, Inc) is used as the measuring device. A 100-μm aperture is used as an aperture. The volume and number of toner are measured to calculate a volume distribution and a number distribution. Then, a weight average particle diameter based on a weight is determined from the volume distribution according to the present invention.
Next, the process for producing a toner of the present invention will be described briefly. In producing a toner in the present invention, first, a binder resin, a colorant, and a wax, and, as required, a charge-controlling agent and other additives are sufficiently mixed in a mixer such as a Henschell mixer or a ball mill, for example. Then, the resultant mixture is melted and kneaded by using a heat kneader such as a heat roll, a kneader, or an extruder to disperse or dissolve the colorant and the wax into the binder resin, thereby resulting in a kneaded product. The resultant kneaded product is cooled and solidified, and the solidified product is coarsely pulverized. After that, the coarsely pulverized product is finely pulverized by using an air impact pulverizer such as a jet mill or a mechanical impact pulverizer such as a Turbo mill or a Kryptron, thereby resulting in a finely pulverized product. Subsequently, the classification of the finely pulverized product and the surface treatment of the particles are simultaneously performed by using the batch-wise surface treatment apparatus as described above, thereby resulting in toner particles having a desired shape and a desired particle diameter distribution as surface-modified particles. The toner in the present invention is preferably toner containing an external additive obtained by externally adding the external additive to toner particles.
Next, components of the toner particles of the present invention containing a binder resin, a wax, and a colorant will be described. Various conventionally known materials of the toner particles may be used in the present invention.
Resins generally used for a toner may be used as the binder resin composing toner particle. The following may be given.
Examples of the binder resin used in the present invention include: polystyrene; homopolymers of styrene derivatives such as poly-p-chlorostyrene and polyvinyltolulene; styrene-based copolymers such as a styrene/p-chlorostyrene copolymer, a styrene/vinyltoluene copolymer, a styrene/vinylnaphthaline copolymer, a styrene/acrylate copolymer, a styrene/methacrylate copolymer, a styrene/methyl-α-chloromethacrylate copolymer, a styrene/acrylonitrile copolymer, a styrene/vinyl methyl ether copolymer, a styrene/vinyl ethyl ether copolymer, a styrene/vinyl methyl ketone copolymer, a styrene/butadiene copolymer, a styrene/isoprene copolymer, and a styrene/acrylonitrile/indene copolymer; polyvinyl chloride; a phenol resin; a natural modified phenol resin; a natural resin modified maleic resin; an acrylic resin; a methacrylic resin; a polyvinyl acetate; a silicone resin; a polyester resin; polyurethane; a polyamide resin; a furan resin; an epoxy resin; a xylene resin; a polyvinyl butyral; a terpene resin; a coumarone-indene resin; and a petroleum resin. In the present invention, a crosslinked styrene-based resin and a crosslinked polyester resin are preferably used as the binder resin when a particle is subjected to surface modification.
Examples of a comonomer for a styrene monomer of a styrene-based copolymer include: monocarboxylic acids each having a double bond and derivatives thereof, such as acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, acrylonitrile, methacrylonitrile, and acrylamide; dicarboxylic acids each having a double bond and derivatives thereof, such as maleic acid, butyl maleate, methyl maleate, and dimethyl maleate; vinyl esters such as vinyl chloride, vinyl acetate, and vinyl benzoate; ethylene-based olefins such as ethylene, propylene, and butylene; vinyl ketones such as vinyl methyl ketone and vinyl hexyl ketone; and vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, and vinyl isobutyl ether. Those vinyl monomers may be used singly or as a mixture of two or more thereof.
Principal examples of a crosslinking agent include a compound having two or more polymerizable double bonds. Specific examples thereof include: aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene; carboxylates each having two double bonds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, and 1,3-butanediol dimethacrylate; divinyl compounds such as divinylaniline, divinyl ether, divinyl sulfide, and divinyl sulfone; and compounds each having three or more vinyl groups. Those compounds may be used singly or as a mixture of two or more thereof.
With regard to toner physical property resulting from a binder resin, it is preferable that a molecular weight distribution of tetrahydrofuran (THF) soluble part measured by means of gel permeation chromatography (GPC) have at least one peak in a molecular weight region of 2,000 to 50,000, and a ratio of components each having a molecular weight of 1,000 to 30,000 be in the range of 50 to 90%.
