This application is a national phase of PCT Application No. PCT/EP2009/051598, filed Feb. 11, 2009, entitled, “A PROCESSOR,” which is hereby incorporated by reference into this application.
The present application relates to the field of processors and to methods of transferring data between memory and the processor. More particularly, the present application is directed to a method of accessing an individual value, or contiguous or non-contiguous group of values within a compressed data-structure in memory without the need for retrieving and decompressing the entire compressed structure.
There is a fundamental problem in the design of computing systems, namely that of minimising the time cost of memory accesses.
This is a fundamental limitation on the design of computer systems as no matter what memory technology is used to support computation and no matter what technology is used to connect that memory to the processor, there is a maximum limitation on how much information can be transferred between processor and memory in a given time, this is the available memory bandwidth and the limitation of computer power by available memory bandwidth is often referred to as the “memory-wall”.
The present application seeks to increase the effective memory bandwidth and thus minimise the limitation of the “memory-wall” through the use of data compression.
It is known to employ data compression to reduce the effects of the “memory wall”. However, a problem for programmers using compressed memory sub-systems is that data has to be decompressed before it can be operated upon as shown in the system of
However this solution has the disadvantage that additional memory bandwidth is required to read compressed data, store it in uncompressed form, and read it back into the processor to be operated upon. Additional memory capacity is also required to hold the uncompressed data and the decompression process will increase pressure on the processors register-files. Clearly this is a sub-optimal solution which it is suggested explains why such compressed memory sub-systems have remained an academic curiosity rather than entering the mainstream microprocessor industry.
EP-0240032-A2 discloses a vector processor comprises a memory for storing and retrieving vector data. The vector processor comprises a plurality of vector registers each capable of reading or writing plural (m) vector elements in parallel, at least one mask vector register capable of m mask bits in parallel, transfer portion connected to the memory, the plurality of vector registers and the mask vector register and responsive to an instruction for transferring vector elements from regularly spaced address locations within the memory to selected storage locations of a selected vector register corresponding to valid mask bits. Whilst this approach is useful, it is limited in that the storage\retrieval of vector data is limited to an entire register.
Register-blocking is a useful technique for accelerating matrix algebra (particularly Finite-Element), however it has the disadvantage in that for many matrices (ex. As used in search engines such as GOOGLE™) zero fill has to be added decreasing effective FLOPS (Floating Point Operations Per Second), and increasing memory bandwidth requirements, both of which are commodities which are in short supply in modern computing systems.
In fact the growing gap between processing capabilities and memory bandwidth which are increasing at highly disparate rates of 50% and 7% per annum respectively is referred to, as mentioned above, as the “Memory Wall”. There have been many claims of “breaking” the memory wall and they usually consist of using a cache to reduce the probability of having to go off-chip, and/or using multi-threading so that the latency and penalties associated with going off-chip can be mitigated.
These approaches merely hide the problem of limited external memory bandwidth rather than solving it and generally rely on the data-set exhibiting sufficient data locality, and/or the program exhibiting sufficient Thread-Level Parallelism (TLP) in order to be effective at all, and this may not be true of all problems, and is certainly not always known a priori. In fact many of the larger and more interesting problems exhibit neither sufficient data-locality, nor sufficient TLP and the throughput of the whole system degenerates to the point where it is limited by external memory bandwidth, and the extra hardware which has been added on-chip is of no use. For this reason it is not uncommon to see large engineering applications pulling down processor performance to 1% or less of the manufacturers quoted peak performance specification.
The present application seeks to increase the effective memory bandwidth and minimise the limitation of the “memory-wall” on computation by storing data in a compressed format. This is achieved by providing a means of compression and decompression which is suitable for block-structured data used in many applications including, for example, computer graphics, rigid-body dynamics, finite-element analysis and other scientific and engineering applications, which operate on large data sets which must be stored in memory. In order to further reduce the effect of the “memory-wall”, the processor pipeline is also modified in such a way as to take advantage of compression, increasing the processing rate beyond what can be achieved by operating on compressed data alone.
More particularly, the present application allows random-access to individual values within a compressed structure stored in memory through the use of a value map and associated field bits specified as part of an instruction.
The present application will now be described with reference to the accompanying drawings in which:
A typical example of the desirability of compression is the use of matrix representations and linear algebra operators to simulate reality on a 2-dimensional screen in computer graphics and related applications. Operations on a source data matrix often consist of rotations and other transformations, and often sequences of them, of the type shown in
The present application, shown in
The application allows compressed structures of arbitrary size and complexity, consisting, for example but not limited to, any combination of the following: floating-point matrices, floating-point vectors, floating-point scalars, signed integers, unsigned integers, packed characters and address-pointers.
Suitably, the compression and decompression logic is embedded within the processor load/store ports, making the programmer's job easier in terms of not having to worry about the details of how data is read/written from/to the compressed memory subsystem on a transaction by transaction basis.
