Offshore production units which produce hydrocarbons such as oil and natural gas, also produce a range of pollutants along with the hydrocarbons, including sand, stones, water, and contaminants that tend to remain suspended or dissolved in the water. Sand and stones generally can be dumped overboard because they sink to the seafloor, and some contaminants also can be dumped overboard along with water. However, many jurisdictions prohibit dumping into the sea, certain contaminants that may be harmful to sea life or to humans, or dumping water containing a high percent of the contaminants.
Contaminants in hydrocarbons that cannot be dumped overboard can be stored on the production unit in tanks specially used for this purpose. The production units also may include a water treatment plant to enable some of the contaminants to be separated out and dumped along with some of the water, to minimize produced water storage requirements. The production unit also includes storage tanks for storing produced hydrocarbons which the unit offloads to a tanker, or instead, the unit itself may sail away to a distant facility to offload the hydrocarbons before returning. To the extent that tanks on the production unit must be devoted to treating produced water and storing water that cannot be dumped, the production unit can store less hydrocarbons and offloading of hydrocarbons from the unit must occur more frequently which makes production more expensive.
A variety of production units are available, including FPSO (floating production and storage) units, TPL (tension leg platforms), SPAR units (long cylindrical structures) and fixed towers. The amount of water produced usually increases significantly over the life of the field. For example in a certain representative offshore field, the production of water was about 50,000 m3 per day at the start up of hydrocarbon production, but expanded to 150,000 m3 to 300,000 m3 per day during a period of several years after startup. If each unit must be provided with sufficient production water storage capacity to store the maximum amount produced during the life of a field, then the oil storage capacity of the unit will be severely affected. A solution to the problem of disposing of variable large amounts of produced water without requiring very large water storage capacity in the production units, would be of value.
In accordance with one embodiment of the invention, a system and method are provided for disposing of produced water generated by hydrocarbon production units, so the production units can devote almost all of their fluid storage capacity to the storage of hydrocarbons. A mobile treatment plant in the form of a self-propelled tanker is provided that is devoted to the storage and treatment of produced water. The mobile treatment plant sails from one production unit to another one and receives produced water from each unit. While en route, the treatment plant processes the produced water, as by separating its components in a settling tank so clean water can be dumped into the sea. The treatment plant also visits an on-shore dump where produced water constituents that cannot be dumped into the sea can be offloaded to an on-shore dump. Alternately, the treatment plant can dump the produced water constituents into a dump located on another vessel.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
Applicant provides a mobile treatment plant 30 for handling large quantities of produced water so the production unit 10 does not have to. The treatment plant 30 has mobile plant storage tanks 32 for holding produced water that has been transferred along an export hose 34 from the production unit storage tank(s) 24 on the production unit 10 to the mobile treatment plant while the plant is moored by a line (cable, etc.) 26. The mobile treatment plant storage tanks are used primarily as settling tanks to separate water from contaminants that settle or float in the water.
The mobile treatment plant is preferably a converted tanker. In one example, the settling tanks 32 have a combined storage capacity of 124,000 m3 and can separate out the constituents of produced water at a rate of 158,000 m3 with a completeness sufficiently to discharge clean water to the sea.
Local regulations specify the amount of certain contaminants can be present in water that is discharged into the sea. The mobile treatment plant 30 has laboratories for measuring the amounts of contaminants to be sure that excess amounts are not present in discharged water. Some jurisdictions limit the amount of contaminants that can be dumped within an area such as a square kilometer, per day. The fact that the mobile treatment plant is often moving, enables it to more easily comply with these regulations.
As mentioned above, a variety of different production units may be used.
Recovered oil and sludge will be burned or discharged to the on-shore facility on a regular basis. The mobile plant can make periodical calls at a shore facility to empty tanks of recovered oil and sludge, conduct crew changes, etc.
Thus, the invention provides a method for operating a system of hydrocarbon production units that produce considerable water along with the hydrocarbons, which frees the oil storage tanks on the production units to hold more oil. This is accomplished by providing a self propelled mobile plant, preferably a converted tanker, that sails in a circuit between production units and offloads produced water from the production units. The mobile plant treats the produced water to remove contaminants so much of the water can be dumped into the sea, and accomplishes the treatment while the mobile plant sails between units and to an authorized dump. It may be noted that some production units produce large quantities, or primarily, natural gas. In that case, the production unit may cool the gas until it is liquidated.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Applicant claims priority from U.S. Provisional Patent Application Ser. No. 61/226,656 filed Jul. 17, 2009.
Number | Name | Date | Kind |
---|---|---|---|
3586065 | Bowles | Jun 1971 | A |
4085695 | Bylo | Apr 1978 | A |
4630681 | Iwamoto | Dec 1986 | A |
6200473 | Fahey | Mar 2001 | B1 |
6345672 | Dietzen | Feb 2002 | B1 |
7306724 | Gordon | Dec 2007 | B2 |
7628224 | D'Souza et al. | Dec 2009 | B2 |
20040065614 | Gordon et al. | Apr 2004 | A1 |
20060180231 | Harland et al. | Aug 2006 | A1 |
20080179095 | Eia | Jul 2008 | A1 |
20100175884 | Poldervaart et al. | Jul 2010 | A1 |
20110147293 | Imahashi | Jun 2011 | A1 |
20120160566 | Eia | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2007084010 | Apr 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20110011584 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61226656 | Jul 2009 | US |