Each of the following waxes is used as a material for the toner particles in the present invention in respect of enhancement of releasability from a fixing member and fixability at the time of fixation. Examples of the wax include: a paraffin wax and derivatives thereof; a microcrystalline wax and derivatives thereof; a Fischer-Tropsch wax and derivatives thereof; a polyolefin wax and derivatives thereof; and a carnauba wax and derivatives thereof. The derivatives of those waxes include: oxides, block copolymers with vinyl monomers, and graft-modified products. The waxes further include: alcohols, fatty acid, acid amides, esters, ketones, hardened castor oil and derivatives thereof, vegetable waxes, animal waxes, mineral waxes, and petrolatum.
In the present invention, a charge-controlling agent is preferably used as a component of the toner particles by incorporating the charge-controlling agent in the toner particles (internally adding) or mixing the charge-controlling agent with the toner particles (externally adding). Optimum charge amount control replied to a developing system may be obtained by the charge-controlling agent, and particularly a toner in which balance between a particle diameter distribution and a charge amount is more stabilized can be produced.
Examples of a negative charge-controlling agent that controls the toner to a negative charge include organometallic complexes and chelate compounds. Examples of the organometallic complexes include monoazo metal complexes, acetylacetone metal complexes, aromatic hydroxycarboxylic acid metal complexes, and aromatic dicarboxylic acid metal complexes. Further examples of the negative charge-controlling agent include: an aromatic hydroxycarboxylic acid, an aromatic monocarboxylic acid, an aromatic polycarboxylic acid, and metal salts thereof; anhydrides of an aromatic hydroxycarboxylic acid, an aromatic monocarboxylic acid, and an aromatic polycarboxylic acid; ester compounds of an aromatic hydroxycarboxylic acid, an aromatic monocarboxylic acid, and an aromatic polycarboxylic acid; and phenol derivatives such as bisphenol.
Examples of a positive charge-controlling agent that controls the toner to a positive charge include: nigrosine and modified products thereof with aliphatic acid metal salts; quaternary ammonium salts such as tributylbenzyl ammonium-1-hydroxy-4-naphthosulfonate and tetrabutyl ammonium tetrafluoroborate, and lake pigments thereof; phosphonium salts such as tributylbenzyl phosphonium-1-hydroxy-4-naphthosulfonate and tetrabutyl phosphonium tetrafluoroborate, and lake pigments thereof; triphenylmethane dyes and lake pigments thereof (the laking agents include phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanates, and ferrocyanates); metal salts of higher aliphatic acids; diorganotin oxides such as dibutyltin oxide, dioctyltin oxide, and dicyclohexyltin oxide; and diorganotin borates such as dibutyltin borate, dioctyltin borate, and dicyclohexyltin borate. Those positive charge-controlling agents may be used singly or as a mixture of two or more thereof.
The above charge-controlling agents are preferably used in fine particle states. In this case, the number average particle diameter of those charge-controlling agents is preferably 4 μm or less, particularly preferably 3 μm or less. When the charge-controlling agents are internally added to the toner particles the an amount thereof is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the binder resin.
In the present invention, any one of various conventionally known colorants can be used as a component of the toner particles. A black colorant to be used in the present invention is carbon black or a magnetic substance, or a colorant toned to a black color by combining chromatic colorants such as a yellow colorant, a magenta colorant, and a cyan colorant as described below.
Examples of the yellow colorant include compounds represented by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds. Specific examples thereof include C.I. Pigment Yellow 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 168, 174, 176, 180, 181, and 191.
Examples of the magenta colorant include condensed azo compounds, diketopyrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds. Specific examples thereof include C.I. Pigment Red 2, 3, 5, 6, 7, 23, 48:2, 48:3, 48:4, 57:1, 81:1, 144, 146, 166, 169, 177, 184, 185, 202, 206, 220, 221, and 254.
Examples of the cyan colorant include: copper phthalocyanine compounds and derivatives thereof; anthraquinone compounds; and basic dye lake compounds. Specific examples thereof include C.I. Pigment Blue 1, 7, 15, 15:1, 15:2, 15:3, 15:4, 60, 62, and 66.
Each of those colorants may be used alone or may be mixed with another colorant before use. Furthermore, each of those colorants may be used in a solid solution state. In the present invention, a colorant is selected in view of hue angle, chroma, brightness, weatherability, OHP transparency, and dispersability in toner. Toner particles contain 1 to 20 parts by mass in total of those chromatic and nonmagnetic colorants or carbon black with respect to 100 parts by mass of the binder resin. When the magnetic substance is used as the colorant, 20 to 200 parts by mass with respect to 100 parts by mass of the binder resin is preferably contained.
