In the present invention, the sound dampening structure is a multi layer fusion of metal and polymer. This structure is created at a low cost that provides the necessary sound deadening properties, suitable part stiffness, and an optimized cost vs. sound deadening properties. The composite structure is at least three layers thick. The composite structure may be highly stiff and suitable for a variety of parts with significant strength requirements.
In the present invention, a filler polymer is used to provide the main energy-sound deadening effect in a fused metal and polymer structure. As an example, a typical automotive metal floor pan will have a thickness of 0.034″. For a sound deadened floor pan, two outside metal skins that are each 0.020″ thick are bonded together with an inside 0.001″ thick filler polymer. An overall fused metal structure of 0.041″ thick replaces a standard metal floor pan thickness of 0.034″ with similar structural stiffness in the formed part.
According to this invention, the thickness of metal varies and the thickness of the filler polymer varies with the application. The metal thickness and polymer thickness can be changed depending upon the resonant frequency in the part that is being avoided. Resonant frequencies are modeled at less than 20,000 hertz in the finished part and the significant frequencies are typically less than 8000 hertz.
A preferred type of filler polymer according to the teaching of this invention is a polyethylene, polypropylene, polyester, polystyrene, rubber, or foam. Each filler polymer is selected based on the variable properties of each polymer and the contribution made to the desired sound deadening properties. In particular, it is preferable for the polymers to be modified so that they provide adhesive functionality, such as being acid modified. A homogeneous filler layer is a preferred embodiment; a multi layer filler polymer structure may also be used. Polyethylene and polypropylene are preferably modified with maleic anhydride, such as are commonly used in commercial tie layers.
Readily available filler polymers that are suitable and provide significant adhesive properties along with sound deadening include:
A filler polymer may also be a polyester such as PET, PBT. For adhesion, the polyester may include a glycol group such as PETG. Alternatively, polyesters may be admixed with various polymers, mineral fillers, and epoxies that provide needed adhesive and sound deadening functionality. Other functionality groups such as acrylic, methacrylate, epoxy, and carboxyl may also be included or by mixing a suitable polymer with such modifications into the filler polymer. These groups, and their adhesive qualities to metal surfaces, are known in the art. Since the filler polymer is not exposed to scratching or the need for a good cosmetic appearance, costs incurred to make the filler polymer visually attractive or scratch resistant may be avoided.
Other notable filler polymers may be comprised of a majority of polypropylene, polyethylene, polycarbonate, polyester, a copolymer of acrylonitrile-butadiene-styrene, polystyrene, polyvinylchloride, vinyl, acetal, nylon, polyurethane, polyamide, polyarylate, polyetherimide, polyetherketone, polyphenylene sulfide, rubber, fluoropolymer, or polysulfone. These resins may be used with other polymers in mono or multi layer filler polymer structures that provide for adhesion and sound deadening properties.
For example, a filler polymer may be a three layer structure of an anhydride modified PP, a bulk PP, and an anhydride modified PP in a ratio of 15%:70%:15% respectively. The anhydride modified PP provides for adhesion to the metal strips. This provides for a cost effective filler polymer which minimizes the need for the more expensive anhydride modified PP. The bulk PP may be a virgin resin, or a recycled resin.
It has been seen that a sufficient amount of adhesion between the filler polymer and the metal can be realized with at least 0.1% maleic anhydride by weight, if that is the only functional group used for bonding. A preferred amount of adhesion is measured with at least 0.25% maleic anhydride by weight.
In a preferred embodiment, the filler polymer may incorporate a recycled polymer. Use of a recycled polymer is a highly attractive way to lower overall production costs. For example, a filler polymer may be a monolayer of 90% recycled polypropylene blended with 10% prime anhydride modified polypropylene which has 2.5% maleic anhydride by weight. The resulting filler polymer will have 0.25% maleic anhydride which is sufficient for a high amount of adhesive force.
It is important to provide for a suitable and continuous adhesive force between the filler polymer and the metal so that a formed part will behave in a highly predictable manner. If there is loss of adhesion for some of the part, the sound deadening capability of the polymer is compromised and unpredictable.
Much of the sound deadening property is believed to come from the lower stiffness of the filler polymer, which generally has an elastic modulus between 150,000 to 900,000 psi. The filler polymer therefore inherently has the capability of absorbing deflection energy efficiently and distributing the energy of motion throughout a finished part.
It is important that there is sufficient adhesive force between the filler polymer and the metal. Generally, an adhesive force of at least 500 grams per linear inch as measured by the force required to peel the metal from the filler polymer is needed for parts with minimal stamping or bending forces. In a preferred embodiment, adhesive forces between the filler polymer and the two metal surfaces are at least 1,000 grams per linear inch. This adhesive force is suitable for a wide variety of stamped parts and still maintain complete bond between the metal and filler polymer.
In a commercial setting, production issues may allow a minor amount of air entrapment between the filler polymer and the metal surface. Air may be entrapped between the filler polymer and the metal when the surface energy of the metal is insufficient for complete wet out of the polymer. This normally is not a significant quality problem, provided that there is sufficient bonding between the filler polymer and metal. The sound dampening effect is not significantly impacted.
