Claims
- 1. A process for the preparation of bis- or higher functional N-alkylcarbamates comprising:
- (a) reacting an aliphatic primary di- or polyamine with urea and a primary or secondary aliphatic alcohol in an amino-group to urea to alcohol ratio of from about 1:0.9:1 to 1:5:20 at a temperature of from in excess of 190.degree. C. to about 300.degree. C.; and
- (b) separating the bis- or higher functional N-alkyl carbamate product from unreacted and partly reacted starting materials, impurities, and by-products.
- 2. The process of claim 1 wherein said amino-group to urea to alcohol ratio is from about 1:1:2 to 1:1.5:10.
- 3. The process of claim 1 wherein said temperature is from about 195.degree. C. to about 250.degree. C.
- 4. The process of claim 2 wherein said temperature is from about 195.degree. C. to about 250.degree. C.
- 5. The process of claim 1 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)-cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-,2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 6. The process of claim 2 wherein said diamine is selected from the gropp consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)-cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1-and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 7. The process of claim 3 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)-cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 8. The process of claim 4 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 9. A multiple step process for the preparation of bis- or higher functional N-alkyl carbamates in shortened reaction time comprising:
- (a) reacting in a first step an aliphatic primary di- or polyamine, urea, and a primary or secondary aliphatic alcohol in an amino-group to urea to alcohol ratio of from about 1:1:1 to about 1:1.5:2 at a temperature of from about 180.degree. C. to about 300.degree. C. for a period of from 1 to 4 hours;
- (b) adding in a subsequent step sufficient alcohol to increase the alcohol to amino-group ratio to from about 2.5:1 to about 7.5:1, and continuing the reaction for a total time period of from 4 to 20 hours; and
- (c) separating said bis- or higher functional N-alkyl carbamate product from unreacted and partly reacted starting materials, impurities and by-products.
- 10. The process of claim 9 wherein the amino-group to urea to alcohol ratio of step (a) is from about 1:1:1.25 to about 1:1.25:1.75; wherein the period of the reaction in step (a) is from about 2 to 3 hours; wherein the alcohol to amino-group ratio of step (b) is from about 3:1 to about 6:1; and wherein the total time period of the reaction is from about 5 hours to 12 hours.
- 11. The process of claim 9 wherein said temperature is from above 190.degree. C. to about 300.degree. C.
- 12. The process of claim 9 wherein said temperature is from about 195.degree. C. to about 250.degree. C.
- 13. The process of claim 9 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)-cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 14. The process of claim 10 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 1,4-bis(aminomethyl)cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 15. The process of claim 11 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexylhexane, 1,4-bis(aminomethyl)-cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 16. The process of claim 12 wherein said diamine is selected from the group consisting of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 1,4-cyclohexanediamine, 3-aminomethyl-3,5,5-trimethyl-1-cyclohexaneamine, 4-bis(aminomethyl)cyclohexane, 2-methyl-1,5-diaminocyclohexane, 2-methyl-1,3-diaminocyclohexane, 4,4'-diaminodicyclohexane, and 2,2'-, 2,4'-, and 4,4'-diaminodicyclohexylmethane; and wherein said aliphatic alcohol is selected from the group consisting of methanol, ethanol, 1- and 2-propanol, 1- and 2-butanol, 1-hexanol, 1-octanol, 2-ethylhexanol, and cyclohexanol.
- 17. The process of claim 1 wherein said unreacted and partly reacted starting materials and by-products are recycled.
- 18. The process of claim 9 wherein said unreacted and partly reacted starting materials and by-products are recycled.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2917493 |
Apr 1979 |
DEX |
|
Parent Case Info
This is a continuation-in-part application of co-pending application Ser. No. 135,247, filed on Mar. 31, 1980, which is expressly incorporated herein by reference, and which claims priority to Federal Republic of Germany application No. DE 2917493, filed Apr. 30, 1979.
US Referenced Citations (36)
Foreign Referenced Citations (4)
Number |
Date |
Country |
896412 |
Jul 1949 |
DEX |
528437 |
May 1938 |
GBX |
530267 |
Jun 1938 |
GBX |
1025436 |
Aug 1964 |
GBX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
135247 |
Mar 1980 |
|