Furthermore, toner can be obtained by: externally adding/mixing an external additive such as conventionally known inorganic fine powder to/with toner particles for improving flowability, transferability, and the like; and subjecting the mixture to a conventionally known sieving step.
Hereinafter, a process for producing a toner of the present invention will be described in more detail by way of examples and comparative examples. However, the present invention is not limited to these examples.
Unsaturated polyester resin [Unsaturated polyester resin constituted of polyoxypropylene(2.2)-2,2-bis(4-hydroxyphenyl)propane/polyoxyethylene(2.2)-2,2-bis(4-hydroxyphenyl)propane/terephthalic acid/trimellitic anhydride/fumaric acid, Mw: 17,000, Mw/Mn: 4.5, Tg: 60° C.]
The coarsely pulverized product was finely pulverized by using a jet mill utilizing jet air shown in
The resultant finely pulverized product was loaded into the batch-wise surface modification apparatus shown in
In Example 1, the outer diameter D of the dispersion rotor 32 shown in
The apparatus was operated in this state for 12 minutes. As a result, the temperature T2 inside the fine powder discharging pipe behind the classification rotor 35 was stably 25° C. ΔT (T2−T1) was 45° C. The classification yield was 69%.
The particle diameter distribution and circularity of the resultant surface-modified toner particles were measured. As a result, the toner particles had a weight average particle diameter D4 of 5.8 μm, a ratio of particles each having a particle diameter of 4.00 μm or less of 25% by number, and a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm of 6% by number. The average circularity of the surface-modified toner particles was 0.952.
The positional relationship between the raw material supply port 39 and the fine powder discharging port 45 in the fine powder discharging casing 44 was set to be in an optimum state. As a result, as compared with the comparative examples to be described later, the classification yield were higher and the ultra-fine powder content (a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm) in the toner particle in Example 1 were lower. Accordingly, good results were obtained.
1.2 parts by mass of hydrophobic silica fine powder were externally added to and mixed with 100 parts by mass of the resultant surface-modified toner particles to obtain toner. 5 parts by mass of the resultant toner and 95 parts by mass of acrylic resin-coated magnetic ferrite carriers were mixed to prepare a two-component developer. 10,000-sheet endurance image output was performed by using the two-component developer and a remodeled device of a full-color copying machine CLC 1000 manufactured by Canon Inc. (obtained by removing an oil application mechanism from a fixing unit). The fogging level after endurance image output of a large number of sheets was evaluated according to the following evaluation criteria. Table 1 shows the operating conditions for the surface modification apparatus used at the time of production of toner particles while Table 2 shows the results of evaluation. Example 1 showed good results of evaluation as compared to the comparative examples to be described later. This is probably because the ultra-fine powder content (a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm) was controlled at an appropriate value.
Fogging was evaluated according to the following procedure. The average reflectivity Dr (%) of plain paper before image output was measured with a reflectometer (TC-6DS manufactured by Tokyo Denshoku). A solid white image (Vback: 150 V) was outputted onto the plain paper, and then the reflectivity Ds (%) of the solid white image was measured, followed by calculation of Dr−Ds. The resultant value of Dr−Ds was defined as a value of fogging and evaluated according to the following evaluation criteria.
[Evaluation Criteria]
A: extremely good level (less than 0.6%)
B: good level (0.6% or more and less than 1.2%)
C: acceptable level (1.2% or more and less than 3.0%)
D: bad level (3.0% or more)
Toner particles were produced in the same manner as in Example 1 except that: the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle e formed between L1 and L2) shown in
Toner particles were produced in the same manner as in Example 1 except that the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle e formed between L1 and L2) shown in
Toner particles were produced in the same manner as in Example 1 except that the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle e formed between L1 and L2) shown in
Toner particles were produced in the same manner as in Example 1 except that the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle θ formed between L1 and L2) shown in
Toner particles were produced in the same manner as in Example 1 except that the shape of the upper portion of the fine powder discharging port in the batch-wise surface modification apparatus was changed to a straight type shown in
Toner particles were produced in the same manner as in Example 1 except that the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle θ formed between L1 and L2) shown in
The coarsely pulverized product obtained in Example 1 was finely pulverized by using a jet mill utilizing jet air shown in
The resultant finely pulverized product was loaded into the batch-wise surface modification apparatus shown in
In Example 1, the outer diameter D of the dispersion rotor 32 shown in
The apparatus was operated in this state for 12 minutes. As a result, the temperature T2 behind the classification rotor 35 was stably 30° C. ΔT (T2−T1) was 50° C. The classification yield was 73%.