The sound dampening effect of the present invention is believed to be due to the method of coupling two metals together so that any resonant vibration must occur in the entire fused structure. The filler polymer softens the deflection between the two metals and acts as a cushion. The softer polymer tends to compress and disperse the deflection energy throughout the part rather than allow the deflection to transfer to both metal strips. Surprisingly, a highly effective sound dampening effect has been measured with filler polymer thickness as low as 0.0004″.
It is desirable to combine a number of different polymers that may be compatible or incompatible. The modifications may create hybrid polymer properties and are especially useful in creating sound deadening effects.
A foam may also be used as a filler polymer with a prescribed density through extrusion methods that are known in the art. The use of foams will require additional part thickness as the filler will typically need to be more than 5 mils thick to be effective. The final end use must be designed to allow needed additional thickness. Foam provides significantly different sound deadening properties, and is another preferred embodiment.
Another embodiment of the present invention is to use a controlled amount of air space within the filler polymer. If the filler polymer is a solid film, a pattern of holes can be created in the film to provide unique sound deadening properties. The holes may be in a fixed, regular pattern, or the may be in a random pattern and size.
A rubber may also be used as a filler polymer.
A clean and energy activated surface is normally necessary to obtain the required adhesion and wet out between the filler polymer and metal. Surface treatments that increase the surface energy may be applied that are known in the art; including controlled flame, corona, and plasma types. The need for surface treatment and heating depends upon the polymer used. Typically, the preheating is at a level which will allow the steel surface to be above the glass transition temperature or melting temperature of the filler polymer just prior to the contact point with the filler polymer. Heating may be provided by conduction, induction, radiant, convection, and electrical resistance methods.
An extrusion station 16 provides an extruded molten filler polymer film 8 from a die 7 that is feed by a least one extruder (not shown). The molten filler polymer film 8 and is fed between the two steel strips 15a, 15b. The extrusion station 16 includes a nip roll 5 and a temperature controlling roll 6. The nip roll 5 provides pressure against the temperature controlling roll 6 to prevent air entrapment between the two steel strips 15a, 15b and the molten filler polymer film 8. The temperature controlling roll 6 may cool the metal-polymer-metal structure 17, or it may heat it. In a preferred embodiment, the temperature controlling roll 6 cools the metal-polymer-metal structure 17 so that the filler polymer is below its melting point. A side trimming operation 9, is preferably a score cut trimmer where only the excess filler polymer 8 that overhangs the metal edges is trimmed. The metal-polymer-metal structure 17 continues to a winding reel 14. Normally, both metal strips 15a, 15b are substantially the same width, but this is not a requirement.
The production line may be configured to include a reheating and quench operation. In
An alternate simplified production method is to pretreat only the metal surfaces that will contact the filler polymer by controlled flames, extrude the filler polymer between the metal strips which are in turn between a pair of pressure rolls, and cool the composite structure. This production method will work with polymers that wet out exceptionally well on the metal surface. However, small amounts of air entrapment are likely to be embedded with some polymers that do not wet out well.
An alternate simplified production method is to pretreat only the metal surfaces that will contact the filler polymer by corona, extrude the filler polymer between the metal strips which are in turn between a pair of pressure rolls, cool the metal-polymer-metal structure, and wind it up.
An alternate simplified production method is to preheat the metal strips, extrude the filler polymer between the metal strips which are in turn between a pair of pressure rolls, cool the metal-polymer-metal structure, and wind it up.
The use of an extrusion process to create the filler polymer provides for a simple, low cost capital investment. This is especially true if an extrusion coating line is compared to installation cost of a paint line. If the extruder die is set up correctly, and the output of the extruders is well known, the fused structure can be created without the need for dynamic and complicated profile feedback and control. This will create a very simple process to monitor and control.
Optional, additional processing steps are:
Methods of priming the metal surfaces for adhesion to the filler polymer include any of the following in any sequence:
These methods may be employed in combination with the steps shown in
If either metal surface that will contact the filler polymer is heavily oiled, the surface is unsuitable for polymer adhesion to the metal surface. In this case, the metal surface can be cleaned in conventional wet cleaning section, as are often seen on coil processing lines, using a suitable cleaning solution, rinse section, and drying section.
It is preferable to include suitable equipment to coat the exposed metal surfaces with any customer requested surface oils or lubricants at the end of the production line. This kind of equipment is well known in the art.
The process shown in
The present invention is generally suitable for a fused structure that is at least 0.004″ thick. It is preferable that at least one metal strip is at least 0.003″ thick for process line reliability. In a preferred embodiment, the metal strips to be coated are tinplate or light gauge metallic coated steel, such as galvanized or electroplated zinc steel. In another preferred embodiment, at least one of the metal strips to be coated is stainless steel or aluminum. In another preferred embodiment, one of the metal strips is aluminum foil. In another preferred embodiment, at least one of the metal strips is an alloy of titanium.
It is preferable that the edges of the two metal strips are substantially lined up at the point of contact with the filler polymer. For efficiency, an appropriate strip guiding system may be employed on the metal strips or polymer film just prior to the contact point. This makes efficient use of the metal strips, without the need to employ a metal side trimming operation.