The solution described herein employs a value map to code for zero and nonzero entries in dense sub-matrix in the manner shown in
While the basic compression method outlined above is interesting and offers advantages, in most practical applications the programmer desires to store more than just sparse matrices and often needs to store and retrieve data stored in complex data-structures. The challenge is how to integrate a compression scheme so that it can provide similar performance and memory compression benefits to those outlined previously when handling mixed compressed/uncompressed data-structures without overly burdening the programmer.
The present application provides a means of random accessing data within a larger structure which may be compressed in the manner described previously, but may also contain uncompressed floating-point or integer data. The scheme allows a basic structure containing up to thirty-two 32-bit entries to be represented by a 32-bit integer (value map). In principle, the scheme is not limited to 32 but values or structures with 32 entries and the size of the value map and the number of entries may be selected to meet the requirements of the processor design. The presence of a 1-bit in the value map indicates the presence of a non-trivial floating-point or integer value at that position in memory as before. As each value is represented by a single bit, the value map may be referred to also as a bit map. An example of how a mixed (compressed/uncompressed) structure would be stored in memory is shown in
The basic principle of operation of the proposed compressed structure decompression logic is that a value map is used to represent the presence of trivial values. For the purposes of this application a trivial value is a 0.0 single precision (32-bit) floating-point value (Hex 00000000), however the same scheme may easily be extended to double-precision floating-point or beyond. Alternately if there were a preponderance of some other value than 0.0 in a particular data-set the scheme outlined here could easily be extended to allow a value map 0 represent that value rather than 0.0, for instance some data sets might contain many 1.0 values.
As can be seen from the RAM addresses, for an exemplary arrangement of data, in
To make use of compressed structures it is beneficial to reduce the overhead for the programmer in storing and retrieving the data stored in compressed form. In the present application, the programming overhead is minimised by hiding the complication of storing and retrieving compressed data inside the Load-Store Unit (LSU) address-generators of the processor which may for example be a RISC processor. The address generators allow a programmer to specify which elements of data are to be retrieved from a compressed structure. In turn, the LSU is able to retrieve the requested elements from the compressed structure in memory without decompressing the entire compressed structure.
Thus in the exemplary arrangement described herein, the address generators allow the programmer to specify which of 8 possible 4-entry fields (vectors) from a 32-entry compressed structure are to be loaded/stored using a simple 8-bit field mask which is included in the load/store opcode as shown in
This exemplary arrangement allows a programmer to specify the 4-entry vector register file (VRF) register to which data will be loaded/stored from/to. The base register in the integer register file (IRF) to which the addressgenerator will add the compressed-structure offset and the value map register also in the IRF. The opcode then contains an immediate 8-bit value f[7:0] which is used to select which of the eight four-entry compressed vectors actually get loaded/stored from/to the VRF.
As the LSU port-width is generally limited, in the case of exemplary arrangement in this application to 64-bits, it will be appreciated that the LDCV and STCV instructions necessarily take multiple clock-cycles. As a result the value map is decoded in an iterative fashion in the order of the f-bits causing a 64-bit compressed entry to be written to or read from the correct VRF register and stored to or read from the correct memory (RAM) address as seen from the LSU port. The layout in RAM of a typical compressed structure in a 64-bit memory subsystem is as shown in
It will be appreciated that the method and arrangement is not limited to 32 bit words or 64 bit wide memories and that similar layouts are possible for other memory widths including 96 and 128-bit wide memories etc, however for simplicity of explanation such arrangements organisations will not be discussed in detail here.
The VRF may be used as a staging area for the complete compressed structure before parts of it are dispersed to other register files internal to the processor in the case of a compressed load, or alternately for the storing of a compressed structure to external RAM attached to the LSU port.
An exemplary logic for the LSU will now be discussed with reference to
The values of the various signals for the example compressed data structure are shown in
The complete address-generation logic for the compressed load/store operations including the counter and finite-state machine to generate the required control signals is shown in
The fen[2:0] signal which selects the sequence of addresses to be applied to the address selection multiplexer operates according to the truth-table shown in
As may be seen in
The exemplary timing diagram of
The diagram shows behaviour for both the load and store operations, the only difference between the 2 operations would be:
A block-diagram of the SVU architecture, of which the Load Store Unit (LSU) with compressed load/store operations forms a part, is shown in
The instruction word has 7 slots which allow it to control up to 7 of the 9 functional units per cycle as shown in
In the present exemplary embodiment, the leftmost bit of the 128-bit instructions is reserved to provide for future features and the remaining 127 bits are split into fields, each of which controls one of up to 9 functional units contained in the preferred embodiment of processor architecture:
1× Predicated Execution Unit (PEU)
1× Branch/Repeat Unit (BRU)
2× Load-Store Units (LSU)
1× Vector Arithmetic Unit (VAU) • 1× Scalar Arithmetic Unit (SAU)
2× Integer Arithmetic Units (IAU)
1× Compare/Move Unit (CMU)
A final functional unit not under the direct control of the instruction-word is the Debug Control-Unit (DCU) which allows the processor to monitor and control program execution, especially in the event that exceptional conditions and/or interrupts occur.