The particle diameter distribution and circularity of the resultant surface-modified toner particles were measured. As a result, the toner particles had a weight average particle diameter D4 of 7.2 μm, a ratio of particles each having a particle diameter of 4.00 μm or less of 11% by number, and a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm of 5% by number. The average circularity of the surface-modified toner particles was 0.935.
The positional relationship between the raw material supply port 39 and the fine powder discharging port 45 in the fine powder discharging casing 44 was set to be in an optimum state. As a result, as compared with the comparative examples to be described later, the classification yield were higher and the ultra-fine powder content (a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm) in the toner particle in Example 1 were lower. Accordingly, good results were obtained.
1.2 parts by mass of hydrophobic silica fine powder were externally added to and mixed with 100 parts by mass of the resultant toner particles to obtain toner. 5 parts by mass of the resultant toner and 95 parts by mass of acrylic resin-coated magnetic ferrite carriers were mixed to prepare a two-component developer. 10,000-sheet endurance image output was performed by using the developer and a remodeled device of a full-color copying machine CLC 1000 manufactured by Canon Inc. (obtained by removing an oil application mechanism from a fixing unit). The fogging level after endurance image output was evaluated according to the evaluation criteria as above described. Table 5 shows the operating conditions for the surface modification apparatus used while Table 6 shows the results of evaluation. Example 6 showed good results of evaluation as compared to the comparative examples to be described later. This is probably because the ultra-fine powder content (a ratio of particles each having a circle-equivalent diameter of 0.6 μm or more and less than 3 μm) was controlled at an appropriate value.
Toner particles were produced in the same manner as in Example 6 except that, in the operating conditions for the surface modification apparatus, the rotational peripheral speed R1 of the dispersion rotor 32 was set at 146 m/sec, the rotational peripheral speed R2 of the classification rotor 35 was set at 63 m/sec (peripheral speed R1 of the dispersion rotor/peripheral speed R2 of the classification rotor=2.30), and the blower air volume was set at 23 m3/min. The resultant toner particles were used to prepare a two-component developer in the same manner as in Example 1, followed by image output evaluation. Table 5 shows the operating conditions for the surface modification apparatus used while Table 6 shows the results.
Toner particles were produced in the same manner as in Example 6 except that, in the operating conditions for the surface modification apparatus, the rotational peripheral speed R1 of the dispersion rotor 32 was set at 41 m/sec, the rotational peripheral speed R2 of the classification rotor 35 was set at 29 m/sec (peripheral speed R1 of the dispersion rotor/peripheral speed R2 of the classification rotor=0.43), and the blower air volume was set at 23 m3/min. The resultant toner particles were used to prepare a two-component developer in the same manner as in Example 1, followed by image output evaluation. Table 5 shows the operating conditions for the surface modification apparatus used while table 6 shows the results.
Toner particles were produced in the same manner as in Example 6 except that: the positional relationship between the raw material supply port 39 and the fine powder discharging port 45 (the angle θ formed between L1 and L2) shown in
The classification and surface modification of the finely pulverized product were performed in the same manner as in Example 1 except that: the position of the fine powder discharging pipe in the surface modification apparatus of Comparative Example 1 was changed to a central portion of the top face of the fine powder discharging casing 44; and the classified fine powder and ultra-fine powder were discharged from the fine powder discharging pipe at the central portion of the top face of the fine powder discharging casing 44. The classification yield was 54%.
This invention being thus described, it will be obvious that same may be varied in various ways. Such variations are not to be regarded as departure from the spirit and scope of the invention, and all such modifications would be obvious for one skilled in the art intended to be included within the scope of the following claims.
This application claims priority from Japanese Patent Application No. 2003-359876 filed Oct. 20, 2003 and Japanese Patent Application No. 2004-303034 filed Oct. 18, 2004, both of which are hereby incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2003-359876(PAT.) | Oct 2003 | JP | national |
2004-303034(PAT.) | Oct 2004 | JP | national |