In either method of production in
The extensive use of flame heating and pretreating, in particular, creates a simple and highly cost efficient method of preparing the metal for filler polymer bonding to the metal. Flame heating provides the lowest capital and operational cost. Consideration for even heating control is improved by using specialized ribbon burners, dynamic burner position adjustment, and temperature feedback. However, an induction, infrared, or resistance heating may also be employed with success.
In a preferred embodiment, a lower cost filler polymer is used. Since the quality of the filler polymer is not highly critical, minor amounts of gels can be tolerated in the extrusion process. Other highly critical quality parameters often seen in polymer coating systems are not of importance in this operation.
It is preferable that the adhesive force between the two metal strips is at least 500 grams per inch. This adhesion force will ensure that the fused structure will stamp out correctly into a finished part without significant delamination or adhesive failure. Preferably, the adhesive force is 1,000 grams per inch and most preferably the adhesive force exceeds 1,500 grams per inch.
Alternately, in
The graph in
Similarly,
Example #2: a test panel of metal and polymer fused strip was created. A thee layer filler polymer consisting primarily of polyester was inserted between two galvanized steel strips, each of which was 0.010″ thick. Both of the galvanized steel strips were pretreated by a controlled surface flame and preheated to 350° F. prior to contact with the filler polymer. In sequence, the fused metal and polymer strip composite structure was: galvanized steel strip 0.010″ thick, an anhydride modified ethylene acrylate polymer 0.2 mils thick, a polyester (PBT) 1.6 mils thick, an anhydride modified ethylene acrylate polymer 0.2 mils thick, and a galvanized steel strip 0.010″ thick. The metal, three layer filler polymer, and metal structure were pressed together. The resulting combined structure was then post treated above the melting point of the polyester and air cooled. The resulting flat panel was examined closely and tested. It contained very satisfactory adhesion and sound deadening qualities. The resonant frequency was significantly lowered, when struck firmly, and the sound amplitude was also significantly lowered when compared to flat steel panels of similar size 0.010″ thick.
Human hearing is limited to the range of about 20 Hz to 20 KHz depending upon the age of the individual. Frequencies in this range are the most important from a sound dampening standpoint.
As already mentioned, it has been discovered by the experimental results that the sound dampening material of the present invention primarily works to reduce the natural resonant frequency of a metal part. Based on samples that were measured, the dampening is capable of lowering the frequency as well as reducing the amplitude after the initial striking force. It was also readily observable for the experimenter to hear the change to a lower frequency when the samples were struck.
Metal square and rectangular samples have known resonant frequencies. The frequencies may be computed through methods such as finite element analysis. A square plate, also called a Chladni plate, has resonant frequencies approximated by:
where
m=1, 2, 3, . . .
t=thickness of metal square
a=side length of metal square
gC=gravitational constant, i.e. 386 in-lbm/lbf-sec2
E=modulus of elasticity of metal
ρ=density of metal
ν=poisson's ratio of metal
Similarly, a rectangular plate has resonant frequencies approximated by:
Additionally, where
n 1, 2, 3, . . .
b side length of rectangular square
These equations are based on membrane theory where the sides of the rectangle or square is large compared to the thickness. Generally, a ratio of more than 80 to 1 is needed for membrane theory to apply.
Based on the graphs in
In another preferred embodiment, the two metal skins are a different metal thickness. This provides additional sound deadening properties by preventing the resonant frequencies of the two metal skins from coinciding. Resonance in the overall part is then harder to establish. Preferably, the thicker plate is at least 5% more than the thinner one to establish a significant frequency interference between the two metal plates.
A preferred embodiment of the present invention is to additionally coat the exterior of the fused metal-polymer-metal structure as illustrated in
As shown in
Alternately, an external coating may be applied for the purpose of corrosion protection. Undercoating methods are used in the automotive field to protect metal parts from corrosion due to rain, road salt, moisture, and the general environment. These coatings and their application to a metal surface are known in the art.
In a preferred embodiment, an external sound dampening material may be applied to an external metal surface of the fused polymer metal composite to provide for additional sound deadening capability. The external sound dampening material may be tightly adhered to the exposed metal, such as by glue or tape. Such dampening may include rubber, foam, carpet, carpet padding, cloths, and known sound deadening materials.
The selection and application of commercial sound deadening materials, such as carpet, carpet padding, rubber, or foam, that is loosely applied to the outside of the fused metal and polymer composite structure is obvious to those skilled in the art and is not part of the present invention.
The surfaces of the metal and polymer fused strip may be decorated by embossing, stamping texturizing, printing, and coloring to provide suitable cosmetic appearance. Also, the surfaces may be adapted for additional sound dampening by the addition of foams and other materials that are known in the art to provide sound dampening.
While various embodiments of the present invention have been described, the invention may be modified and adapted to various similar arrangements to those skilled in the art. Therefore, this invention is not limited to the description and figures shown herein, and includes all such embodiments, changes, and modifications that are encompassed by the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 60/745,087, filed Apr. 18, 2006.
Number | Date | Country | |
---|---|---|---|
60745087 | Apr 2006 | US |