The exemplary LSU allows vector data to be loaded from memory into VRF registers by the programmer. The LSU is controlled by a 24-bit opcode and can perform one of 8 operations:
An exemplary opcode table for the LSU is shown in
A block diagram of the LSU in uncompressed load/store mode is shown in
The block-diagram of the value map generation logic and load/store path to the VRF is shown in
A unique capability of the processor architecture described herein is its support for the loading and storing of compressed data in a random access manner without requiring the entire compressed structure to be retrieved. The reason for this support is that many interesting applications operate on large bodies of sparse data i.e. the data contains large numbers of zeroes which have to be fetched from memory and when operated upon generate zero results.
The main assumptions in the architecture are that all data to be handled by the processor is packed into 4-element vectors to be stored in memory, whether this data is compressed or uncompressed, and whether the data consists of matrices, vectors and packed scalars or integers. Based on this assumption the programmer may organise matrix/vector/scalar/integer data into 32-entry compressed blocks where only those entries which are non-zero are explicitly stored. All zero values and non-zero values are represented by a 1-bit entry in a non-zero value map which can then be used to compress/uncompress the 32-entries into 32 or fewer, 32-bit words in RAM.
The transformation matrices used in 3D graphics and game physics (rigid body dynamics) applications shown in Figure are a good example. The 32-bit value maps corresponding to the 8 matrices are shown in detail in
As can be seen in
The compression value maps are used to allow random-access into programmer defined complex data-structures using the hardware shown in
Suitably, the LSU port widths are configurable independently via the SVU_LCR register detailed in section 6. The port width parameter allows top level SoC interconnect to be traded off against the throughput of the SVU by allowing 4-element vectors to be loaded/stored in multiple transactions over a /2/4 element wide data bus attached to the SVU LSU ports as shown in
The generation of the additional address lsbs to support the port-width parameterisation is performed using a counter which appends 0, 1 or 2 address lsbs to the address generated by the LSU as shown in
The effect of the port-width parameter on a 4-element store to SVU RAM is shown in
The compression value maps are used to allow random-access into programmer defined complex data-structures using the hardware shown in
Suitably, the LSU port widths are configurable independently, for example, by means of a parameter provided as an entry in a register. The port width parameter allows top-level SoC interconnect to be traded off against the throughput of the SVU by allowing 4-element vectors to be loaded/stored in multiple transactions over a 1/2/4 element wide data bus attached to the SVU LSU ports as shown in
The generation of the additional address lsbs to support the port-width parameterisation is performed using a counter which appends 0, 1 or 2 address lsbs to the address generated by the LSU as shown in
The effect of the port-width parameter on a 4-element store to SVU RAM is shown in
Although the present application has been described with respect to a processor with an instruction set having an identified opcode for performing the data transfer between the memory and the processor, it will be appreciated that the function may be performed where there is no explicit instruction-set in program storage, but rather loads and stores are performed under the control of a state-machine or other means. A significant advantage is that one or more items of data may be retrieved from a compressed structure in memory without having to retrieve or decompress the entire compressed structure. Similarly, a single item of data may be updated in a compressed structure stored in memory without having to retrieve or decompress the entire compressed structure.
The words comprises/comprising when used in this specification are to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Number | Date | Country | Kind |
---|---|---|---|
0802484.6 | Feb 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/051598 | 2/11/2009 | WO | 00 | 10/20/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/101119 | 8/20/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4125873 | Chesarek | Nov 1978 | A |
4606002 | Waisman et al. | Aug 1986 | A |
5153591 | Clark | Oct 1992 | A |
5247638 | O'Brien et al. | Sep 1993 | A |
5394534 | Kulakowski et al. | Feb 1995 | A |
5805735 | Chen et al. | Sep 1998 | A |
5960465 | Adams | Sep 1999 | A |
6145069 | Dye | Nov 2000 | A |
6243081 | Goris et al. | Jun 2001 | B1 |
6564305 | Moore | May 2003 | B1 |
6591019 | Comair et al. | Jul 2003 | B1 |
20070112795 | Travison et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
2564844 | Nov 2005 | CA |
2447494 | Sep 2008 | GB |
0143074 | Jun 2001 | WO |
Entry |
---|
Application No. GB0704976.0, Patents Act 1977: Search Report under Section 17, Date of search: Jul. 26, 2007. |
International Search Report, International Application No. PCT/EP2009/051598, dated Jun. 4, 2009. |
Abadi et al. “Integrating Compression and Execution in Column-Oriented Database Systems.” 2006, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20110047360 A1 | Feb 2011 | US |